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Abstract
Several two-boundary problems for a Poisson process with an exponential component are

solved in the present article. We obtain the integral transforms of the joint distribution of
the first exit time from a fixed interval and the value of the overshoot through boundaries at
the epoch of the exit. The Laplace transform is found of the total duration of the process’s
stay inside the interval.

1 Introduction

Many interesting problems in applied probability (inventory theory, option pricing, dam theory,
ruin problems, etc.) are related to the joint distribution of the first exit time and the value
of the process at the epoch of exit. In the present paper we study a Poisson process with a
negative exponential component, i.e. a compound Poisson process with arbitrary positive jumps
and exponentially distributed negative jumps (for a more rigorous definition of the process
see section 2). First, a two-sided exit problem is solved, which consists of specifying the joint
distribution of the first exit time from a fixed interval and the value of the overshoot at the epoch
of the exit. The second problem solved in this framework is determining of the distribution of
the duration of stay of the Poisson process with a negative exponential component inside the
interval. We derive integral equations (systems of integral equations) for the integral transforms
using probabilistic methods, space homogeneity and the strong Markov property of the process.
To solve these equations (systems), we use the method of successive iterations.

Exit problems for different types of Lévy processes (and for compound Poisson process
in particular) have been considered by many authors (see for instance [9], [13]). Compound
Poisson process with linear deterministic decrease between positive and negative jumps was
studied by D. Perry, W. Stadje, and S. Zacks in [16]. In [15] these authors consider the lower
boundary crossing problem for the difference of two independent compound Poisson processes. A
martingale approach for solving exit problems has been applied in [14]. The integral transforms
of the duration of stay of the process inside the interval have been obtained in [5] for a semi-
continuous process with independent increments. The distribution of the duration of stay of the
Wiener process inside the interval has been found in the same paper.

The paper is organized as follows. First we state auxiliary results and then introduce the
process which we are going to study. In Section 2 we derive and solve a system of linear integral
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equations for the integral transforms of the joint distribution of the first exit time from a fixed
interval and the value of the overshoot at the epoch of the exit. The corresponding results
for a Poisson process with a negative exponential component are proved in Section 3. The
distribution os duration of stay of the Poisson process with a negative exponential component
inside the fixed interval is determined in Section 4.

2 Main definitions and auxiliary results

To derive the joint distribution distribution of the first exit time and the value of the overshoot
at the epoch of the exit for a Poisson process with a negative exponential component we apply a
general theorem for Lévy processes which has been proved in [9]. Before stating the theorem we
introduce a Lévy process and auxiliary functionals which we will use while proving the theorem.
Let {ξ(t); t ≥ 0} be a real-valued Lévy process, i.e. homogeneous process with independent
increments ([18], p.110) with the Laplace exponent

k(p) =
1
2

p2σ2 − αp +
∫ ∞

−∞

(
e−px − 1 +

px

1 + x2

)
Π(dx), Re p = 0. (1)

Here and in the sequel the paths of the process are supposed to be right-continuous and ξ(0) = 0.
Note, that the introduced process is a strong Markov process [17]. For x ≥ 0 introduce the
random variables

τ x = inf{ t : ξ(t) > x }, T x = ξ(τx)− x, τx = inf{ t : ξ(t) < −x }, Tx = −ξ(τx)− x

the first passage time of the level x and the value of the overshoot through this level at the
epoch of the passage; the first passage time of the level −x and the value of the overshoot
through this level at the epoch of the passage. Integral transforms of the joint distributions
{ τ x, T x }, { τx, Tx }, satisfy the following equalities

E [ e−sτx−pT x
] =

(
E [e−pξ+(νs)]

)−1
E [ e−p(ξ+(νs)−x); ξ+(νs) > x ], Re p ≥ 0,

E [ e−sτx−pTx ] =
(
E [e pξ−(νs)]

)−1
E [ ep(ξ−(νs)+x); −ξ−(νs) > x ], Re p ≥ 0, (2)

where ξ+(t) = sup
u≤t

ξ(u), ξ−(t) = inf
u≤t

ξ(u), νs is an exponential variable with parameter

s > 0, independent of the process {ξ(t), t ≥ 0}, P [ νs > t ] = e−st , and

E[e−p ξ±(νs) ] = exp
{∫ ∞

0

1
t

e−st E [ e−pξ(t) − 1; ± ξ(t) > 0 ] dt

}
, ±Re p ≥ 0.

The formulae (2) were obtained by Pecherskii E. and Rogozin B. in [11]. A simple proof of these
equalities is given in [9]. Let us give a strict definition of the first exit time from the interval.
Let B > 0 be fixed, y ∈ [0, B], x = B − y, ξ(0) = 0 and define

χ(y) = inf{ t > 0 : y + ξ(t) /∈ [0, B] }

the instant of the first exit by the process y + ξ(t) from the interval [0, B]. The random
variable χ(y) is a Markov time [4] and P [χ(y) < ∞ ] = 1. Observe that the exit from the
interval [0, B] can take place either through the upper level B, or through the lower level 0.
Introduce events
AB = { ξ(χ(y)) > B } — the exit from the interval by the process takes place through the upper
level;
A 0 = { ξ(χ(y)) < 0 } — the exit from the interval by the process takes place through the lower
level. Denote by

X(y) = (ξ(χ(y))−B) IA B + (−ξ(χ(y))) IA 0 , P [AB + A 0 ] = 1,
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the value of the overshoot through a boundary at the epoch of the exit from the interval by the
given process. Here IA = IA(ω) is an indicator of the event A.

The following theorem is true.

Theorem 1 ([9],[10]). Let {ξ(t); t ≥ 0} be a real valued Lévy process increments with the
Laplace exponent (1), B > 0 is fixed, y ∈ [0, B], x = B − y, ξ(0) = 0, and

χ(y) = inf{ t > 0 : y + ξ(t) /∈ [0, B] }, X(y) = (ξ(χ(y))−B) IA B + (−ξ(χ(y))) IA 0

the moment of the first exit by the process y+ξ(t) from the interval [0, B] and the value of the
overshoot through a boundary at the epoch of the exit from the interval by the given process. The
Laplace transforms of the joint distribution of the variables {χ(y), X(y) } for s > 0 satisfy
the following formulae

E [ e−sχ(y); X(y) ∈ du, AB ] = fs
+(x, du) +

∫ ∞

0
fs
+(x, dv) Ks

+(v, du),

E [ e−sχ(y); X(y) ∈ du, A 0 ] = fs
−(y, du) +

∫ ∞

0
fs
−(y, dv) Ks

−(v, du),
(3)

where

fs
+(x, du) = E [ e−sτx

; T x ∈ du ]−
∫ ∞

0
E [ e−sτy ; Ty ∈ dv ]E [ e−sτv+B

; T v+B ∈ du ],

fs
−(y, du) = E [ e−sτy ; Ty ∈ du ]−

∫ ∞

0
E [ e−sτx

; T x ∈ dv ]E [ e−sτv+B ; Tv+B ∈ du ];

and Ks
±(v, du) =

∞∑
n=1

K
(n)
± (v, du, s), v ≥ 0 are the series of successive iterations, n ∈ N;

which are given by

K
(1)
± (v, du, s) = K±(v, du, s), K

(n+1)
± (v, du, s) =

∫ ∞

0
K

(n)
± (v, dl, s) K±(l, du, s) (4)

where the kernels K±(v, du, s), are determined by the defining equalities

K+(v, du, s) =
∫ ∞

0
E [ e−sτv+B ; Tv+B ∈ dl ]E [ e−sτ l+B

; T l+B ∈ du ],

K−(v, du, s) =
∫ ∞

0
E [ e−sτv+B

; T v+B ∈ dl ]E [ e−sτl+B ; Tl+B ∈ du ]. (5)

To summarize, we have obtained the integral transforms of the joint distribution of the first
exit time and the value of the overshoot at the epoch of the exit. These transforms are given
in terms of integral transforms of one-boundary functionals which are well known. We apply
now the formulae of Theorem 1 for the case when the underlying process is the Poisson process
with an exponentially distributed negative component. Let us explain what do we mean by this.
Let η ∈ (0,∞) be a positive random variable, and γ be an exponential variable with the
parameter λ > 0 : P [ γ > x ] = e−λx, x ≥ 0. Introduce the random variable ξ ∈ R by its
distribution function

F (x) = a exλ I{x ≤ 0}+ (a + (1− a) P [ η ≤ x ]) I{x > 0}, a ∈ (0, 1), λ > 0.

Consider a right-continuous Poisson process {ξ(t); t ≥ 0} with the Laplace exponent

k(p) = c

∫ ∞

−∞
(e−xp − 1) dF (x) = a1

p

λ− p
+ a2(E[ e−pη]− 1), c > 0, Re p = 0, (6)

where a1 = ac, a2 = (1 − a)c. Here and in the sequel we will call such process the Poisson
process with a negative exponential component. Note, that jumps of the process {ξ(t); t ≥ 0}
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occur at the time epochs that are exponentially distributed with parameter c. With the prob-
ability 1−a there occur positive jumps with value distributed as η, and with the probability
a there occur negative jumps (jumps, which value is γ that is exponentially distributed with
the parameter λ ). The first term of (6) is the simplest case of a rational function, while the
second term is nothing but the Laplace exponent of a monotone Poisson process with positive
jumps of value η. It is well known fact (see for instance [1] p.65, [2]), that in this case the
equation k(p) − s = 0, s > 0 has a unique root c(s) ∈ (0, λ), in the semi-plane Re p > 0.
Moreover, for the integral transforms of the random variables ξ+(νs), ξ−(νs) the following
formulae hold

E[ e−pξ−(νs)] =
c(s)
λ

λ− p

c(s)− p
, Re p ≤ 0,

E[ e−pξ+(νs)] =
sλ

c(s)
(p− c(s))R(p, s), Re p ≥ 0, (7)

where

R(p, s) =
(
a1p + (p− λ)[s− a2( E[ e−pη]− 1)]

)−1
, Re p ≥ 0, p 6= c(s) (8)

It follows from (2) and (7) after some calculations that the integral transforms of the joint dis-
tributions {τx, Tx}, {τx, T x} of the Poisson process with a negative exponential component
satisfy the equalities

E[ e−sτx ; Tx ∈ du ] = (λ− c(s)) e−xc(s) e−λu du = E[ e−sτx ]P [ γ ∈ du ], (9)∫ ∞

0
e−px E[ e−sτx−zξ(τx)] dx =

1
p

(
1− p + z − c(s)

z − c(s)
R(p + z, s)

R(z, s)

)
, Re p > 0, Re z ≥ 0.

The first equality of (9) yields that τx and Tx are independent, moreover, for all x ≥ 0
the value of the overshoot through the lower level Tx is exponentially distributed with the
parameter λ. This fact serves as a characterizing feature of the Poisson process with a negative
exponential component. Observe, that the function R(p, s) is analytic in the semi-plane
Re p > c(s), and lim

p→∞
R(p, s) = 0. Therefore, it allows the representation in the form of an

absolutely convergent Laplace integral ([3])

R(p, s) =
∫ ∞

0
e−pxRx(s) dx, Re p > c(s). (10)

We will call the function Rx(s), x ≥ 0 the resolvent of the Poisson process with a negative
exponential component. We assume that Rx(s) = 0, for x < 0. Notice, that R0(s) =
lim

p→∞
p R(p, s) = (c + s)−1, and the equalities (7) imply that

P [ ξ−(νs) = 0 ] =
c(s)
λ

, P [ ξ+(νs) = 0 ] =
λ

c(s)
s

s + c
.

The second formula of (7) yields

R(p, s) =
c(s)
sλ

1
p− c(s)

E[ e−pξ+(νs)], Re p > c(s). (11)

The functions
1

p− c(s)
=
∫ ∞

0
e−u(p−c(s))du, Re p > c(s), E[ e−pξ+(νs)] =

∫ ∞

0
e−upd P [ ξ+(νs) < u ], Re p ≥ 0,

which enter the right-hand side of (11), are the Laplace transforms for Re p > c(s). Therefore,
the original functions of the left-hand side and the right-hand side of (11) coincide, and

Rx(s) =
c(s)
sλ

∫ x

−0
ec(s)(x−u)d P [ ξ+(νs) < u ], x ≥ 0. (12)

4



The latter formula is another representation for the resolvent of the Poisson process with a
negative exponential component. Note, that the representation for the resolvent similar to (12)
was obtained by V. Shurenkov and V. Suprun in [20, 19]. The representation (12) implies
that Rx(s), x ≥ 0 is positive, monotone, continuous, increasing function and Rx(s) <
A(s) exp{xc(s)}, 0 < A(s) < ∞. Consequently∫ ∞

0
Rx(s)e−αxdx < ∞, α > c(s).

Moreover, in the neighborhood of any x ≥ 0 the function Rx(s) has bounded variation.
Hence, the inversion formula [3, p. 68] is valid

Rx(s) =
1

2πi

∫ α+i∞

α−i∞
expR(p, s) dp, α > c(s). (13)

The latter equality together with (10) determines the resolvent of the Poisson process with a
negative exponential component. Now we state the main results.

3 Exit from the interval by the Poisson process with the neg-
ative exponential component

In this section the integral transforms of the joint distributions of the instant of the first exit
from the interval by the Poisson process with a negative exponential component and the value
of the overshoot through a boundary are determined. The following corollary from Theorem 1
holds.

Corollary 1. Let {ξ(t); t ≥ 0} be a Poisson process with a negative exponential component as
specified in the previous section, B ≥ 0, y ∈ [0, B], x = B − y, ξ(0) = 0, and

χ(y) = inf{ t > 0 : y + ξ(t) /∈ [0, B] }, X(y) = (ξ(χ(y))−B) IA B + (−ξ(χ(y))) IA 0

the moment of the first exit from the interval and the value of the of the overshoot through one
of the boundaries. Then for s > 0,

1) the integral transforms of the joint distribution {χ(y), X(y) } satisfy the following equal-
ities

E[ e−sχ(y); X(y) ∈ du, A0 ] = e−λu(λ− c(s)) e−yc(s)
(
1− E[ e−sτx−c(s)ξ(τx) ]

)
K(s)−1du, (14)

E[ e−sχ(y); X(y) ∈ du, AB ] = E[ e−sτx
; T x ∈ du ]− E [ e−sχ(y); A0 ] E [ e−sτγ+B

; T γ+B ∈ du ],

where

K(s) = 1− E[ e−sτB ] E[ e−sτγ+B−c(s)T γ+B
],

E[ e−sτγ+B−c(s)T γ+B
] = λ

∫ ∞

0
e−λuE [ e−sτu+B−c(s)T u+B

] du,

in particular

E[ e−sχ(y); A 0 ] =
(

1− c(s)
λ

)
e−yc(s)

(
1− E[ e−sτx

e−c(s)ξ(τx) ]
)

K(s)−1, (15)

E[ e−sχ(y); AB ] =E[ e−sτx
]− E[ e−sχ(y); A 0 ] E[ e−sτγ+B

];
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2) for the Laplace transforms of the random variable χ(y) the following representations
hold

E[ e−sχ(y); X(y) ∈ du, A0 ] =e−λ(u+B) Rx(s)
R̂B(λ, s)

du, E[ e−sχ(y); A0 ] =
1
λ

e−λB Rx(s)
R̂B(λ, s)

,

E[ e−sχ(y); AB ] =1− Rx(s)
R̂B(λ, s)

[
1
λ

e−λB + sλ ŜB(λ, s)
]

+ sλ Sx(s),∫ ∞

0
e−stP [χ(y) > t ] dt =λ

Rx(s)
R̂B(λ, s)

ŜB(λ, s)− λ Sx(s), (16)

where Rx(s), x ≥ 0 the resolvent of the process, defined by (10), (13);

Sx(s) =
∫ x

0
Ru(s) du, R̂B(λ, s) =

∫ ∞

B
e−λuRu(s) du, ŜB(λ, s) =

∫ ∞

B
e−λuSu(s) du.

Proof. We apply the results of Theorem 1 for the Poisson process with a negative exponential
component, which in this case take a simplified form. Using the equality (9) and the defining
formulae (5) of the kernels K±(v, du, s), yields

K+(v, du, s) =
(

1− c(s)
λ

)
e−c(s)(v+B) E [ e−sτγ+B

; T γ+B ∈ du ],

K−(v, du, s) = e−λu(λ− c(s)) e−c(s)B E [ e−sτv+B−c(s)T v+B
] du,

where γ is an exponentially distributed random variable with the parameter λ. The latter
equalities imply the following form of the successive iterations K

(n)
± (v, du, s), n ∈ N of the

kernels K±(v, du, s) :

K
(n)
− (v, du, s) =E[ e−sτv+B−c(s)T v+B

]
(
E[ e−sτB ]

)n (
E[ e−sτγ+B−c(s)T γ+B

]
)n−1

λe−λu du,

K
(n)
+ (v, du, s) =e−c(s)v

(
E[ e−sτB ]

)n (
E[ e−sτγ+B−c(s)T γ+B

]
)n−1

E[ e−sτγ+B
; T γ+B ∈ du ].

Then

Ks
−(v, du) =

∞∑
n=1

K
(n)
− (v, du, s) = E[ e−sτv+B

e−c(s)T v+B
] E[ e−sτB ] K(s)−1λ e−λu du,

Ks
+(v, du) =

∞∑
n=1

K
(n)
+ (v, du, s) = e−c(s)v E[ e−sτB ] E[ e−sτγ+B

; T γ+B ∈ du ] K(s)−1,

where
K(s) = 1− E[ e−sτB ] E[ e−sτγ+B−c(s)T γ+B

].

Substituting the obtained expressions for Ks
±(v, du) into the equalities (3) of Theorem 1,

we get the formulae (14) of Corollary 1. Integrating (14) with respect to u ∈ R+, yields the
equalities (15) of Corollary 1. Further, utilizing the representation (10), (13) for the resolvent and
the formulae (9), we obtain the resolvent representations for the functions E [ e−sτ x−c(s)ξ(τx) ],
E[ e−sτx

] :

E [ e−sτ x
e−c(s)ξ(τx) ] = 1− e−c(s)x Rx(s) r(c(s), s),

E[ e−sτx
] = 1− sλ

c(s)
Rx(s) + sλ Sx(s),

where

Sx(s) =
∫ x

0
Ru(s) du, r(c(s), s) =

d

dp
R(p, s)−1

∣∣∣∣
p=c(s)

.

Substituting now the latter equalities into (14), (15) yields the formulae (16) of the corollary.
Note, that for a random walk with a geometrically distributed negative component the resolvent
representations similar to (16) have been obtained in [7].
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Remark 1. The formulae of Corollary 1 can be also obtained after solving the following system
of the integral equations

E [ e−sτx
; T x ∈ du ] =E [ e−sχ(y); X(y) ∈ du, AB ]

+
∫ ∞

0
E [ e−sχ(y); X(y) ∈ dv, A 0 ] E [ e−sτv+B

; T v+B ∈ du ],

E [ e−sτy ; Ty ∈ du ] =E [ e−sχ(y); X(y) ∈ du, A 0 ]

+
∫ ∞

0
E [ e−sχ(y); X(y) ∈ dv, AB ] E [ e−sτv+B ; Tv+B ∈ du ].

(17)

which takes a simple form for the Poisson process with a negative exponential component. This
system has been solved in [9] for general Lévy processes (see also Lemma 1 in [10]).

4 Duration of stay inside the interval by the Poisson process
with a negative exponential component

In this section we obtain the Laplace transform of the total duration of stay of the process inside
the interval. Let {ξ(t); t ≥ 0}, ξ(0) = 0 be a real-valued Poisson process with a negative
exponential component. Denote by

σy(t) =
∫ t

0
I { y + ξ(u) ∈ [0, B] } du, y ∈ R

the total duration of stay of the process y+ξ(·) inside of the interval [0, B] up to the moment
t. We will determine

C s
a (y) = E[e−aσy(νs) ], y ∈ R, a ≥ 0

the Laplace transform of the total duration of stay of the process y + ξ(·) inside the interval
[0, B] on the exponentially distributed time interval [0, νs]. We require several auxiliary func-
tions to solve the stated problem. Let us introduce these functions. Let y ≥ 0, ξ(0) = 0,
and τy = inf { t : y + ξ(t) < 0 }, σy = σy(τy) be the instant of the first exit from the upper
semi-plane by the process y + ξ(·) and the total duration of stay of the process inside [0, B]
on the time interval [0, τy]. On the event { τy = ∞} we set per definition σy = ∞. The
following statement is true.

Lemma 1. Let {ξ(t); t ≥ 0}, ξ(0) = 0 be a Poisson process with a negative exponential
component as specified above. Then for the integral transform

Ds
a(y) = E[e−sτy−aσy ], y ≥ 0, a ≥ 0, s > 0

of the joint distribution { τy, σy } the following equality holds

Ds
a(y) =

[
V s

a (B − y)− aRB−y(s + a) e−c(s)(B−y)
]
V s

a (B)−1E[ e−sτy ], y ≥ 0, (18)

where Rx(s) = 0 for x < 0, and the function V s
a (x), x ∈ R is given by

V s
a (x) = 1 + a(λ− c(s))

∫ x

0
e−uc(s)Ru(s + a) du, x ≥ 0, V s

a (x) = 1, x < 0. (19)

Proof. For the functions Ds
a(y), y ≥ 0 according to the total probability law and the strong

Markov property of the underlying process we can write the system

Ds
a(y) = E [e−(s+a)χ(y); A0 ] +

∫ ∞

0
E [e−(s+a)χ(y); X(y) ∈ dv, AB ] E [e−sτv ; Tv > B ]

+
∫ ∞

0
E [e−(s+a)χ(y); X(y) ∈ dv, AB ]

∫ B

0
E [e−sτv ; Tv ∈ du ]Ds

a(B − u), y ∈ [0, B],

Ds
a(y) = E [e−sτy−B ; Ty−B > B ] +

∫ B

0
E [e−sτy−B ; Ty−B ∈ du ]Ds

a(B − u), y > B.
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The first equation of this system represents the fact that the total duration of stay of the process
y+ξ(·), y ∈ [0, B] inside [0, B] on the time interval [0, τy] is realized either on sample paths
which do not intersect the upper level (the first term of the right-hand side of the equation), or
on the paths which do intersect the upper level and then overleap the interval [0, B] (the second
term of the right-hand side of the equation), or on the paths which intersect the upper level and
then return to the interval [0, B] (the third term of the right-hand side of the equation).The
second equation is written analogously. Now, using the first equality of (9) and the equalities
(16) of Corollary 1, we get after some simplifications

D s
a (y) =

1
λ

e−λB RB−y(s + a)

R̂B(λ, s + a)
+ (λ− c(s))Es+a

y (c(s))
(

1
λ

e−λB + D̃ s
a (λ)

)
, y ∈ [0, B], (20)

D s
a (y) =

(
1− c(s)

λ

)
e−c(s)(y−B)e−λB + (λ− c(s)) e−c(s)(y−B)D̃ s

a (λ), y > B,

where

D̃ s
a (λ) =

∫ B

0
e−λuDs

a(B − u) du, Es+a
y (c(s)) = E [ e−(s+a)χ(y)e−c(s)X(y); AB ].

The only unknown function in (20) is D̃ s
a (λ). This function can be determined from the first

equation of (20). For this we first make auxiliary calculations. Denote

T s
x (z) = E [e−sτx−zT x

], x ≥ 0, Re z ≥ 0.

Utilizing the second equality of (9) and the defining formulae (10), (13) yields

T s+a
x (c(s)) = exc(s) + a

λ− c(s)
c(s)− c(s + a)

Rx(s + a)

+ a(λ− c(s))
∫ x

0
e−c(s)(u−x)Ru(s + a) du, x ≥ 0.

Using the latter equality and (14), (16) of Corollary 1, we find

Es+a
y (c(s)) = exc(s)V s

a (B − y)

− e−B(λ−c(s))

λ− c(s)
RB−y(s + a)

R̂B(λ, s + a)
V s

a (B)− aRB−y(s + a), y ∈ [0, B]. (21)

Multiplying this equality by e−λ(B−y) and integrating with respect to y ∈ [0, B], implies

(λ− c(s))
∫ B

0
e−λ(B−y)Es+a

y (c(s)) dy = 1− V s
a (B)

[
1 +

ŘB(λ, s + a)
R̂B(λ, s + a)

]
e−B(λ−c(s)) (22)

where ŘB(λ, s + a) =
∫ B
0 e−λuRu(s + a) du. Further, multiplying the first equation of (20) by

e−λ(B−y) and integrating it with respect to y ∈ [0, B], we get

D̃ s
a (λ) =

1
λ

e−λB ŘB(λ, s + a)
R̂B(λ, s + a)

+
(

1
λ

e−λB + D̃ s
a (λ)

)(
1− V s

a (B)

[
1 +

ŘB(λ, s + a)
R̂B(λ, s + a)

]
e−B(λ−c(s))

)

which is a linear equation with respect to the function D̃ s
a (λ). It yields

D̃ s
a (λ) +

1
λ

e−λB =
1
λ

e−c(s)BV s
a (B)−1

Substituting this expression for the function D̃ s
a (λ) into the equalities (20), and taking into

account the fact, that Rx(s) = 0 for x < 0 and V s
a (x) = 1, x < 0, implies the equality of

the lemma. Thus, we have proved Lemma 1.
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Now for y ≥ 0 we determine another auxiliary function

Q s
a (y) = E [ e−aσy(νs); τy > νs ], y ≥ 0, a ≥ 0

the Laplace transform of the total duration of stay of the process y + ξ(·) inside [0, B] on the
time interval [0, νs], on the event {τy > νs}, i.e. on the event that there is no exit from the
upper semi-plane by the process y + ξ(t) up to the epoch νs. The following statement is true.

Lemma 2. Let {ξ(t); t ≥ 0}, ξ(0) = 0 be a real-valued Poisson process with a negative
exponential component with the Laplace exponent (6). Then the functions Q s

a (y), y ≥ 0, for
s > 0 satisfy the equality

Q s
a (y) = v s

a (B − y)− aRB−y(s + a)− v s
a (B) D s

a (y), y ≥ 0, (23)

where Rx(s) = 0, x < 0, and D s
a (y), y ≥ 0 is given by (18), v s

a (x), x ∈ R is given by
the following formula

v s
a (x) = 1 + aλ

∫ x

0
Ru(s + a) du, x ≥ 0, v s

a (x) = 1, x < 0. (24)

Proof. In accordance with the total probability law and due to the fact that χ(y), τy are
the Markov times, for the functions Q s

a (y), y ≥ 0 the following system of equations is valid

Qs
a(y) =

s

s + a

(
1− E[ e−(s+a)χ(y)]

)
+
∫ ∞

0
E [e−(s+a)χ(y); X(y) ∈ dv, AB ] (1− E[ e−sτv ])

+
∫ ∞

0
E [e−(s+a)χ(y); X(y) ∈ dv, AB ]

∫ B

0
E [e−sτv ; Tv ∈ du ]Qs

a(B − u), y ∈ [0, B],

Qs
a(y) = 1− E[ e−sτy−B ] +

∫ B

0
E [e−sτy−B ; Ty−B ∈ du ]Qs

a(B − u), y > B.

Let us interpret the obtained equations. For the first equation we have that the duration of
stay inside [0, B] on the event {τy > νs} can be realized on the following disjunct events: 1)
sample paths of the process do not leave the interval [0, B] (the first term of the right-hand
side); 2) the paths intersect the upper level B and do not return to the interval (the second
term); 3) the paths leave the interval [0, B] through the upper level and then return to the
interval (the third term of the equation). The second equation is set up analogously. Using the
first equality of (9) and the equalities (16) it follows from the latter system that

Q s
a (y) = 1− 1

λ
e−λB RB−y(s + a)

R̂B(λ, s + a)
− aλ

RB−y(s + a)

R̂B(λ, s + a)
ŜB(λ, s + a) (25)

+ aλSB−y(s + a) + (λ− c(s))Es+a
y (c(s))

(
Q̃ s

a (λ)− 1
λ

)
, y ∈ [0, B],

Q s
a (y) = 1−

(
1− c(s)

λ

)
e−c(s)(y−B) + (λ− c(s)) e−c(s)(y−B)Q̃ s

a (λ), y > B,

where the function Es+a
y (c(s)) = E [ e−(s+a)χ(y)−c(s)X(y); AB ] is determined by (21), and

Q̃ s
a (λ) =

∫ B

0
e−λuQs

a(B − u) du, ŜB(λ, s + a) =
∫ ∞

B
e−λuSu(s + a) du.

The function Q̃ s
a (λ) can be determined straightforwardly from the first equation of (25), since

we have already given the auxiliary calculations in the previous lemma. Multiplying the first
equation of (25) by e−λ(B−y) and integrating it with respect to y ∈ [0, B], implies

Q̃ s
a (λ)− 1

λ
= − 1

λ
e−λB

[
1 +

RB−y(s + a)

R̂B(λ, s + a)

]
v s
a (B) + (λ− c(s)) Ẽs+a(c(s))

(
Q̃ s

a (λ)− 1
λ

)
, (26)
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which is a linear equation for the function Q̃ s
a (λ) and the function Ẽs+a(c(s)) =

∫ B
0 e−λ(B−y)Es+a

y (c(s)) dy
is determined by (22), v s

a (x), x ∈ R is given by the equality (24) of Lemma 2. To obtain
this equation we have also used the obvious identities

λŜB(λ, s + a) = R̂B(λ, s + a) + SB(s + a) e−λB,

λ

∫ B

0
e−λuSu(s + a) du =

∫ B

0
e−λuRu(s + a) du− SB(s + a) e−λB.

Utilizing the equality (22), we find from (26)

Q̃ s
a (λ)− 1

λ
= − v s

a (B)
V s

a (B)
1
λ

e−c(s)B.

Substituting the latter expression for the function Q̃ s
a (λ) into (25), and taking into account

the fact, that v s
a (x) = V s

a (x) = 1, x < 0, we obtain the equality of Lemma 2.

The auxiliary functions D s
a (y), Q s

a (y), y ≥ 0 are determined by the equalities (18), (23),
hence now we can obtain the integral transforms of the distribution of the duration of stay of
the process inside the interval. The following statement holds.

Theorem 2. Let {ξ(t); t ≥ 0}, ξ(0) = 0 be a Poisson process with a negative exponential
component with the Laplace exponent (6), B > 0, a ≥ 0 and

σy(t) =
∫ t

0
I { y + ξ(u) ∈ [0, B] } du, C s

a (y) = s

∫ ∞

0
e−stE[e−aσy(t) ] dt, y ∈ R

be the total duration of stay of the process y + ξ(·) inside the interval [0, B] up to the instant
t and the integral transform of the distribution of σy(t). Then for the function C s

a (y), y ∈ R
for s > 0 the following equalities hold

C s
a (y) = v s

a (B − y)− aRB−y(s + a) + D s
a (y) C∗(B), y ≥ 0, (27)

C s
a (−y) = 1− E[ e−sτy ] +

∫ ∞

0
E [ e−sτy ; T y ∈ du ]C s

a (u), y > 0,

where

C∗(B) =
aλ
c(s)

(
v s
a (B)− V s

a (B)ec(s)B
)

V s
a (B)

r(c(s), s) + a(λ− c(s))
B∫
0

(
V s

a (x)− a e−xc(s)Rx(s + a)
)

dx

,

v s
a (x) = 1 + aλ

∫ x

0
Ru(s + a) du, x ≥ 0, v s

a (x) = 1, x < 0,

V s
a (x) = 1 + a(λ− c(s))

∫ x

0
e−uc(s)Ru(s + a) du, x ≥ 0, V s

a (x) = 1, x < 0.

Proof. The negative jumps of the underlying process being exponentially distributed, the ran-
dom variables τx, Tx are independent (see the first formula of (9)) and for all x ≥ 0 the value
of the overshoot through the lower level Tx is exponentially distributed with the parameter λ.
Hence,

E [ e−sτy−aσy ; Tx ∈ du ] = D s
a (y)λe−λudu.

Then, according to the total probability law and the strong Markov property of the process for
the function C s

a (y), y ≥ 0, we can write the system of equations

C s
a (y) = Q s

a (y) + D s
a (y)C̃ s

a (λ), y ≥ 0,

C̃ s
a (λ) = 1−m s

γ +
∫ ∞

0
m s

γ (dy) C s
a (y), (28)
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where C̃ s
a (λ) = λ

∫∞
0 e−λxC s

a (−x) dx is an unknown function, which we will determine later,
and

m s
γ = λ

∫ ∞

0
e−λxE e−sτx

dx, m s
γ (dy) = λ

∫ ∞

0
e−λxE [ e−sτx

; T x ∈ dy ] dx.

Substituting the right-hand side of the first equation into the second equation of the system,
implies

C̃ s
a (λ) = 1−m s

γ +
∫ ∞

0
m s

γ (dy) Q s
a (y) + C̃ s

a (λ)
∫ ∞

0
m s

γ (dy) D s
a (y)

which is a linear equation with respect to the function C̃ s
a (λ). Using the expressions (18), (23)

for the functions D s
a (y), Q s

a (y), we find from the latter equation that

C̃ s
a (λ) = v s

a (B)+ (29)

aλ

1−
∞∫
0

m s
γ (dy) D s

a (y)

 B∫
0

m s
γ (dy)

B−y∫
0

Ru(s + a) du− 1
λ

B∫
0

m s
γ (dy) RB−y(s + a)− SB(s + a)

 ,

where SB(s + a) =
∫ B
0 Ru(s + a) du. Substituting the latter expression for C̃ s

a (λ) into the
first equation of the system (28) yields

C s
a (y) = v s

a (B − y)− aRB−y(s + a) + D s
a (y) C∗(B), y ≥ 0

which is the first equality of Theorem 2. Now we need to determine the constant C∗(B) =
C̃ s

a (λ)− v s
a (B). To do this, we require the following formulae∫ B

0
m s

γ (dy) RB−y(s + a) = λR̂B(λ, s + a)eλB − λR(λ, s)V s
a (B)ec(s)B,∫ B

0
m s

γ (dy)
∫ B−y

0
Ru(s + a) du = SB(s + a)

+ R̂B(λ, s + a) eλB +
R(λ, s)

c(s)

(
(λ− c(s))v s

a (B)− λV s
a (B)ec(s)B

)
, (30)∫ B

0
m s

γ (dy)e−yc(s)

∫ B−y

0
e−uc(s)Ru(s + a) du =

λR(λ, s)
λ− c(s)

(
eB(λ−c(s)) − 1

)
+

λ

λ− c(s)

(∫ B

0
e−uc(s)Ru(s + a) du− ŘB(λ, s + a) e(λ−c(s))B

)
− λR(λ, s)

∫ B

0
V s

a (x) dx,

where

ŘB(λ, s + a) =
∫ B

0
e−λuRu(s + a) du, R̂B(λ, s + a) =

∫ ∞

B
e−λuRu(s + a) du.

Integrals which enter the left-hand sides of the latter formulae are the convolutions of known
functions and are easy to calculate by utilizing the following equalities

∞∫
0

e−yzm s
γ (dy) =

λ

λ− z

(
1− λ− c(s)

z − c(s)
R(λ, s)
R(z, s)

)
, R(z, s)−1 = R(z, s + a)−1 + a(λ− z).

The first equality follows from (9) when p = λ− z, and the second equality follows from the
defining formula (8). Substituting the formulae (30) into (29), we obtain C∗(B) :

C∗(B) =
aλ
c(s)

(
v s
a (B)− V s

a (B)ec(s)B
)

V s
a (B)

r(c(s), s) + a(λ− c(s))
B∫
0

(
V s

a (x)− a e−xc(s)Rx(s + a)
)

dx

,

where r(c(s), s) = d
dpR(p, s)−1

∣∣∣
p=c(s)

. The second formula of Theorem 2 follows form the total

probability law and the fact that τy is a Markov time.
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Therefore, we have obtained the Laplace transforms of the distribution of the duration of
stay of the process inside the fixed interval. Note, that for a semi-continuous process with
independent increments the integral transforms of the duration of stay of the process inside the
interval were obtained in [5]. For a symmetric Wiener process the distribution of the duration
of stay of the process inside the interval was obtained in [5].
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