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Abstract

Given a nondegenerated moment space with s fixed moments, explicit formulas for the discrete s-
convex extremal distribution have been derived for s = 1, 2, 3 (see [1]). If s = 4, only the maximal
distribution is known (see [2]). This paper goes beyond this limitation and proposes a method to
derive explicit expressions for general nonnegative integer s. In particular, we derive explicitly the
discrete 4-convex minimal distribution. For illustration, we show how this theory allows to bound
the probability of extinction in a Galton-Watson branching process. The results are also applied
to derive bounds for the probability of ruin in the compound binomial and Poisson insurance risk
models.

Keywords : s-convex orders, moment spaces, stochastic extrema, Lundberg’s bound, branching
process, insurance risk model.

1 Introduction

It is well established that the theory of stochastic orderings has a considerable interest in prob-
ability for theoretical and practical purposes (see, e.g., [3] and [4]). For instance, it can be used
to compare complex models with more tractable ones which are “riskier”, leading thus to more
conservative decisions.

In many situations, stochastic order relations are used to compare real random variables. Quite
recently, various discrete stochastic orderings have been introduced to compare random variables
that are discrete by nature as counts for instance (see, e.g., [5], [6] and [7]). A remarkable class
investigated by [1] is the class of the discrete s-convex orderings among arithmetic random variables
valued in some set Nn = {0, 1, 2, . . . , n}, n ∈ N. Here s is any nonnegative integer smaller or equal
to n.

Discrete s-convex orderings have been defined in [1] in the following way. Let ∆ be the first
order forward difference operator (with unitary increment) defined for each function u : Nn → R

by ∆u(i) = u(i + 1) − u(i) for all i ∈ Nn−1. Let ∆k, k ∈ Nn, be the k-th order forward
difference operator defined recursively by ∆ku(i) = ∆k−1u(i+ 1)−∆k−1u(i) for all i ∈ Nn−k (by
convention, ∆1u ≡ ∆u and ∆0u ≡ u). If X and Y are two random variables valued in Nn, X is
said to be smaller than Y with respect to the discrete s-convex order if E [u(X)] ≤ E [u(Y )] for all
u ∈ UNn

s−cx = {u : Nn → R : ∆su(i) ≥ 0, ∀ i ∈ Nn−s}. In such a case, we write X�Nn

s−cxY .

∗Corresponding author. Email: courtois@stat.ucl.ac.be
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Since the power functions x 7→ xk and x 7→ −xk both belong to UNn

s−cx for k = 1, 2, . . . , s− 1,
we immediately get the necessary condition

X�Nn

s−cxY ⇒ EXk = EY k for k = 1, 2, . . . , s− 1.

In other words, if X�Nn

s−cxY then the s− 1 first moments of X and Y necessarily match. Conse-

quently, the ordering relation �Nn

s−cx can only be used to compare the random variables with the
same first s−1 moments. This motivates to introduce the moment space Ds (Nn;µ1, µ2, . . . , µs−1)
which contains all random variables valued on Nn such that the first s− 1 moments are fixed to
EXk = µk, k = 1, . . . , s−1, where s is a prescribed nonnegative integer. One remarkable property
of s-convex orderings is the following: Provided that the moment space satisfies some reasonable
conditions (in particular this space is not void), the moment space contains a minimum random

variable X
(s)
min and a maximum random variable X

(s)
max with respect to �Nn

s−cx.

However, the proof of this existence result is implicit in the sense that a formula for X
(s)
min and

X
(s)
max cannot be found easily, except in the simplest cases that we recall now.

If s = 3, the extrema X
(3)
min and X

(3)
max have been derived in [1]. Let ξ1 and ξ2 be the integers in

Nn−1 such that ξ1 < µ2/µ1 ≤ ξ1 + 1 and ξ2 < (n− µ1)
−1(nµ1 − µ2) ≤ ξ2 + 1. Then the discrete

3-convex extremal distributions are given by

X
(3)
min =











0 with probability p1 = 1 − p2 − p3,

ξ1 with probability p2 = (ξ1+1)µ1−µ2

ξ1
,

ξ1 + 1 with probability p3 = µ2−ξ1µ1

1+ξ1
,

(1)

and

X(3)
max =











ξ2 with probability q1 = (1+ξ2)(n−µ1)+µ2−nµ1

n−ξ2
,

ξ2 + 1 with probability q2 = (n+ξ2)µ1−µ2−nξ2

n−1−ξ2
,

n with probability q3 = 1 − q1 − q2.

(2)

The proof of this result can be found in [1] and uses the theory of discrete Tchebycheff systems
(see, e.g. [8]).

If s = 4, the same argument is used in [2] to derive the explicit formula for X
(4)
max. Let ζ be the

integers in [0, n− 2] such that ζ < (nµ1 − µ2)
−1(nµ2 − µ3) ≤ ζ + 1. Then,

X(4)
max =



















0 with probability v1 = 1 − v2 − v3 − v4,

ζ with probability v2 = nµ1(ζ+1)−µ2(ζ+1+n)+µ3

ζ(n−ζ) ,

ζ + 1 with probability v3 = µ2(ζ+n)−nµ1ζ−µ3

(ζ+1)(n−ζ−1) ,

n with probability v4 = µ3−µ2(2ζ+1)+µ1ζ(ζ+1)
n(n−ζ)(n−ζ−1) .

(3)

Surprisingly, no explicit formula for X
(4)
min is available in the literature. The point is that the

argument based on the non-negativity of particular moment matrices is no longer valid for that

case. The same phenomenon appears for the derivation of X
(s)
min or X

(s)
max with s ≥ 5. In that sense

the theory of discrete s-convex extremal distribution is limited to the case s ≤ 3 and is partially
solved for s = 4.

The present paper aims to go beyond this limitation and proposes new arguments, based on the
so-called “majorant-minorant method” and the “cut-criterion”, that allow to derive the explicit
extremal distributions for all s. However these cases are far more complicated to deal with because
a subtle discussion about the points of support of the extremal distribution is needed.

To illustrate that point, it is interesting to notice the close connection between the extrema
(1)–(3) and the corresponding continuous extrema, for which a parallel theory is developed when
the support of the random variable is the interval [0, n]. For instance, let us consider the case of

X
(3)
min. It can be shown (see [9]) that the continuous 3-convex minimal distribution is given by

X
cont.(3)
min =

{

0 with probability 1 − p,
µ2/µ1 with probability p = µ2

1/µ2.
(4)
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A comparison between (1) and (4) leads to the conclusion that the discrete extremal distribu-
tion can be easily obtained from the corresponding continuous extremal distributions since the
probability mass p = µ2

1/µ2 of the continuous distribution is spread on ξ, ξ + 1 ∈ Nn such that
ξ < µ2/µ1 ≤ ξ+1. This phenomenon also arises if we compare the discrete extremal distributions
(2), (3) with their corresponding continuous extremal distribution. It is then tempting to conjec-
ture that all discrete extrema can be obtained from their continuous extrema. This would be a
right strategy to solve our problem since an explicit formula for continuous extremal distributions
can be written for all s.

Surprisingly, this conjecture is wrong, as we can show with a simple example. Consider for
instance the moment space fixed by the moments (µ0, µ1, µ2, µ3) = (1, 6.625, 44.8525, 313.78825).
One can see that the corresponding continuous 4-convex minimum is given by

Xcont. =

{

6.4 with probability 0.95,
10.9 with probability 0.05.

Using the theory that we develop in the present article, one can show that the discrete 4-convex
minimum on Nn is given by

Xdisc. =















6 with probability 0.490875,
7 with probability 0.487025,
12 with probability 0.016725,
13 with probability 0.005375.

In other words, the support of the discrete distribution does not appear as the neighbourhood
in Nn of the supports of the continuous distribution. Moreover, if we discretize the continuous
extremal distribution on the neighbouring support {6, 7, 10, 11} one can see that the “probability
mass” at 10 would be negative (−0.0794).

This example shows that it is challenging to find the form of the support of the discrete
extremal disctribution. This question is addressed in Section 2 of the article. In Subsection 2.1 we
focus on the so-called “majorant/minorant method” to find the s-convex extrema. This section
contains key results that characterize the discrete moment space. Then Subsection 2.2 recalls the
cut-criterion [1]. Subsection 2.3 derives the support of the 4-convex minimum.

Section 3 deals with an application of this theory. We compute lower and upper bounds for the
probability of extinction in a Galton-Watson branching process and for the Lundberg’s coefficient
in the classical insurance risk model with discrete claim amounts.

Finally, Section 4 gives some conclusions as well as the generalization of the method developed
in the paper to find the s-convex extrema for s ≥ 4.

2 Derivation of the 4-convex minimum

2.1 S-convex extrema in moment spaces

As announced, random variables are assumed to take values on the state space Nn = {0, 1, 2, . . . , n}
for some non-negative integer n. We denote by Ds (Nn;µ1, µ2, . . . , µs−1) the moment space of
all the random variables valued in Nn and with prescribed first s − 1 moments µk = EXk,
k = 1, . . . , s− 1. Henceforth, the moment sequence (µ1, µ2, . . . , µs−1) is supposed to be such that
Ds (Nn;µ1, µ2, . . . , µs−1) is non void (for conditions, see [10]).

We aim to derive random variables X
(s)
min and X

(s)
max belonging to Ds (Nn;µ1, µ2, . . . , µs−1) and

such that
X

(s)
min�

Nn

s−cxX�Nn

s−cxX
(s)
max for all X ∈ Ds (Nn;µ1, µ2, . . . , µs−1) . (5)

The determination of X
(s)
min and X

(s)
max involved in (5) has been discussed in [1]-[2]: using the cut-

criterion on distribution functions (see Proposition 2.3 below), the extrema for s = 1, 2, 3 and
the maximum for s = 4 were obtained explicitly. In this paper, using a method that we call the
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Majorant/Minorant Method (inspired from the so-called method of admissible measures in [11]),
we find the form of the support of the 4-convex minimum.

Instead of solving (5) directly, we first look for the random variables that achieve the bounds

max
X∈Ds(Nn;µ1,µ2,...,µs−1)

E [Xs] and min
X∈Ds(Nn;µ1,µ2,...,µs−1)

E [Xs] . (6)

The extrema X
(s)
min and X

(s)
max necessarily achieve the bounds in (6).

Let us consider the problem of finding the random variables that realize the bounds in (6). We
have the following result.

Property 2.1. (i) A random variable X ∈ Ds (Nn;µ1, µ2, . . . , µs−1) achieves the maximum
(6) if and only if X is sup-admissible, that is X is concentrated on the set

{

i ∈ Nn : is = c0 + c1 · i+ c2 · i
2 + · · · + cs−1 · i

s−1
}

where the ci’s are real constants such that

is ≤ c0 + c1 · i+ c2 · i
2 + · · · + cs−1 · i

s−1, for all i ∈ Nn.

(ii) A random variable X ∈ Ds (Nn;µ1, µ2, . . . , µs−1) achieves the minimum (6) if and only if
X is sub-admissible, that is X is concentrated on the set

{

i ∈ Nn : is = c0 + c1 · i+ c2 · i
2 + · · · + cs−1 · i

s−1
}

where the ci’s are real constants such that

is ≥ c0 + c1 · i+ c2 · i
2 + · · · + cs−1 · i

s−1, for all i ∈ Nn.

Proof. We only prove (i); the proof for (ii) is similar.
Sufficient condition. Henceforth, we adopt the convention that 00 = 1. Let X be a random

variable in Ds (Nn;µ1, µ2, . . . , µs−1), i.e.

n
∑

i=0

P [X = i] ik = µk , k = 0, 1, . . . , s− 1;

which is concentrated on the set
{

i ∈ Nn : is =

s−1
∑

k=0

cki
k

}

where the ci’s are real constants such that is ≤
∑s−1

k=0 cki
k for all i ∈ Nn. Let also Z be some

random variable in Ds (Nn;µ1, µ2, . . . , µs−1), i.e.

n
∑

i=0

P [Z = i] ik = µk , k = 0, 1, . . . , s− 1.

We have

E [Xs] =
n

∑

i=0

P [X = i] is =
n

∑

i=0

P [X = i]
s−1
∑

k=0

cki
k =

s−1
∑

k=0

ck

n
∑

i=0

P [X = i] ik

=

s−1
∑

k=0

ckµk =

s−1
∑

k=0

ck

n
∑

i=0

P [Z = i] ik =

n
∑

i=0

P [Z = i]

s−1
∑

k=0

cki
k

≥
n

∑

i=0

P [Z = i] is = E [Zs]

4



for all Z ∈ Ds (Nn;µ1, µ2, . . . , µs−1). So, X = arg maxZ∈Ds(Nn;µ1,µ2,...,µs−1) E [Zs].
Necessary condition. Let X = argmaxZ∈Ds(Nn;µ1,µ2,...,µs−1) E [Zs] and let us suppose that

X is the s-convex maximum, i.e. Z�Nn

s−cxX for all Z ∈ Ds (Nn;µ1, µ2, . . . , µs−1). If X is not
sup-admissible, by [11] there exists a sup-admissible random variable Y 6=d X such that Y =
arg maxZ∈Ds(Nn;µ1,µ2,...,µs−1) E [Zs], which is impossible by Proposition 3.3 of [2]. Let us now
prove by absurd that X is the s-convex maximum. If not, there exists some random variable
Y ∈ Ds (Nn;µ1, µ2, . . . , µs−1), Y 6=d X , such that X�Nn

s−cxY . By Proposition 3.1 of [1], it comes
particularly that E [Xs] ≤ E [Y s], which is impossible and ends the proof.

We even have the following result that enables us to identify the s-convex extrema with the
random variables realizing the bounds (6). The discrete s-convex extrema are thus easily identified
using Property 2.1.

Proposition 2.2. Let X be some random variable in Ds (Nn;µ1, µ2, . . . , µs−1). Then X is
the s-convex maximum (resp. minimum) if and only if X = argmaxZ∈Ds(Nn;µ1,µ2,...,µs−1) E [Zs]
(resp. X = argminZ∈Ds(Nn;µ1,µ2,...,µs−1) E [Zs]).

Proof. The necessary condition has already been proved in the the proof of the necessary
part of Property 2.1 and the sufficient condition is obvious using Proposition 3.1 of [1].

2.2 Cut-criterion

We now recall the cut-criterion on the distribution functions of [1] that allows us to compare two
random variables in the s-convex sense.

Let u be any real-valued function defined on a subset S of R. We introduce the operator
S− which, when applied to u, counts the number of sign changes of u over its domain S. More
precisely, S−(u) = supS− [u(x1), u(x2), . . . , u(xn)] where the supremum is extended over all x1 <
x2 < . . . < xn ∈ S, n is arbitrary but finite and S− [y1, y2, . . . , yn] denotes the number of sign
changes of the indicated sequence {y1, y2, . . . , yn}, zero terms being discarded. The functions u1

and u2 are said to cross each other k times (k = 0, 1, 2, . . .) if S− (u1 − u2) = k. Moreover, if X
and Y are random variables valued in Nn with respective distribution functions FX and FY , we
say that FX ≥ FY near n if FX(k) ≥ FY (k) for all k ≥ k0, with k0 ≤ n− 1.

Proposition 2.3 ([1]). Let X and Y be two random variables valued in Nn, such that E
[

Xk
]

=

E
[

Y k
]

for k = 1, . . . , s − 1. Then, S−(FX − FY ) ≤ s − 1 together with FX ≥ FY near n ⇒

X�Nn

s−cxY .

2.3 Support of the 4-convex minimum

Using the cut-criterion, it can be verified that the possible structure of the supports of the 4-convex
discrete extrema takes the form {ξ, ξ + 1, η, η + 1} or {0, ζ, ζ + 1, n}. It is interesting to note that
those supports are identical to the ones that could be obtained calling upon the theory of the
discrete Tchebycheff systems (see [8]). The Majorant/Minorant Method is then used to derive the
conditions on the support points ξ, η and ζ so that the random variable corresponding to such
support has moments µ1, µ2, . . . , µs−1. This is done by computing the probabilities associated to
the support points as solutions to some Vandermonde system and by checking that the resulting
probabilities are positive.

Property 2.4. Consider a moment space D4 (Nn;µ1, µ2, µ3) with a given sequence of moments
µ1, µ2, µ3. If ξ, η ∈ Nn are such that 0 ≤ ξ < ξ + 1 < η < η + 1 ≤ n and define

α1 := −µ3 + µ2 (2η + ξ + 2) − µ1 [(ξ + 1) η + (ξ + 1) (η + 1) + η (η + 1)] + (ξ + 1) η (η + 1)

α2 := µ3 − µ2 (ξ + 2η + 1) + µ1 [ξη + ξ (η + 1) + η (η + 1)] − ξη (η + 1)

α3 := −µ3 + µ2 (2ξ + 2 + η) − µ1 [ξ (ξ + 1) + ξ (η + 1) + (ξ + 1) (η + 1)] + ξ (ξ + 1) (η + 1)

α4 := µ3 − µ2 (2ξ + 1 + η) + µ1 [ξ (ξ + 1) + ξη + η (ξ + 1)] − ξ (ξ + 1) η

(7)
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that are positive, then the discrete 4-convex minimal distribution of D4(Nn;µ1, µ2, µ3) is given by

X
(4)
min =















ξ with probability w1 = α1/ (η − ξ) (η + 1 − ξ),
ξ + 1 with probability w2 = α2/ (η − ξ − 1) (η − ξ),
η with probability w3 = α3/ (η − ξ) (η − ξ − 1),
η + 1 with probability w4 = α4/ (η + 1 − ξ) (η − ξ).

(8)

Proof. The proof gives the minimal together with the maximal distribution (3). Using the

majorant/minorant method, we find out the respective supports of the 4-convex extrema X
(4)
max

and X
(4)
min. To that end, we just compute the polynomials p(i) = c0 + c1i+ c2i

2 + c3i
3 of degree 3

(i.e. c0, c1, c2 and c3 ∈ R) such that X
(4)
max ∈ D4 (Nn;µ1, µ2, µ3) (resp. X

(4)
min) is concentrated on

the set

{

i ∈ Nn : i4 = c0 + c1i+ c2i
2 + c3i

3
}

= {0, ζ, ζ + 1, n} (1 ≤ ζ ≤ n− 2)

resp.

{ξ, ξ + 1, η, η + 1} (0 ≤ ξ < ξ + 1 < η < η + 1 ≤ n)

and i3 ≤ c0 + c1i+ c2i
2 for all i ∈ Nn (resp. ≥).

The only polynomial of degree 3 that fulfills the conditions

0 = c0
ζ4 = c0 + c1ζ + c2ζ

2 + c3ζ
3

(ζ + 1)
4

= c0 + c1 (ζ + 1) + c2 (ζ + 1)
2

+ c3 (ζ + 1)
3

n4 = c0 + c1n+ c2n
2 + c3n

3

is p(i) = ζ (ζ + 1)ni− [n (ζ + 1) + ζ (ζ + 1) + nζ] i2 + (ζ + ζ + 1 + n) i3. The zeros of the polyno-
mial x4−p(x) are of course 0, ζ, ζ+1 and n and x4−p(x) is always negative on Nn. So, as we have
checked that i4 ≤ p(i) on Nn, the random variable with support {0, ζ, ζ + 1, n} (1 ≤ ζ ≤ n − 2)

has to be X
(4)
max.

The only polynomial of degree 3 that fulfills the conditions

ξ4 = c0 + c1ξ + c2ξ
2 + c3ξ

3

(ξ + 1)
4

= c0 + c1 (ξ + 1) + c2 (ξ + 1)
2
+ c3 (ξ + 1)

3

η4 = c0 + c1η + c2η
2 + c3η

3

(η + 1)4 = c0 + c1 (η + 1) + c2 (η + 1)2 + c3 (η + 1)3

is

p(i) = −ξ (ξ + 1) η (η + 1)

+ [(ξ + ξ + 1) η (η + 1) + ξ (ξ + 1) (η + η + 1)] i

− [η (η + 1) + (ξ + 1) (η + 1) + (ξ + 1) η + ξ (η + 1) + ξη + ξ (ξ + 1)] i2

+ (ξ + ξ + 1 + η + η + 1) i3

The zeros of the polynomial x4 − p(x) are of course ξ, ξ + 1, η and η + 1 and x4 − p(x) is always
positive on Nn. So, as we have checked that i4 ≥ p(i) on Nn, the random variable with support

{ξ, ξ + 1, η, η + 1} (0 ≤ ξ < ξ + 1 < η < η + 1 ≤ n) has to be X
(4)
min.

Finally, we have to fix conditions on the support points to assure the non-negativity of their

associated probabilities. The conditions on the support points of X
(4)
max are

0 < ζ < ζ + 1 < n
µ3 ≤ −ζnµ1 + (ζ + n)µ2

µ3 ≤ ζ (ζ + 1)n− [ζ (ζ + 1) + n (ζ + 1) + nζ]µ1 + (ζ + ζ + 1 + n)µ2

µ3 ≥ −ζ (ζ + 1)µ1 + (ζ + ζ + 1)µ2

µ3 ≥ − (ζ + 1)nµ1 + (ζ + 1 + n)µ2

6



and because we have ζ (ζ + 1)n − [ζ (ζ + 1) + n (ζ + 1) + nζ] i + (ζ + ζ + 1 + n) i2 ≥ i3 (cfr. 3-
convex maximum) on Nn and −ζ (ζ + 1) i + (ζ + ζ + 1) i2 ≤ i3 on Nn (cfr. 3-convex minimum),
the second and the third condition are respectively always verified and the system of conditions
reduces to

0 < ζ < ζ + 1 < n and ζ <
nµ2 − µ3

nµ1 − µ2
≤ ζ + 1.

Henceforth, we refind the 4-convex maximum (3). The conditions on the support points of X
(4)
min

are given by
α1 ≥ 0, α2 ≥ 0, α3 ≥ 0 and α4 ≥ 0. (9)

The solution (ξ, η) of (7) cannot be obtained explicitly. Nevertheless, it is easily obtained by
testing each admissible pair (ξ, η) of Nn.

Remark 2.5. As it is proved in [1], the s-convex orderings with respect to Nn are shift invari-
ant. In particular, this means that, for all random variable X in Ds (Nn;µ1, µ2, . . . , µs−1) and all
k = 0, 1, 2, . . .,

X
(s)
min �Nn

s−cx X �Nn

s−cx X
(s)
max ⇔ X

(s)
min + k �k+Nn

s−cx X + k �k+Nn

s−cx X(s)
max + k,

where k+Nn = {k, k+1, . . . , k+n}. Then, if the random variables are defined on {k, k+1, . . . , k+
n}, the discrete s-convex extrema can easily be obtained by shifting the discrete s-convex extrema
among random variables defined on {0, 1, . . . , n} with appropriate moment sequence.

3 Applications

3.1 Theoretical background

Given a random variable N valued in Nn, n being a positive integer, a classical problem consists
in solving the equation

ϕN (z) = Pk(z), (10)

in the unknown z, where ϕN (z) = E
[

zN
]

=
∑n

k=0 z
k
P [N = k], 0 ≤ z ≤ 1, is the probability

generating function of N , and where Pk (·) is a given non-decreasing polynomial function of degree
k (usually, k ≤ 2). When all that is known about N is that it belongs to Ds (Nn;µ1, µ2, . . . , µs−1),
then (10) cannot be solved explicitely. The aim of this subsection is to show that the s-convex
extrema described previously allow accurate approximations for the solution of (10). The method
using the continuous s-convex extrema could of course be applied here. Nevertheless, we get better
bounds if we take into account the fact that N is now valued in the arithmetic grid Nn rather

than in the interval [0, n] (see Tables 1, 3 and 4). The idea is to construct two functions ϕ
(s)
min (·)

and ϕ
(s)
max (·) such that

ϕ
(s)
min(z) ≤ ϕN (z) ≤ ϕ(s)

max(z) for all 0 ≤ z ≤ 1. (11)

The sequence
[

zk, k ∈ N
]

being completely monotonic for 0 < z ≤ 1, we get from [1] that,

when s is even, ϕ
(s)
min(t) = ϕ

N
(s)
min

(t) and ϕ
(s)
max(t) = ϕ

N
(s)
max

(t), while when s is odd, ϕ
(s)
min(t) =

ϕ
N

(s)
max

(t) and ϕ
(s)
max(t) = ϕ

N
(s)
min

(t), where the N
(s)
min and N

(s)
min are the stochastic extrema in

Ds (Nn;µ1, µ2, . . . , µs−1) with respect to the discrete versions of the s-convex stochastic order-
ings.

The same problem with φN (z) = E
[

ezN
]

, the moment generating function of N , can be

handled similarly. Since the sequence
[

ekz , k ∈ N
]

is absolutely monotonic, we have that

φ
(s)
min(t) ≤ φ

(s)
N (t) ≤ φ

(s)
max(t) with φ

(s)
min(t) = φ

N
(s)
min

(t) and φ
(s)
max(t) = φ

N
(s)
max

(t). As above, these pro-

vide bounds on the root of the equation φN (z) = Pk(z), where Pk is a monotone polynomial func-

tion. Solving the equation φ
(s)
min(z) = Pk(z) yields the root z

(s)
1 , say, and solving φ

(s)
max(z) = Pk(z)

yields the root z
(s)
2 , say. The solution z̃, say, of φ

(s)
N (z) = Pk(z) then satisfies z

(s)
2 ≤ z̃ ≤ z

(s)
1 .
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3.2 Probability of ultimate extinction in a branching process

Let us briefly recall the definition of the Galton-Watson process. At time t = 0 there exists an
initial population M0. During its life span, every individual gives birth to a random number of
children. During their life spans, these children give birth to a random number of children, and
so on. The reproduction rules are (i) all individuals give birth according to the same probability
law, independently of each other and (ii) the number of children produced by an individual is
independent of the number of individuals in their generation. In the sequel, we also assume
(without real loss of generality) that M0 = 1. For k ≥ 1, let Mk be the number of individuals
in generation k and let N be a generic random variable valued in Nn representing the number of
children obtained by the individuals; P [N = 1] < 1. If you denote by α the probability of ultimate
extinction of this process, i.e. α = P [Mk = 0 for some k], it is well-known that α is the smallest
non-negative root of the equation z = ϕN (z); α = 1 for E [N ] ≤ 1 and α < 1 for E [N ] > 1. In
order to illustrate the use of the s-convex extrema up to the order four, we consider the following
example from [12] page 11.

Example 3.1. Let us take n = 10 and P [N = 0] = 0.4982, P [N = 1] = 0.2103, P [N = 2] =
0.1270, P [N = 3] = 0.0730, P [N = 4] = 0.0418, P [N = 5] = 0.0241, P [N = 6] = 0.0132,
P [N = 7] = 0.0069, P [N = 8] = 0.0035, P [N = 9] = 0.0015, P [N = 10] = 0.0005. The exact

extinction probability is α = 0.879755. The 3- and 4-convex discrete extrema are as follows: N
(3)
min

and N
(3)
max (resp. N

(4)
min and N

(4)
max) have respective supports {0, 3, 4} and {0, 1, 10} (resp. {0, 1, 5, 6}

and {0, 2, 3, 10}) and associated probabilities {0.6534, 0.2415, 0.1051} and {0.1261, 0.8438, 0.0301}
(resp. {0.3944, 0.4714, 0.1315, 0.0027} and {0.6037, 0.1074, 0.2798, 0.0091}). The bounds obtained
with these extrema are displayed in Table 1. The bounds obtained with s = 4 are remarkably
accurate.

α
(s)
min α

(s)
max

s = 3 0.8414716 0.8868653
s = 4 0.8791374 0.8807095

Table 1: Bounds on the probability of ultimate extinction α in Example 3.1 using the discrete
s-convex extrema.

3.3 Ruin probability - Binomial risk model

In the classical discrete binomial risk model (see, e.g., [13] and [14]), the discrete claim amounts
X1, X2, . . . recorded by an insurance company are assumed to be independent and identically
distributed with common distribution function F having finite s−1 moments, such that F (0) = 0.
The number of claims in the time interval [0, t] is assumed to be independent of the individual
claim amounts and to form a binomial process {N(t), t ∈ N} with parameter q, 0 < q < 1 (i.e.
in any time period there occurs 1 or 0 claim with probabilities q and 1 − q, respectively, and
occurrence of claims in different time intervals are independent events). We assume furthermore
that the premium received in each period is equal to 1 and is larger than the net premium, which
means that 1 > qE [X1].

Further, let ψ(κ) be the ultimate ruin probability with an initial capital κ; that is, the prob-

ability that the process Z(t) = κ + t −
∑N(t)

i=1 Xi, t ∈ N, describing the wealth of the insurance
company, ever falls below zero. If the moment generating function of X exists, the Lundberg’s
inequality provides an exponential upper bound on ψ, namely ψ(κ) ≤ e−zκ, where z is the Lund-
berg’s adjustment coefficient satisfying the integral equation φS(t)(z) = E

[

ezS(t)
]

= ez with S(t)
denoting the aggregate claim amount in the t-th time interval. As we are dealing with a compound
binomial model, it comes easily that z is the solution of the equation 1− q+ qE

[

ezX
]

= ez where

E
[

ezX
]

is the moment generating funtion of the discrete claim amounts X1, X2, . . ..

8



We recall that the infinite-time ruin probabilities ψ(κ) can be computed by a recursive formula
(see for example [13] and [14]). Let us also notice that, as proved in [1], X �Nn

2−cx Y ⇒ ψX(κ) ≤
ψY (κ) for all integer κ. Unfortunately, this relation is no longer true for s larger than two.
Consequently, the method introduced in this paper does not allow us directly to bound the ruin
probabilities. Thus, in order to make a comparison, we are going to compute the ruin probabilities
using the recursive formula and the exponential Lundberg’s upper bound using the 2- and 3-convex
maxima.

For the application, we assume that the individual claim amount distribution is the same as in
Example 3.1 except that the support is {1, 2, . . . , n}, i.e. we take n = 11 and P [X = 1] = 0.4982,
P [X = 2] = 0.2103, P [X = 3] = 0.1270, P [X = 4] = 0.0730, P [X = 5] = 0.0418, P [X = 6] =
0.0241, P [X = 7] = 0.0132, P [X = 8] = 0.0069, P [X = 9] = 0.0035, P [X = 10] = 0.0015,
P [X = 11] = 0.0005. Consequently, the first moments of the discrete claim amounts are fixed
to µ1 = 2.145, µ2 = 7.1454 and µ3 = 33.4896. In addition, let q = 0.4. The Lundberg’s adjust-
ment coefficient is equal to z = 0.1163 and the ruin probabilities ψ(κ) for some initial surplus level
κ are depicted in Table 2.

The 3- and 4-convex discrete extrema are given as follows: X
(3)
min and X

(3)
max (resp.

X
(4)
min and X

(4)
max) have respective supports {1, 4, 5} and {1, 2, 11} (resp. {1, 2, 6, 7} and

{1, 3, 4, 11}) and associated probabilities {0.6534, 0.2415, 0.1051} and {0.1261, 0.8438, 0.0301}
(resp. {0.3944, 0.4714, 0.1315, 0.0027} and {0.6037, 0.1074, 0.2798, 0.0091}). The extremal 3-

and 4- convex adjustment coefficients are respectively equal to z
(3)
min = 0.1053, z

(3)
max = 0.1205,

z
(4)
min = 0.1158 and z

(4)
max = 0.1166. The exponential upper bounds obtained using these extrema

are displayed in Table 1.

Initial surplus level κ ψ(κ) e−κz e−κz
(3)
min e−κz

(4)
min

0 0.7633 1 1 1
1 0.6842 0.8902 0.90003 0.8906
2 0.6117 0.7925 0.8101 0.7933
3 0.5461 0.7054 0.7291 0.7066
4 0.4869 0.6280 0.6562 0.6294
5 0.4338 0.5590 0.5906 0.5606
6 0.3862 0.4977 0.5315 0.4993
7 0.3438 0.4430 0.4784 0.4447
8 0.3060 0.3944 0.4306 0.3961
9 0.2724 0.3511 0.3875 0.3528
10 0.2425 0.3125 0.3488 0.3142
15 0.1355 0.1747 0.2060 0.1761
20 0.0758 0.0977 0.1217 0.0987
30 0.0237 0.0305 0.0425 0.0310
40 0.0074 0.0095 0.0148 0.0097
50 0.0023 0.0030 0.0052 0.0031

Table 2: Ruin probabilities and Lundberg’s bounds when n = 11, q = 0.4.

3.4 Lundberg’s coefficient - Poisson risk model

In this section, we consider the classical discrete poisson risk model. This model is the same as
the one introduced in Section 3.3 except that here the number of claims is governed by a Poisson
process {N(t), t ≥ 0} with constant rate λ. Let also the premium rate c > 0 be such that the

inequality c > λE [X1] holds. Here, Z(t) = κ+ct−
∑N(t)

i=1 Xi (t ≥ 0) and if the moment generating
function of X exists, Lundberg’s inequality provides again an exponential upper bound on ψ,
namely ψ(κ) ≤ e−zκ, where z is the Lundberg’s adjustment coefficient satisfying the integral

9



equation φX(z) = 1 + cz
λ .

As an illustration, let n = 5, c = 12, λ = 10 and µ1 = 1. First, consider z
(s)
min and z

(s)
max as

functions of µ2. Whe then get the numerical values depicted in Table 3. Second, let us fix µ2 = 3

and consider z
(s)
min and z

(s)
max as functions of µ3 (see Table 4). It is seen that the bounds are quite

accurate, and are particularly so when µ3 is large.

µ2 1.5 2 2.5 3

z
(3)
min, discrete 0.2144848 0.1624468 0.1324108 0.1123238

z
(3)
max, discrete 0.2330329 0.1771006 0.1409982 0.1180644

µ2 3.5 4 4.5

z
(3)
min, discrete 0.09778207 0.08670383 0.07794723

z
(3)
max, discrete 0.1009502 0.08855031 0.07859318

Table 3: Bounds on the Lundberg’s coefficient z when µ1 = 1, n = 5, c = 12 and λ = 10.

µ3 9.5 10 10.5 11

z
(4)
min, discrete 0.1172558 0.1164697 0.1157054 0.1149623

z
(4)
max, discrete 0.117302 0.1165591 0.1158351 0.1151295

µ3 11.5 12 12.5

z
(4)
min, discrete 0.1142785 0.1136114 0.11296

z
(4)
max, discrete 0.1144 0.1136898 0.1129981

Table 4: Bounds on the Lundberg’s coefficient z when µ1 = 1, µ2 = 3, n = 5, c = 12 and λ = 10.

4 Concluding remarks and extension to s ≥ 4

Quite surprisingly, the discrete s-convex extrema cannot be obtained by discretizing the continuous
ones (contrarily to the cases treated in [1]-[2]). Using the Majorant/Minorant Method, we proved
that the support of the discrete 4-convex minimum has to be of the form {ξ, ξ + 1, η, η + 1} (0 ≤
ξ < ξ + 1 < η < η + 1 ≤ n), when ξ and η are the solutions of (9).

It is also interesting to note that the method proposed in this paper can be extended to any
s ≥ 4. It is done in the following way. Using the cut-criterion and Property 2.1, it can be seen
that the most general form for the supports of the s-convex extrema, denoted by Supp

X
(s)
min

and

Supp
X

(s)
max

, are given as follows: for s = 2m, we have Supp
X

(s)
min

= {ξ1, ξ1 + 1, . . . , ξm, ξm + 1}

(0 ≤ ξ1 < ξ1 + 1 < . . . < ξm < ξm + 1 ≤ n) and Supp
X

(s)
max

= {0, ζ1, ζ1 + 1, . . . , ζm−1, ζm−1 + 1, n}

(0 < ζ1 < ζ1 + 1 < . . . < ζm−1 < ζm−1 + 1 < n) while for s = 2m + 1, we have Supp
X

(s)
min

=

{0, ξ1, ξ1 + 1, . . . , ξm, ξm + 1} (0 < ξ1 < ξ1 + 1 < . . . < ξm < ξm + 1 ≤ n) and Supp
X

(s)
max

=

{ζ1, ζ1 + 1, . . . , ζm, ζm + 1, n} (0 ≤ ζ1 < ζ1 + 1 < . . . < ζm−1 < ζm−1 + 1 < n).

Then, to express the conditions on the support points so that X
(s)
min and X

(s)
max have the required

moments µ1, µ2, . . . , µs−1, we just have to compute the probabilities associated to the support
points and to check that they are positive. We get the resulting probabilities using that

X ∈ Ds (Nn;µ1, µ2, . . . , µs−1) with SuppX = {a0, a1, . . . , ak}

⇒ P [X = ai] =
E

[

∏

j 6=i (X − aj)
]

∏

j 6=i (ai − aj)
(i = 0, 1, . . . , k).
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The solution
(

ξ1, . . . , ξs/2, ζ1, . . . , ζ(s/2)−1

)

(s even) (resp.
(

ξ1, . . . , ξ(s−1)/2, ζ1, . . . , ζ(s−1)/2

)

(s
odd)) cannot be obtained explicitly. Nevertheless, it is easily obtained just by testing each admis-
sible sequence

(

ξ1, . . . , ξs/2, ζ1, . . . , ζ(s/2)−1

)

(resp.
(

ξ1, . . . , ξ(s−1)/2, ζ1, . . . , ζ(s−1)/2

)

) of Nn.
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[1] M. Denuit and Cl. Lefèvre, Some new classes of stochastic order relations among arithmetic
random variables, with applications in actuarial sciences, Insurance: Mathematics and Eco-

nomics 20, 197–214, (1997).
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