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Summary: In this paper we propose a methodology to evaluate (a) the ef-

fect of covariates on paired responses which are doubly-interval-censored and

(b) the association between the two responses of the pair. Our methodology

tackles two research questions arising from the Signal Tandmobielr project,

a prospective Flemish (Belgian) longitudinal dental study. The research ques-

tions are: (1) What is the effect of several baseline covariates on the time

to caries of the permanent right first molars? (2) Is the effect of the covari-

ates the same for the upper and lower tooth? Time-to-caries is given as the

difference of two interval-censored observations – caries time and emergence

time, and hence is a doubly-interval censored response. The accelerated fail-

ure time model with a bivariate smooth error distribution is suggested where

the error distribution is a mixture of bivariate normal components defined

on a fine fixed grid. To deal with the problem of doubly censoring we use

1



the Bayesian methodology and Markov chain Monte Carlo sampling. For the

suggested method we offer also software in the form of an R package.

Key words: Density Smoothing; Gaussian Markov Random Field; Markov

Chain Monte Carlo; Regression; Survival Data.

1 Introduction

The motivating example is taken from the Signal Tandmobielr study, an oral health

screening project performed in Flanders (Belgium) in the period 1996–2001. The children

(2 315 boys and 2 153 girls), born in 1989 and from randomly selected schools, were

annually examined by one of 16 trained dentist-examiners. Additionally, the parents

completed questionnaires concerning oral hygiene and dietary habits. Vanobbergen et al.

(2000) give full details on the study design and research methods.

Our first aim (research question 1) is to evaluate the impact of several covariates on

the time-to-caries of the permanent right first molars (teeth 16 and 46 in the Europen

dental notation) which are together with the permanent left first molars the teeth most

often attacked by caries during childhood. The prevalence of caries experience in the

permanent dentition at the end of the Signal Tandmobielr study, i.e. at the age of

about 12 years, was 25.1% for the four first molars whereas it was at most 1.4% for the

remaining permanent teeth.

It is also of interest (research question 2) to know whether the covariates have the

same effect on both teeth and to evaluate the association between the times-to-caries of

the two teeth. Hence the two teeth need to be modelled jointly, resulting thus in paired

(bivariate) data. Furthermore, time-to-caries is doubly-interval-censored since it is the

difference between the time that the tooth was scored as decayed (caries time) and the

2



time when it emerged (emergence time). But both were observed in a coarsed manner,

i.e. in approximately one year-intervals.

Cox’s proportional hazards (PH) model (Cox, 1972) and the accelerated failure time

(AFT) model (e.g., Kalbfleisch and Prentice, 2002, Section 2.3.3) are the most frequently

used regression models for the analysis of univariate censored data. For the bivariate

case with right-censored responses we note that Holt and Prentice (1974) extended the

semiparametric Cox’s PH regression. Fully parametric models with a simple binary

covariate have been suggested by Clayton (1978) and Oakes (1982). An extension to

allow for a general covariate vector was proposed by Huster, Brookmeyer, and Self (1989).

A Bayesian approach under the assumption of an exponential distribution for the event

times is given by Gustafson (1995). The AFT model with bivariate right-censored data

estimated via multiple imputation is considered by Pan and Kooperberg (1999).

Though, none of the above approaches treats interval-censored or doubly-interval-

censored data. Further, the parametric assumptions used by the approaches of Clay-

ton (1978); Oakes (1982); Huster et al. (1989); Gustafson (1995) are difficult to check

in practice and are too restrictive. Recently, Komárek and Lesaffre (2005) suggested

a semiparametric AFT model which can be used for general clustered (not only paired)

observations allowing for doubly-interval-censored data. To account for within-cluster

dependencies they include univariate cluster-specific random effects in the model expres-

sion. Conditionally, given these random effects, the observations within each cluster

are then assumed to be independent. Distributional parts of the model are specified as

penalized univariate normal mixtures. They applied their model to the analysis of the

caries times from the Signal Tandmobielr project. However, the within-cluster associa-

tion is treated as nuisance and, except for the estimated variance of the random effects,

their model does not give a direct measure of the within-cluster association.
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In this paper, we modify the method of Komárek and Lesaffre (2005) and assume

a bivariate error distribution as a penalized bivariate normal mixture with a high number

of components with equidistant means and constant variance matrices. The Bayesian

approach with the MCMC methodology will be used for the inference. Our approach

allows to visualize the estimated bivariate distribution and evaluate the association of

paired responses.

In Section 2, the regression model of the bivariate doubly-interval-censored response

on the covariates is specified. Inference based on the Bayesian paradigm is described in

Section 3. The analysis of the Signal Tandmobielr using the proposed method and the

answers on the research questions outlined above are given in Section 4. In Section 5

some concluding remarks are given.

2 Model

2.1 Notation

Let Ui,l and Vi,l, i = 1, . . . , N, l = 1, 2 be the onset (emergence) time and the event

(caries) time, respectively for the lth unit (tooth) of the ith cluster (child) in the study.

Let Ti,l = Vi,l − Ui,l denote the corresponding time-to-event (time-to-caries). The onset

time Ui,l is only observed in an interval [uL
i,l, uU

i,l], i.e. uL
i,l ≤ Ui,l ≤ uU

i,l. Similarly, we only

know that the event time Vi,l lies in an interval [vL
i,l, vU

i,l], i.e. vL
i,l ≤ Vi,l ≤ V U

i,l . We point

out that unless the distribution of the onset time Ui,l is uniform and Ui,l and Ti,l are

independent, it is incorrect to assume that Ti,l is interval-censored in [vL
i,l −uU

i,l, vU
i,l −uL

i,l]

(see De Gruttola and Lagakos, 1989).

Further, let zi,l be the vector of covariates which might have an effect on the onset
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time Ui,l and xi,l be the vector of covariates which can possibly influence the time-to-

event Ti,l. Additionally, we assume that the onset time Ui,l and the time-to-event Ti,l are,

given the covariates, for each i and l independent (see Komárek and Lesaffre, 2005 for

a detailed discussion of this assumption) and that the interval censoring is independent

and noninformative (e.g. pre-scheduled visits).

2.2 Bivariate AFT model for doubly-censored data

The distribution of (Ui,1, Ui,2, Ti,1, Ti,2)
′, i = 1, . . . , N , given the covariates, is given by

the following accelerated failure time model:

log(Ui,l) = δ′zi,l + ζi,l, i = 1, . . . , N, l = 1, 2, (2.1)

log(Vi,l − Ui,l) = log(Ti,l) = β′xi,l + εi,l, i = 1, . . . , N, l = 1, 2, (2.2)

where δ and β are unknown regression parameter vectors, ζ i = (ζi,1, ζi,2)
′, i = 1, . . . , N

are i.i.d. random vectors with a bivariate density gζ(ζ1, ζ2) and similarly, εi = (εi,l, εi,l)
′,

i = 1, . . . , N i.i.d. random vectors with a bivariate density gε(ε1, ε2).

2.3 Semiparametric model for a bivariate distribution

Our model for the unknown bivariate densities gε(ε1, ε2) and gζ(ζ1, ζ2) is motivated by

a penalized smoothing of unknown functions using B-splines (see, e.g., Eilers and Marx,

1996). Generally, bivariate smoothing can be conducted using the Kronecker products of

B-splines. In our context, however, it is advantageous to replace the B-splines by normal

densities for which the Kronecker product is simply a density of the bivariate normal

distribution with zero correlation. There are two arguments favouring normal densities

to B-splines here. Firstly, B-splines, in contrast to the normal densities, have a compact

support which might be unnatural for modelling log-survival data. Secondly, there exist
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well developed implementations for computation of normal densities, cumulative distri-

bution functions or for the generation of normal pseudo-random numbers which is quite

useful in practice. Furthermore, our approach can be viewed as the limiting case of the

B-spline smoothing, since under some conditions the B-spline converges to the normal

density as its degree tends to infinity (Unser, Aldroubi, and Eden, 1992).

Specifically, we express the unknown density gε(ε) of the bivariate error term ε =

(ε1, ε2)
′ from the event part (2.2) of the AFT model as a location-and-scale transformed

finite mixture of bivariate normal densities with zero correlation over a fixed fine grid

with knots µε
(j1,j2)

= (µε
1,j1

, µε
2,j2

)′, j1 = −K1, . . . , K1, j2 = −K2, . . . , K2 that are

centered around zero, i.e. µε
(0,0) = (0, 0)′. The means of the bivariate normal components

are equal to the knots and their covariance matrices are all equal but fixed to Σε =

diag ((σε
1)

2, (σε
2)

2). Thus,

ε = αε + diag(τ ε) ε∗, ε∗ ∼
K1∑

j1=−K1

K2∑

j2=−K2

wε
j1 j2

N2

(
µε

(j1,j2), Σε
)
. (2.3)

In expression (2.3), the intercept term αε = (αε
1, αε

2)
′ and the scale parameters vector

τ ε = (τ ε
1 , τ ε

2 )′ have to be estimated as well as the matrix Wε = (wε
j1,j2

), j1 = −K1, . . . , K1,

j2 = −K2, . . . , K2 of weights that satisfy wε
j1,j2

> 0 for all j1, j2 and
∑

j1

∑
j2

wε
j1,j2

= 1.

Note that, although the mixture components have all zero correlation, the covariance

matrix of the resulting mixture is, in general, not diagonal. Finally, constrained estima-

tion can be avoided if each element of Wε is expressed as a function of the elements of

the matrix Aε = (aε
j1,j2

), j1 = −K1, . . . , K1, j2 = −K2, . . . , K2 as follows

wε
j1,j2

=
exp(aε

j1,j2
)

∑K1

k1=−K1

∑K2

k2=−K2
exp(aε

k1,k2
)
. (2.4)

In the following, let Gε refer to the set {Σε, µε, αε, τ ε, Wε, Aε, λε} which contains the

parameters defining the distribution of ε and a smoothing parameter vector λε which

we will discuss in Section 3.3.
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The distribution of the bivariate error term ζ = (ζ1, ζ2)
′ for the onset part (2.1) of

the AFT model is specified using the parameters Gζ = {Σζ , µζ, αζ , τ ζ , W
ζ, A

ζ , λζ} in

an analogous manner.

3 Inference

In another context, Ghidey, Lesaffre, and Eilers (2004) used an expression similar to

(2.3) to model a density of the random intercept and slope in the linear mixed model

with uncensored data. Further, Lesaffre and Bogaerts (2005) used this approach to

model a density of bivariate simply-interval-censored data without covariates. In both

papers, a penalized maximum likelihood method has been used to estimate unknown

parameters. In our context, however, a maximum likelihood procedure is difficult and

computationally almost intractable because the likelihood involves several multivariate

integrals.

Let p denote a generic density. The likelihood contribution of the ith cluster (child)

equals

Li =

∫ uU
i,1

uL
i,1

∫ uU
i,2

uL
i,2

∫ vU
i,1

−ui,1

vL
i,1

−ui,1

∫ vU
i,2

−ui,2

vL
i,2

−ui,2

p(ui,1, ui,2, ti,1, ti,2) dti,2 dti,1 dui,2 dui,1 (3.1)

=

∫ uU
i,1

uL
i,1

∫ uU
i,2

uL
i,2

p(ui,1, ui,2)

{∫ vU
i,1−ui,1

vL
i,1

−ui,1

∫ vU
i,2−ui,2

vL
i,2

−ui,2

p(ti,1, ti,2) dti,2 dti,1

}
dui,2 dui,1,

where the combination of the AFT model (2.1) with the mixture model (2.3) yields an ex-

pression for p(ui,1, ui,2), namely p(ui,1, ui,2) = (ui,1 ui,2)
−1 gζ

{
log(ui,1)−δ′zi,1, log(ui,2)−

δ′zi,2

}
and similarly the combination of the AFT model (2.2) with the mixture model

(2.3) yields an expression for p(ti,1, ti,2), namely p(ti,1, ti,2) = (ti,1 ti,2)
−1 gε

{
log(ti,1) −

β′xi,1, log(ti,2) − β′xi,2

}
.

Here we suggest to use the Bayesian methodology employing the idea of data aug-
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mentation (Tanner and Wong, 1987) and the MCMC methodology (e.g., Robert and

Casella, 2004).

3.1 Bayesian specification of the model

To finalize the specification of the model from the Bayesian point of view, we have to

give prior distributions to all unknown parameters. We assume the hierarchical structure

represented by the directed acyclic graph (DAG) shown in Figure 1. The DAG child-

parent conditional distributions and priors for the parameters residing on the top of the

hierarchy are similar to these used by Komárek and Lesaffre (2005). We give a brief

overview and highlight the differences with the bivariate model considered here.

3.2 DAG conditional distribution for the error terms εi and ζi

Analogously to Komárek and Lesaffre (2005) and using the idea of Bayesian data aug-

mentation we introduce latent allocation vectors rε
i = (rε

i,1, rε
i,2)

′ that can take discrete

values from {−K1, . . . , K1} × {−K2, . . . , K2}. Their DAG conditional distribution is

given by

Pr(rε
i = (j1, j2) |W

ε) = wj1, j2, i = 1, . . . , N, j1 = −K1, . . . , K1, j2 = −K2, . . . , K2.

The DAG conditional distribution of the error term εi is then simply bivariate normal

with independent margins:

p(εi | Gε, rε
i ) = p(εi | τ

ε, αε, µε, Σε, rε
i )

= N2

(
αε + diag(τ ε) µε

r
ε
i
, diag(τ ε) Σε diag(τ ε)

)
, i = 1, . . . , N.

Without introducing the latent allocation vectors we would have to work with p(εi | Gε) =

p(εi | τ ε, αε, µε, Σε, Wε
i ) which is a bivariate normal mixture given by (2.3).

8



The DAG conditional distribution for the error terms ζ i, i = 1, . . . , N is defined in

an analogous manner. In the following we omit the super- or subscripts ζ and ε when

specifying the DAG conditional distributions for the parameters from Gζ and Gε.

3.3 DAG conditional distribution for the transformed mixture

weights A

The number of unknown elements of the matrix A is equal to (2K1 + 1)× (2K2 + 1) and

is often quite high (e.g. equal to 961 in the analysis of the Signal Tandmobielr data).

With an uninformative prior for A, this could cause overfitting of the data or identifia-

bility problems. Since the (transformed) mixture weights correspond to spatially located

normal components, a Gaussian Markov random field (GMRF) prior (see, e.g., Besag

et al., 1995, Section 3), common in spatial statistics, can be exploited here. Such a prior

distribution can be defined by specifying the conditional distribution of each aj1,j2 given

remaining ak1,k2
, (k1, k2) 6= (j1, j2), here denoted as A−(j1, j2), and the hyperparameter

λ that controls the smoothness. Usually, only a few neighboring coefficients are effec-

tively used in the specification of p(aj1,j2 |A−(j1, j2), λ). A commonly used conditional

distribution is a normal distribution with expectation and variance equal to

E
(
aj1,j2 |A−(j1,j2), λ

)
=

aj1−1,j2 + aj1+1,j2 + aj1,j2−1 + aj1,j2+1

2
(3.2)

−
aj1−1,j2−1 + aj1−1,j2+1 + aj1+1,j2−1 + aj1+1,j2+1

4
,

var
(
aj1,j2 |A−(j1,j2), λ

)
=

1

4λ
,

respectively, based on the eight nearest neighbors and local quadratic smoothing. Note

that the expectation and variance formulas have to be changed appropriately in corners

and on edges.

Let a denote the matrix A stacked into a column vector. Using a bivariate difference
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operator ∆ aj1,j2 = aj1,j2−aj1+1,j2−aj1,j2+1+aj1+1,j2+1, and denoting D the associated dif-

ference operator matrix, the joint prior of all transformed weights A given the smoothing

hyperparameter λ can be written as

p(A | λ) ∝ exp
{
−

λ

2

K1−1∑

j1=−K1

K2−1∑

j2=−K2

(
∆ aj1,j2

)2
}

= exp
(
−

λ

2
a′

D
′
Da

)
(3.3)

which shows that the DAG conditional distribution p(A |λ) specified as a GMRF is mul-

tivariate normal with covariance matrix λ−1
(
D′D

)−
, where

(
D′D

)−
denotes a generalized

inverse of D
′
D. Although this distribution is improper (the matrix D

′
D has a deficiency

of 2(K1 + K2) + 1 in its rank) the resulting posterior distribution is proper as soon as

there is some informative data available, see Besag et al. (1995).

An alternative prior, still belonging to the class of GMRF, corresponding closely to the

prior for A used by Komárek and Lesaffre (2005) is obtained by considering a univariate

difference operator for each row and each column of the matrix A with possibly two

different smoothing hyperparameters stacked in a vector λ = (λ1, λ2)
′ acting on rows

and columns separately. Then

p(A | λ) ∝ exp
{
−

λ1

2

K1∑

j1=−K1

K2∑

j2=−K2+m

(
∆m

1 aj1,j2

)2
−

λ2

2

K2∑

j2=−K2

K1∑

j1=−K1+m

(
∆m

2 aj1,j2

)2
}

= exp
{
−

1

2
a′

(
λ1 D

′
1D1 + λ2 D

′
2D2

)
a
}

(3.4)

where ∆m
l , l = 1, 2 denotes a difference operator of order m for the lth dimension, e.g.

∆3
1 aj1,j2 = aj1,j2 − 3 aj1,j2−1 + 3 aj1,j2−2 − aj1,j2−3 and D1 and D2 are the corresponding

difference operator matrices for each dimension. This prior distribution corresponds to

a local polynomial smoothing of degree m−1 in each row and each column of the matrix

A. For example, the conditional (given the smoothing parameters and the neighboring

transformed weights) mean and variance are given (for m = 3 and except on the corners

10



and on edges) by

E
(
aj1,j2 |A−(j1,j2), λ

)
=

λ1 Aj2 | j1 + λ2 Aj1 | j2

λ1 + λ2

(3.5)

var
(
aj1,j2 |A−(j1,j2), λ

)
=

1

20(λ1 + λ2)
,

where

Ak | j =
aj,k−3 − 6 aj,k−2 + 15 aj,k−1 + 15 aj,k+1 − 6 aj,k+2 + aj,k+3

20
.

In both cases, the prior distribution puts higher probability mass in areas where

spatially close coefficients of the matrix A do not substantially differ. In other words,

a priori, we believe that the estimated densities gζ(ζ1, ζ2) and gε(ε1, ε2) are smooth. In

general, prior (3.4) leads to better fit in our context and hence is preferred.

As pointed out by Komárek and Lesaffre (2005), the GMRF prior corresponds to the

penalty term when the penalized maximum-likelihood approach is used for the estima-

tion. For this reason we call the mixture model (2.3) with one of the GMRF prior for

the transformed mixture coefficients penalized Gaussian mixture.

The λ parameter in the prior (3.3) or the components λ1, λ2 of the λ parameter

in the prior (3.4) determine, together with the fixed difference operator matrix D, the

precision of the transformed weights A. We assign these parameters standardly used

highly dispersed (but proper) Gamma priors.

3.4 Remaining DAG conditional and prior distributions

Remaining DAG conditional distributions are the same as in the univariate context used

by Komárek and Lesaffre (2005). In summary, for the scale parameters τ ε
1 , τ ε

2 , τ ζ
1 , τ ζ

2 we

suggest to use either the uniform prior (proposed for scale parameters in the hierarchical

models by Gelman et al., 2004, pp. 136, 390) or a highly dispersed inverse-Gamma prior
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for the squared scale parameters. The intercept parameters αε
1, αε

2, αζ
1, αζ

2 as well as all

components of the regression parameter vectors β and δ can obtain a vague normal prior

unless there is some external information available.

The DAG conditional distributions for the time nodes ui,l, vi,l, and ti,l, i = 1, . . . , N ,

l = 1, 2 are all Dirac (degenerated) densities given by the AFT model assumptions (2.1)

and (2.2). Finally, the nodes uL
i,l, uU

i,l and vL
i,l, vU

i,l have, conditionally on their parents,

the Dirac distribution driven by the censoring mechanism and the true onset or event

time, respectively. Note however that we do not have to specify an exact form of the

censoring mechanism as soon as it is noninformative and independent.

3.5 Markov chain Monte Carlo

From the DAG conditional distributions the joint posterior distribution of all model pa-

rameters can now be derived. In practice we obtain a sample from the posterior distribu-

tion using the Markov chain Monte Carlo method and base our inference on this sample.

The basis for the MCMC algorithm is Gibbs sampling (Geman and Geman, 1984) using

the full conditional distributions. In the situations when the full conditional distribution

was not of standard form we used either slice sampling (Neal, 2003) or adaptive rejection

sampling (Gilks and Wild, 1992). For most parameters the full conditionals are identical

(with only a slight change in notation) to those given by Komárek and Lesaffre (2005)

and we refer the reader thereinto.

Here we mention only the full conditional distribution for the transformed mixture

weights which, due to the bivariate nature considered here, differs from that in Komárek
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and Lesaffre (2005) and is equal to (for clarity the superscript ε and ζ are omitted):

p(aj1,j2 | · · · ) ∝
exp(Nj1,j2aj1,j2){ K1∑

k1=−K1

K2∑
k2=−K2

exp(ak1,k2
)
}N

× exp

[
−

{
aj1,j2 − E

(
aj1,j2 |A−(j1,j2), λ

)}2

2 var
(
aj1,j2 |A−(j1,j2), λ

)
]
,

where Nj1,j2 denotes the number of latent allocation vectors ri that are equal to (j1, j2)
′

and E
(
aj1,j2 |A−(j1,j2), λ

)
and var

(
aj1,j2 |A−(j1,j2), λ

)
follow from (3.2) or (3.5), respec-

tively.

3.6 Software

To use the suggested methodology in practice we offer a set of functions which are the part

of the R (R Development Core Team, 2005) package called bayesSurv downloadable from

the Comprehensive R Archive Network. Specifically, the function bayesBisurvreg per-

forms sampling from the posterior distribution, the function bayesGspline can be used

to compute the estimates of the error densities gζ and gε and the function predictive2

computes predictive survivor, hazard or density functions for specified combinations of

covariates (see Section 4.4). For a summary of the model parameters and the convergence

diagnostics, e.g., the R package coda (Plummer et al., 2005), can be used.

4 Signal Tandmobielr data

The time-to-caries of the permanent first molars has been analyzed by Leroy et al. (2005).

However, they used a parametric log-logistic AFT model for the caries time only. In their

paper, doubly interval censoring was addressed by the inclusion of a covariate emergence

interval. In this section, we will show a proper analysis of doubly-interval-censored data

using the methodology described in the previous sections.

We started the analysis with the Basic Model which resembles closely the model
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used by Leroy et al. (2005). Based on the results for the Basic Model we subsequently

fitted its simplified version, referred as the Final Model.

In the Basic Model, we will firstly consider a similar set of covariates as Leroy et al.

(2005), namely, the covariate vector xi,l for the caries part of the model (2.2) are gender

(0 = boy, 1 = girl), presence of sealants which is a form of protection on the permanent

first molar (0 = absent, 1 = present), occlusal plaque accumulation for the permanent

first molar (3 levels: none/in pits and fissures/on total surface), reported oral brushing

habits (0 = not daily, 1 = daily), status of the adjacent deciduous second molar (4 levels:

sound/decayed/filled/missing due to caries). In contrast to Leroy et al. (2005) we did

not use the status of the adjacent deciduous first molar as covariate due to its large

dependence on the status of the adjacent deciduous second molar. Additionally, to allow

for a different effect of the covariates on the upper and lower tooth their interaction term

with the covariate jaw (0 = lower, 1 = upper) has been included. Finally, the values of

the explanatory variables were obtained at the examination where the presence of the

permanent first molar was first recorded.

The covariate vector zi,l for the emergence part of model (2.1) includes only gender

and its interaction with jaw. In other words, on the log scale, we allow for a shift in the

emergence distribution for the upper and lower tooth and also for boys and girls. Note

that as well in the caries part as in the emergence part of the model the main effect of

jaw is expressed by the intercept terms αε and αζ , respectively.

In the Final Model, we excluded all interaction terms with the covariate jaw, i.e.

we assumed that the studied factors have the same effect on the emergence and caries

for both the upper and lower tooth. Additionally, we binarized the covariates plaque

and status such that for plaque: 0 = none and 1 = present (either in pits and fissures

or on total surface) and for status: 0 = sound, 1 = dmf (decayed or missing due to
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caries or filled). Bayesian two-sided p-values and for factors with more than two levels

simultaneous two-sided Bayesian p-values (Held, 2004) were used to arrive at the Final

Model.

For reasons stated in Leroy et al. (2005) we excluded the permanent first molar from

the analysis if it had experienced caries before the examination where its emergence was

recorded. Additionally, about 85% of the permanent first molars had emerged at the

first examination. This results in an equal amount of interval-censored onsets of the

form [0, uU
i,l] with uU

i,l having a median value of 7.1 and quartiles equal to 6.9 and 7.4.

However, at the first examination also the clinical eruption stage was graded using the

scale starting with P0 (tooth not visible in the mouth) and ending with P4 (fully erupted

tooth with full occlusion). Dental knowledge allowed to approximate the lower limits of

the observed intervals as follows: uL
i,l = uU

i,l − 0.25 for the teeth with the eruption stage

P1, uL
i,l = uU

i,l − 0.5 for the teeth with the eruption stage P2, uL
i,l = uU

i,l − 1.0 for the

teeth with the eruption stage P3 and uL
i,l = 5.0 for the teeth with the eruption stage P4.

We refer to Leroy et al. (2005) for a motivation of these choices. The clinically minimal

emergence time, 5.0 years, was also subtracted from all observed times, i.e. log(Ui,l−5.0)

was used in the left-hand side of the model formula (2.1).

4.1 Choice of prior distribution

To model the bivariate densities gζ and gε we used in both cases a grid of 31 × 31

(K1 = K2 = 15) knots with the distance d between the two knots in each margin equal

to 0.3 and the basis standard deviations σε
1 = σε

2 = σζ
1 = σζ

2 = 0.2. The grid of knots is

defined on a square [−4.5, 4.5]×[−4.5, 4.5] which covers the support of most standardized

unimodal distributions (unimodality was checked after the analysis). The choice of the
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basis standard deviation which is equal to 2d/3 is motivated by its correspondence with

cubic B-splines where each basis function covers the interval of the length 4 d. The same

is nearly true for the basis formed of normal densities if we admit that the N (µ, σ2)

density is practically zero outside the interval (µ − 3σ, µ + 3σ), see also Ghidey et al.

(2004).

For the transformed mixture weights A
ε and A

ζ we used the prior (3.4) with the

differences of the third order (m = 3). The smoothing parameters λε
1, λε

2, λζ
1, λζ

2 were all

assigned dispersed Gamma(1, 0.005) priors. The same priors were used also for the scale

parameters τ ε
1 , τ ε

2 , τ ζ
1 , τ ζ

2 . The intercept terms αε
1, αε

2, αζ
1, αζ

2 were all assigned dispersed

N (0, 100) priors.

For each model we ran 250 000 MCMC iterations with 1:3 thinning and kept last

25 000 iterations for the inference. Sampling for each model took about 68 hours on

a 3 GHz Pentium IV PC with 1 024 MB RAM.

4.2 Results for the Basic Model

Table 1 shows the posterior means, (simultaneous) 95% equal-tail credible intervals and

(simultaneous) Bayesian two-sided p-values for the effect of each considered factor on

emergence and caries experience, separately for the lower and the upper tooth. It is

seen that the results for the lower and the upper tooth are very similar. Indeed, the

interaction terms between jaw and the remaining factor variables were all non-significant

at 5%, namely, the p-values were > 0.5, > 0.5, > 0.5, 0.262, > 0.5, 0.145, respectively

for the interaction with gender in the emergence and the caries part of the model, and

for the interaction with brushing, sealants, plaque, and status, respectively.

Additionally, we computed the (simultaneous) Bayesian two-sided p-values for the
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two contrasts justifying the simplification of the covariates plaque and status for the

Final Model, again separately for the lower and the upper tooth. For the status contrast

decayed vs. filled vs. missing due to caries, the p-values were equal to 0.342 and 0.308,

respectively for the upper and the lower tooth, respectively. For the plaque contrast

in pits and fissures vs. on total surface, the p-values were equal to 0.262 and 0.301,

respectively for the upper and the lower tooth, respectively.

4.3 Results for the Final Model

Results for the Final Model are given in Table 2. We give also the main effect of jaw now.

It is seen that the lower tooth 46 emerges slightly later than the upper tooth 16. On

the other hand, the emergence occurs slightly earlier for girls than for boys. However,

neither the position of the tooth nor gender have a significant effect on the time to caries.

The remaining factors do influence significantly the time to caries, namely, daily brushing

increases this time with a factor of exp(0.250) = 1.28, presence of sealants with a factor of

exp(0.109) = 1.115. The factor for presence of plaque is exp(−0.228) = 0.796 and when

the adjacent deciduous second molar was not sound the factor is exp(−0.482) = 0.618.

For the Final Model, we explored the residual association (after adjustment for the

effect of covariates) between the upper and lower tooth. For both the emergence and

the caries processes, a very low Pearson correlation coefficient was found on the log-

scale, namely, ĉorr(ζ1, ζ2) = 0.039 (0.030, 0.051) and ĉorr(ε1, ε2) = 0.023 (0.018, 0.028).

However, our approach allows easily to compute other measures, like Kendall’s tau using

expressions as given by Lesaffre and Bogaerts (2005).

Further, Figure 2 shows the estimate of the error density gε(ε1, ε2) in the caries part

of the model and illustrates the smoothing nature of our approach. This figure also
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reveals the low correlation between error terms for the upper and lower tooth.

4.4 Predictive survivor and hazard functions

Our approach allows to calculate predictive survivor and hazard functions for either

the emergence or caries process and for a specific combination of covariates using the

MCMC output. For example, the predictive hazard function }1(t | data, xpred) for caries

experience on the upper tooth 16 and the covariate combination xpred is given by the

relationship

}1(t | data, xpred) =

∫
}1(t | θ, data, xpred) p(θ | data) dθ,

where θ denotes the vector of the unknown parameters of the model and p(θ | data) its

posterior distribution. Further

}1(t | θ, data, xpred) = }1(t | θ, xpred)

=

t−1
∑K1

j1=−K1

(∑K2

j2=−K2
wε

j1,j2

)
ϕ
[
(τ ε

1 σε
1)

−1
{
log(t) − αε

1 − β′xpred − τ ε
1µε

1,j1

}]

∑K1

j1=−K1

(∑K2

j2=−K2
wε

j1,j2

) [
1 − Φ

[
(τ ε

1 σε
1)

−1
{
log(t) − αε

1 − β′xpred − τ ε
1µε

1,j1

}]] ,

where ϕ denotes density and Φ cumulative distribution function of N (0, 1). The MCMC

estimate of the predictive hazard function is then obtained as

}̂1(t | data, xpred) = M−1
M∑

m=1

}1(t | θ
(m), xpred),

where M denotes the number of MCMC iterations and θ(m) the value of the parameter

vector θ sampled at the mth iteration. The predictive survivor function is computed

analogously.

Figure 3 shows the predictive survivor and hazard functions for caries on the upper

tooth 16 of boys and ‘the best’, ‘the worst’ and two intermediate combinations of co-

variates. Corresponding curves for the lower tooth 46 or for girls are almost the same
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due to the non-significant effect of the covariates gender and jaw on the caries. For teeth

that are not brushed daily and are exposed to other risk factors, a high peak in the

hazard function is observed already less than 1 year after emergence. A similar peak,

however shifted to right and of much lower magnitude is seen also for other covariate

combinations. This finding corresponds to the fact that permanent first molars are most

vulnerable by caries soon after they emerge, possibly because of not yet fully developed

enamel on their surfaces.

4.5 Conclusions

It is shown that daily brushing and the presence of sealants significantly decelerate the

time to caries on the right permanent first molars. On the other hand, the presence of

plaque or caries on adjacent deciduous second molars accelerate this time. No significant

difference has been found between boys and girls or between the upper and lower right

permanent first molar with respect to the distribution of the caries times. Also a very

low association described by a residual correlation coefficient was observed between the

caries times on the upper and lower right permanent first molar.

Detailed description on how to perform the analyses of this section in practice using

the R package bayesSurv is available in the documentation directory of this package.

5 Discussion

We have suggested and implemented as an R package a semiparametric method to an-

alyze bivariate doubly-interval-censored data in the presence of covariates. The method

was applied to the analysis of a dental data set where all covariates were categorical.

However, continuous covariates would not cause any difficulties and could have been
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used as well. Although the method was presented to deal with doubly-interval-censored

data it can be used to analyze also simple interval- or right-censored data.

A disadvantage of the current method is that it requires balanced data, i.e. exactly

two observations must be supplied for each cluster and if only one observation of the

cluster is missing the whole cluster must be removed from the analysis. Missingness in one

event time out of the pair could have been solved using the Bayesian data augmentation

in the same way as it solves the problem of censoring. However, if the missingness is

caused by a missing covariate value, the Bayesian data augmentation would not help

unless a measurement model is set up also for the covariates. With unbalanced data, the

cluster specific approach of Komárek and Lesaffre (2005) can be used, however.
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Table 1: Basic Model. Bayesian simultaneous two-sided p-value, posterior mean and

simultaneous 95% equal-tail credible region for each factor variable, separately for the

upper tooth 16 and the lower tooth 46.

Upper tooth 16 Lower tooth 46

Posterior Posterior

Effect mean 95% CR mean 95% CR

Emergence

Gender p = 0.094 p = 0.142

girl −0.018 (−0.039, 0.003) −0.016 (−0.036, 0.005)

Caries

Gender p = 0.534 p = 0.403

girl −0.034 (−0.139, 0.073) −0.049 (−0.162, 0.063)

Brushing p = 0.003 p < 0.001

daily 0.230 (0.086, 0.386) 0.265 (0.097, 0.426)

Pit and fissure sealing p = 0.019 p = 0.401

present 0.157 (0.028, 0.283) 0.054 (−0.077, 0.180)

Occlusal plaque p = 0.014 p = 0.002

in pits and fissures −0.183 (−0.333, −0.031) −0.252 (−0.404, −0.107)

on total surface −0.394 (−0.819, −0.015) −0.479 (−0.997, −0.038)

Status second prim. molar p < 0.001 p < 0.001

decayed −0.451 (−0.704, −0.224) −0.383 (−0.641, −0.151)

filled −0.628 (−0.844, −0.414) −0.377 (−0.588, −0.175)

missing due to caries −0.496 (−1.377, 0.138) −0.739 (−1.398, −0.208)
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Table 2: Final Model. Bayesian two-sided p-value, posterior mean and 95% equal-tail

credible region for each factor variable.

Posterior

Effect mean 95% CR p-value

Emergence

Jaw (lower, α
ζ
2 − α

ζ
1) 0.017 (0.003, 0.032) 0.021

Gender (girl) −0.017 (−0.033, −0.003) 0.018

Caries

Jaw (lower, αε
2 − αε

1) 0.026 (−0.158, 0.218) 0.816

Gender (girl) −0.044 (−0.120, 0.033) 0.267

Brushing (daily) 0.250 (0.139, 0.369) < 0.001

Pit and fissure sealing (present) 0.109 (0.019, 0.195) 0.022

Occlusal plaque (present) −0.228 (−0.313, −0.141) < 0.001

Status second primary molar (dmf ) −0.482 (−0.576, −0.388) < 0.001
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Figure 1: Directed acyclic graph for the Bayesian specification of the model. Square

boxes represent fixed or observed quantities, circles unknown parameters, solid arrows

stochastic dependencies and dashed arrows deterministic dependencies.
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Figure 2: Final Model. Estimate of the density gε(ε1, ε2) of the error term in the caries

part of the model.
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Figure 3: Final Model. Posterior predictive caries free (survivor) and caries hazard curves

for tooth 16 of boys and the following combinations of covariates: solid and dashed lines

for no plaque, present sealing, daily brushing and sound primary second molar (solid line)

or dmf primary second molar (dashed line), dotted and dotted-dashed lines for present

plaque, no sealing, not daily brushing and sound primary second molar (dotted line) or

dmf primary second molar (dotted-dashed line).
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