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Abstract

When estimating logistic-normal models, the integral appearing in the marginal

likelihood is analytically intractable, so that numerical methods such as Gauss-

Hermite quadrature (GH) are needed. When the dimensionality increases, the num-

ber of quadrature points becomes too high. A possible solution can be found among

the Quasi-Monte Carlo (QMC) methods, because these techniques yield quite good

approximations for high dimensional integrals with a much lower number of points,

chosen for their optimal location. In this paper a comparison will be made between

three integration methods: GH, QMC, and full Monte Carlo integration (MC).

Keywords: (Quasi-)Monte Carlo, low discrepancy sequences, Gaussian quadra-

ture, multidimensional integrals.
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1 Introduction

In many different fields such as physics (e.g., Morokoff and Caflisch, 1995), geostatis-

tics (e.g., Jank, 2005), psychometrics (e.g., Fischer and Molenaar, 1995; De Boeck and

Wilson, 2004), biostatistics (see e.g., Lesaffre and Spiessens, 2001 for an application in a

longitudinal clinical trial), and finance (e.g., Paskov, 1995) among others, the estimation

process of the parameters of a model involves the calculation of an integral. In general,

random parameters are included in a model to account for heterogeneity and related de-

pendence between outcome variables. Although in principle these random parameters can

follow any probability distribution, the normal and multivariate normal distribution are

typically assumed depending of whether one or more random effects are included in the

model. Unfortunately, the resulting (multidimensional) integral usually does not have an

analytic solution, and therefore it is necessary to use numerical methods to approximate

it. Well-known numerical methods are Gauss-Hermite quadrature (GH) and Monte Carlo

(MC) integration. Both methods utilize the same kind of cubature formula in which the

integral is approximated by a weighted sum of the integrand evaluated in a set of points.

The GH method makes use of a set of fixed (known) points and weights (available from

standard tables; Abramowitz and Stegun, 1972, p. 924). On the contrary, MC is based

on a uniformly random distributed set of points (see e.g., Robert and Cassella, 2004, p.

83).

A major disadvantage of the GH method is that the number of quadrature points in-

creases as an exponential function of the number of dimensions, so that the method

rapidly becomes unfeasible. As an alternative, the MC method may be considered more

suited for problems with high dimensionality. However, locating points at random does

not guarantee an optimal distribution of the points (i.e., because of the sampling error,

the points may not be distributed exactly uniformly.

An alternative to both the GH and MC methods is the so-called Quasi-Monte Carlo

(QMC) method (e.g. Niederreiter, 1992; Judd, 1998; Caflisch, 1998). QMC works like

the regular MC but instead of using an uniformly and randomly distributed set of points,
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‘uniformly distributed’ deterministic sequences, called low discrepancy sequences (LDS)

(Niederreiter, 1992), are utilized. The strength of the QMC method is that the distribution

of points is optimal indeed, following some criterion to be explained.

Applications of QMC in finance (Lemieux and L’Ecuyer, 2001) have shown that the

method works remarkably well in problems with integrals of very high dimensionality (see

e.g., Paskov, 1995 where a 360-dimensional integral is evaluated). Jank (2005) imple-

mented the Monte Carlo EM algorithm based on QMC and applied it to a geostatistical

problem in which an integral of dimensionality 16 has to be solved because the outcome

covaries with 16 distinct geographical location variables.

The aim of this paper is to compare the performance of three numerical integration

methods: GH, MC and QMC, for relatively high-dimensional integrals appearing in one

step of the estimation process in logistic-normal models. Because QMC has been suc-

cessfully used in other fields, mainly in finance, we investigate its use for mixed logistic

regression models because of its promising performance for high dimensional integration.

In this text, we will not explain neither GH and related cubature (i.e. multivariate

quadrature) methods, nor MC methods in detail, as there are many good references (e.g.,

Stroud, 1971; Davis and Rabinowitz, 1984; Cools, 1997, 2002; Robert and Casella, 2004;

Caflisch, 1998).

The paper is organized as follows. Section 2 explains how QMC methods work and briefly

introduces two LDS, the Halton and Sobol sequences. Section 3 presents the logistic-

normal model and motivates the problem of multidimensional (intractable) integrals. In

Section 4 we compare the three methods of integration: GH, QMC and MC for the simple

case of one integral over a logistic function, and next we report on a small case study with

an integral over a product of logistic functions. Finally, we give some conclusions.
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2 Quasi-Monte Carlo integration

Both MC and QMC methods approximate the integral of interest by means of a sample

average in the following way

∫

Ω

f(x1, . . . , xd)dx1, . . . , dxd ≈ vol(Ω)

N

N∑

i=1

f(xi
1, . . . , x

i
d) (1)

In the regular MC method the vector xi = (xi
1, . . . , x

i
d) follows a uniform distribution

in Ω. Note that when the region of integration is the unit hypercube, Ω = (0, 1)d, then

vol(Ω) = 1 in (1). If an integration region different from the unit hypercube is considered,

a suitable transformation of variables has to be applied. By the Law of large numbers

(see e.g., Shao, 2003) the average 1

N

∑N

i=1
f(xi) converges almost surely to the expected

value E(f(x)), which is in this case the integral we are interested in.

Instead of using randomly distributed points, QMC uses deterministic points. So, in (1)

the vector xi = (xi
1, . . . , x

i
d) is not a random sample but a set of points deterministically

chosen. These points are commonly known as Low Discrepancy Sequences because they

are a better approximation of uniformity (discrepancy is a measure of deviation from

uniformity, for details see Niederreiter, 1992). LDS provide better coverage than random

points, because each new point is chosen in such a way that it covers the unit hypercube

in the areas not covered by previous points.

Although other LDS exist, in this paper we will use the Halton and Sobol sequences

(e.g., Kocis and Whiten, 1997), because they are the most common. Figure 1 shows the

improved uniformity of Sobol and Halton points in comparison with random points, for

the case of two dimensions and 1000 points.

INSERT FIGURE 1 ABOUT HERE

In the next two subsections, the generation of the Halton and Sobol sequences is briefly

explained. Both sequences belong to the family of p-adic expansion of integers (see later).
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In the case of Halton sequences, prime numbers and some mathematical definitions are

used to create sequences of high uniformity whereas in generating Sobol sequences, the

coefficients of primitive polynomials are used with a recursive formula in order to generate

the points.

2.1 Halton sequences

Let p be a fixed prime number. Then any positive integer r can be uniquely written as

its p-adic expansion in the form

r =
m∑

i=0

aip
i ai ∈ {0, . . . , p − 1} i = 0, . . . ,m . (2)

The rth number of the one-dimensional Halton sequence is defined by

yr =
m∑

i=0

ai

pi+1
. (3)

The d-dimensional Halton sequence is generated taking d different prime numbers (usu-

ally the first d) and putting together the resulting d one-dimensional sequences. Table 1

shows how to obtain the first 5 points using the values p = 2, 3. Note that by construction,

all the resulting Halton points yr lie in the interval (0, 1). More details can be found in

Halton (1960).

INSERT TABLE 1 ABOUT HERE

2.2 Sobol sequences

Let vi = mi2
−i, i = 1, 2, . . . , where mi are odd positive integers chosen using the recursion

mi = 2c1mi−1 ⊕22c2mi−2 ⊕· · ·⊕2p−1cp−1mi−p+1 ⊕2pmi−p ⊕mi−p according to a primitive
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polynomial P (z) = zp + c1z
p−1 + · · · + cp−1z + 1, and ⊕ is the addition using binary

arithmetic. The rth number of the one-dimensional Sobol sequence is defined by

yr = a1v1 ⊕ a2v2 + · · · (4)

where a1, a2, . . . is the binary representation of r (see equation (2)).

Antonov and Saleev (1979) improved Sobol’s original algorithm and proposed to use the

following scheme

yr = g1v1 ⊕ g2v2 ⊕ · · · (5)

where . . . g3g2g1 is the Grade code representation of r defined by

G(r) = r ⊕ br/2c (6)

bxc being the largest integer smaller than or equal to x. Combining (5) and (6), the rth

term of the Sobol sequence can be obtained as

yr = yr−1 ⊕ vc (7)

where vc is the vi number associated with the rightmost zero in the binary representation

of r − 1. If no zeroes appear, a leading zero must be added.

As an example consider the primitive polynomial P (z) = z3 + z + 1 and initial values

m1 = 1,m2 = 3, and m3 = 7. The corresponding recurrence is mi = 4mi−2⊕8mi−3⊕mi−3.

Table 2 shows how to obtain the values m4 and m5.

INSERT TABLE 2 ABOUT HERE

To obtain the vi, the mi must be first written in binary form and shifted i positions to

the left of the fractional point. Table 3 shows how to do this.
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INSERT TABLE 3 ABOUT HERE

The first 5 Sobol points are obtained as follows:

Let y0 = 0 (initial value), using (7) we have

y1 = y0 ⊕ v1 = 0.1 = 1 × 2−1 = 0.500

y2 = y1 ⊕ v2 = 0.1 ⊕ 0.11 = 0.01 = 0 × 2−1 + 1 × 2−2 = 0.250

y3 = y2 ⊕ v1 = 0.01 ⊕ 0.10 = 0.11 = 1 × 2−1 + 1 × 2−2 = 0.750

y4 = y3 ⊕ v3 = 0.11 ⊕ 0.111 = 0.001 = 0 × 2−1 + 0 × 2−2 + 1 × 2−3 = 0.125

y5 = y4 ⊕ v2 = 0.001 ⊕ 0.11 = 0.111 = 1 × 2−1 + 1 × 2−2 + 1 × 2−3 = 0.875

In the first line we added v1 because in the binary representation of y0 = 0 the rightmost

0 is in the first position. In the second, we added v2 because 1 is 1 in binary representation,

so we have to add a leading 0 and it is in the second position. In the third we added v1

because 2 in binary is 01 and then the rightmost 0 is in the first position, and so on.

The d-dimensional Sobol sequence is obtained considering d primitive polynomials and

putting together the corresponding one-dimensional sequences generated with polynomial

Pi, i = 1, . . . , d. Note that like in the Halton sequence, all the values yr lie in the unit

interval. More details and an implementation of the Sobol sequence can be found in

Bratley et al. (1988).

3 The logistic-normal model

In many of the applications mentioned earlier, the integrand of interest is the product

of a function f(·) times the normal distribution. This kind of integral has been studied

before for instance by Crouch and Spiegelman (1990) who compare their proposed method
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with the GH. In this section, we discuss more in detail the logistic-normal model as it is

common in biostatistics and psychometrics.

Let Yij and x′

ij = (1, x1ij, . . . , xpij) be the binary outcome variable and covariate vector

for observation j (j = 1, . . . , k) in cluster i (i = 1, . . . , n), respectively. A commonly used

f(·) function in this framework is f(t) = {1 + exp(−t)}−1 leading to a logistic-normal

model (Agresti, 2002, p.496; Hosmer and Lemeshow, 2000 p. 310) of the form

Pr(Yij = 1 | z,x,β,θi) = f(z′

ijθi + x′

ijβ) (8)

which models the probability of observation j in cluster i having a certain characteristic

(Yij = 1). β is a k-dimensional vector of fixed effects with associated covariate vector xij,

and θi is a d-dimensional vector of random effects for cluster i with associated covariate

vector zij (see Rijmen et al., 2003). To formulate a likelihood function for model (8), it

is assumed that θi follows a multivariate normal distribution with 0 mean and covariance

matrix Σ of the form

Σ =





σ2
θ1

Cov(θ1, θ2) · · · Cov(θ1, θd)

Cov(θ2, θ1) σ2
θ2

· · · Cov(θ2, θd)
...

... · · · ...

Cov(θd, θ1) · · · · · · σ2
θd




.

The contribution of cluster i to the likelihood function is

Pr(yi | β,Σ) =

∫
∞

−∞

· · ·
∫

∞

−∞

k∏

j=1

exp{yij(z
′

ijθi + x′

ijβ)}
1 + exp{z′

ijθi + x′

ijβ}
N(θi;0,Σ)dθi1 · · · dθid (9)

where N(θi;0,Σ) means that the vector θi follows a multivariate normal distribution

with mean 0 and covariance matrix Σ. The full likelihood is then the product of (9) over

the n clusters.

In equation (9), the function f(·) is a product of logistic functions, because of the

repeated nature of the observations (j = 1, . . . , k) in cluster i. In order to estimate β and
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Σ, the full likelihood must be maximized. An approximation of the integral in (9) is then

necessary in each step of the maximization algorithm.

In the following we will first concentrate on f(·) with a single logistic function, and

afterwards also f(·) with a product of logistic functions will be investigated.

4 Evaluation of the methods

Three methods of integration will be compared: GH, MC, and QMC using Sobol and

Halton sequences, for a general type of logistic-normal integral for which a very close

approximate value can be derived. The comparison focuses on the number of points used

to evaluate (9) for different values of d, β and Σ, and the precision obtained. In this way,

it can be evaluated whether for higher dimensionality the QMC method can do better

with the same number of points, or equally well with less points than GH and MC, the

two more common methods. As our interest is in the integration process, rather than the

optimization, we will do the calculations just for one cluster, hence n = 1. Therefore, we

will not calculate the product of n integrals, but only the integral over a product of k

terms.

Let T denote the true but unknown value of the integral we are interested in, for a

particular combination of d, β and Σ. To evaluate our approaches, we need to know

the ‘exact’ value of the integral T . This value can be approximated very accurately by

using the fact that the sum of random variables with a normal distribution is normally

distributed as well. Indeed, note that if θ ∼ Nd(0,Σ) then

W =
d∑

q=1

θq ∼ N




0,

d∑

q=1

σ2
θq

+ 2
∑

q<q′

Cov(θq, θq′)

︸ ︷︷ ︸
σ2

z




. (10)
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So, T can be reduced to
∫

∞

−∞

exp(w)

1 + exp(w)
N(w; 0, σ2

w)dw , (11)

Although there exists no analytical solution for this one-dimensional integral, standard

routines (e.g., Piessens et al. 1983) that yield highly accurate results are available.

A common problem with both the GH method and the LDS is that the standard sets

of nodes and points, respectively, need to be transformed before one can use them to

approximate an arbitrary integral like in equation (9). For the GH method, the transfor-

mation amounts to recentering and rescaling the nodes such that they reflect the mean

vector and covariance matrix of the normal distribution. This transformation is standard

and has been discussed for example by Fahrmeir and Tutz (2001, p. 447-449).

For the LDS (but also for MC), the situation is straightforward as well. LDS are

defined in the unit hypercube, and in order to evaluate (9) using QMC and MC, we

first need to transform the integration domain (0, 1)d into R
d. We chose the inverse

normal transformation and obtained the points used to evaluate the integrals and the

corresponding approximations in the following way:

i) Change of integration region: Draw a matrix PN×d of LDS or MC points and create

a matrix XN×d = Φ−1(pij), where N is the total number of points to be used.

ii) Adding correlation structure: Put Y = L′X ′, where L is the Cholesky decomposition

of the covariance matrix, Σ = L′L.

iii) Obtaining the approximation: T̂ = 1

N

∑N

i=1
f(yi

1, . . . , y
i
d).

Here pij ∈ (0, 1) are the elements of the matrix P , and Φ(·) is the cumulative normal

distribution function.

To be able to compare how well the methods perform, we use as a dependent variable,

the relative error (RE),

RE =

∣∣∣∣∣
T̂ − T

T

∣∣∣∣∣ , (12)
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where T̂ is the approximated value of integral using one of the three methods to be

compared

4.1 Study 1: An integral with a single logistic function

We will consider first the simplest case with one observation per cluster, k = 1. Suppose

that y = 1, so that z′ is a vector of d ones, and x = −1, then (9) reduces to

T =

∫
∞

−∞

· · ·
∫

∞

−∞

exp{θ1 + · · · + θd − β}
1 + exp{θ1 + · · · + · · · θd − β}N(θ;0, Σ)dθ1 · · · , dθd (13)

4.1.1 Design of the study

We evaluated the cases d = 1, 5, 7, 9, and β = 0, 1, 2. When d = 1, Σ = σ2
θ1

was fixed to

1. For d > 1, the different Σ matrices were chosen using the values showed in Table 4 for

each dimension respectively. The value ρ refers to correlations implied in Σ, to be crossed

with the values of σ2
θq

for d = 5, 7, 9.

INSERT TABLE 4 ABOUT HERE

The total number of points used to evaluate (13) in each problem with dimension d

was N = 5d. As mentioned before, the number of quadrature points for the GH method

increases exponentially with the number of dimensions, so we chose this number of points

to make the calculations feasible, mainly for the GH method. Thus, for instance in

dimension 7, 57 = 78125 points were used to evaluate the integral, and 59 = 1953125

in d = 9. For the MC method we used as an estimate the average of S = 10 integrals

obtained from samples of size 5d. An estimate of the standard error (SE) can be calculated

as

SE(Î) =

√√√√ 1

S2

S∑

s=1

V ar(Ĩs), Î =

∑S

s=1
Ĩs

S
(14)

11



where Ĩs is the integral for sample s evaluated using MC and

√
V ar(Ĩs) =

1√
n

√∑n

i=1
(h(xi) − Ĩs)2

n − 1
(15)

is the regular MC standard error, with h(·) the integrand of Ĩs (see Tanner, 1996).

The choice of S = 10 is rather arbitrary. We chose to do more than one MC sample in

order to calculate a SE. However, in comparison with the other methods, the MC method

is favored in this way.

4.1.2 Results of study 1

Table 5 shows in the first row for each value of d and for each method the estimated value

of the integral, and in the second row the associated relative error. In the case of MC the

standard error (SE) is reported as well. Figure 2 shows the results reported in Table 5

using plots of the RE in log10 scale. The log-plot in connection with the relative error is

a measure of how many digits of accuracy one has.

INSERT TABLE 5 ABOUT HERE

INSERT FIGURE 2 ABOUT HERE

From Table 5, and from Figure 2 it can be seen that QMC was better than GH in all

the cells in which the following conditions are fulfilled: d > 1, ρ ≥ 0.3, and β ≥ 1, except

in the cells with d = 5 and ρ = 0.3. On the other hand MC was better than GH in

all the above mentioned cells except in the cells with d = 5, ρ = 0.5, β = 1, 2; and with

d = 7, ρ = 0.3, β = 1. Note that the Sobol results were often better than Halton, and

that in general QMC was better than MC. From these results it is clear that there is

room for improvement on GH for higher dimensionalities, high correlations and on the
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condition that the distributions are shifted (β ≥ 1). In general, the RE for GH increases

with the correlation (ρ) and with β, and the effect of the latter is very large. Given these

results, there is some room left for both the MC and QMC methods to outperform the

GH method, especially when the latter is not centered on the distribution.

Study one is limited in several ways. First of all, note that the comparisons are based

on fixed numbers of points corresponding to the values of 5d, whereas in fact for the MC

and QMC methods, any number of points less than or equal to 5d can be used. In part

of the next study, we will investigate the LDS integral approximation for all points in

between. Second, in study one k = 1, whereas the case we are interested in is one with

repeated observations. Therefore a larger value of k will be chosen in the next study.

4.2 Study 2: An integral with a product of logistic functions

The more general case for the kind of logistic model we are interested in is one with k > 1,

meaning that repeated observations are made for the clusters. We will consider here a

case with k = 3, but again only one cluster i will be considered.

Suppose that z′ is a d-dimensional vector of ones and that for each of the three obser-

vations (k = 3) we have an indicator variable, xij = −1 for i = j and xij = 0 for i 6= j,

and no intercept (fixed intercept is zero). Assume that the observations yk = (1, 1, 0), are

made, then, the estimation process involves the following integral

∫
∞

−∞

· · ·
∫

∞

−∞

(
exp{∑d

q=1
θq − β1}

1 + exp{∑d

q=1
θq − β1}

)(
exp{∑d

q=1
θq − β2}

1 + exp{∑d

q=1
θq − β2}

)
×

(
1

1 + exp{∑d

q=1
θq − β3}

)
N(θ;0,Σ)dθ1 · · · dθd . (16)
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4.2.1 Design of the study

We evaluated (16) for β = (0, 1, 2) and different values of d and Σ, see Table 6. In addition

we varied the number of points used to evaluate (16) and computed the relative error as

in (12). The number of points for the multidimensional case will not be limited to powers

of quadrature points used per dimension, but for the best performing QMC method all

the numbers in between will be used as well.

INSERT TABLE 6 ABOUT HERE

4.2.2 Results study 2

Figure 3 shows the RE versus the number of points used to evaluate (16) in one dimension,

d = 1, and an increasing number of points from 1 to 20. From the figure several conclusions

may be drawn. First, the GH method was always better than the other methods, and,

generally, the QMC method seems to be slightly better than the regular MC. Second, an

increasing number of points utilized to evaluate the integrand, does not necessarily yield

a more accurate result. For example, using 7 GH points per dimension yields a better

result than using 8, 9, and 10 points. For the MC and QMC the behavior of the curve is

very irregular and not monotonic at all. For example using 3 Halton points seems better

than using 4, 5, and 6 Halton points. However, also the GH curve is somewhat irregular

and non-monotonic.

INSERT FIGURE 3 ABOUT HERE

Let us now consider more than one dimension. For zero correlation, and d = 5, the

results are very similar to those for d = 1. Figure 4 shows first that again GH is better
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than the other methods, and that QMC is better than MC, and second that the shape

of the curves is again irregular. When d > 1, note that the symbols ◦,�, ∗, � in the plots

refer to the abscissa values 1d, 2d, . . . , `d indicating that 1 to ` quadrature points were

used per dimension. For instance if d = 5 the symbols refer to 15, 25, . . . , 105, as number

of points used. For example, the eighth symbol refers to 85 = 32768 points (8 quadrature

points per dimension) in total.

INSERT FIGURE 4 ABOUT HERE

To investigate the irregularities more in detail, we computed the approximation with

1 up to 105 Sobol points, because the Sobol points gave slightly better results than the

Halton points. The resulting plot is shown in Figure 5. From the figure one can see that

the result is highly variable depending on the number of points. For the same number of

points the Sobol is sometimes better than GH, but most often GH is better. The points

indicated with arrows in Figure 5 show that using 27021 or even 4486 Sobol points, one

can obtain a result as accurate as using 8 GH quadrature points per dimension (i.e.

85 = 32768 points). From these results, one cannot derive a general rule or not even a

hint for when the Sobol points do better.

INSERT FIGURE 5 ABOUT HERE

Now consider a distribution with five dimensions and ρ = 0.5. The results are shown in

Figure 6. First note that the GH method is still the better of the three. However when

considering correlated dimensions, GH loses accuracy which is reflected in the fact that

now the GH curve decreases more slowly. For example, with 10 quadrature points per

dimension we obtain approximately 4 digits of precision, which is clearly less than in the

uncorrelated case. Again QMC is better than MC but it is not clear whether Sobol is

better than Halton. Note also that again Sobol can be much better than GH and for a
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much smaller number of points. For instance, an arrow in the figure points to the Sobol

result for 1247 points which is much better than any of the GH results.

INSERT FIGURE 6 ABOUT HERE

Finally, we evaluated a 10-dimensional integral for both uncorrelated (ρ = 0) and cor-

related (ρ = 0.5) dimensions, using 1 to 3 points per dimension. Figures 7 and 8, using

log10 scale in both x and y axes, show the results. Note that once more GH looses preci-

sion when correlated dimensions are considered. There are again a few excellent results

obtained with Sobol points, for example, 527 Sobol points do extremely well, and much

better than much larger numbers of GH points. In the correlated case, the MC method

is better than all other methods. The perhaps surprisingly good performance of the MC

method may be attributed to the fact that ten samples were used each time. In order to

check the difference this can make, we also calculated the RE for each of the ten samples

(RE10s) and its corresponding average (AvRE), when using 110, 210, and 310 points, see

Figure 8. It can be seen that if one would like to compare the methods with the same

number of points (i.e., just one MC sample), the results of the MC method are inferior to

those of the other methods from 210 points on.

INSERT FIGURE 7 ABOUT HERE

INSERT FIGURE 8 ABOUT HERE
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5 Discussion and conclusion

A comparison between three numerical procedures (Gauss-Hermite quadrature, Monte

Carlo and Quasi-Monte Carlo integration) to approximate analytically intractable inte-

grals has been presented. Low discrepancy sequences and its use in QMC were discussed

for the evaluation of logistic-normal integrals.

We have found that in most of the examples shown, the Halton and Sobol methods can

do better than the GH method with less points, on the condition that the appropriate

number of points are selected. Unfortunately, when using the QMC method, there is no

clear rule for selecting an appropriate number of points to evaluate the integrals. In this

context, constructing an automated algorithm to cleverly select the points for a given

problem is a challenge.

Because of the non-monotonic relation between number of points and accuracy, it fol-

lows that a larger number of quadrature points to approximate the integral, does not

necessarily give more accurate results for the Sobol and Halton sequences. Moreover and

perhaps surprisingly, the same phenomenon also applies to the GH method when used for

evaluating logistic-normal integrals.

An advantage of QMC or MC compared to GH in higher dimensions is that one can use

any numbers of points while the GH method is restricted to the use of `d (` = 1, 2, 3, . . . )

number of points. For instance using GH in dimension 5 with 3 quadrature points per

dimension (35 = 243 points in total) one cannot use 242, 241, 240, etc. points. For GH,

there is no way of reducing the number of points by units.

Apart from this a priori advantage, it appears that the QMC and MC beat the GH

method in higher dimensions when the distributions are shifted, and when also the di-

mensions are correlated. Not only do they have more precision, but the same precision as

that of the GH can be reached with less (and often much less) quadrature points. These

results seems independent from the non-monotonic relation between number of points and

accuracy.
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In both studies we used the inverse normal transformation to change the region of

integration from the unit hypercube in R
d. However, other transformation could be used

as well. As a matter of fact, we have replicated the analysis reported in this paper using a

logit transformation, which gave rather poor results in comparison with the inverse normal

transformation (the results are available from the authors upon request). Robert and

Casella (2004, p. 77) point out that one must be careful in the choice of the transformation

as it could be crucial for the efficiency of the method. This suggestion is supported by

our results.

Finally, we focused on the approximation of intractable integrals, rather than on the

optimization problem yielding the estimation of the parameters of a model. For the

optimization task, the QMC seems to be a promising method to approximate the integral,

in the process of maximizing the likelihood, especially for the case of correlated dimensions

and shifted distributions. One may consider to use a mixed method, GH combined with

QMC for the kind of problems where GH seems less accurate or needs too many points.
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p = 2 p = 3

r
∑m

i=0
aip

i yr r
∑m

i=0
aip

i yr

1 1 × 20 + 0 × 21 0.500 1 1 × 30 0.333

2 0 × 20 + 1 × 21 0.250 2 2 × 30 0.667

3 1 × 20 + 1 × 21 0.750 3 0 × 30 + 1 × 31 0.111

4 0 × 20 + 0 × 21 + 1 × 22 0.125 4 1 × 30 + 1 × 31 0.444

5 1 × 20 + 0 × 21 + 1 × 22 0.625 5 2 × 30 + 1 × 31 0.778

Table 1: First 5 Halton points using the primes p = 2, 3

i mi mi = 4mi−2 ⊕ 8mi−3 ⊕ mi−3 Binary sum Decimal representation

1 1

2 3

3 7

4 5 12 ⊕ 8 ⊕ 1 1100 ⊕ 1000 ⊕ 0001 = 0101 5

5 7 28 ⊕ 24 ⊕ 3 11100 ⊕ 11000 ⊕ 00011 = 00111 7

Table 2: Generation of the mi values for Sobol sequences (The first three values are given)
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i mi Binary representation vi

1 1 1 0.1

2 3 11 0.11

3 7 111 0.111

4 5 101 0.0101

5 7 111 0.00111

Table 3: Generation of the vi values for Sobol sequences

d σ2
θ1

, . . . , σ2
θd

5 (2.0, 1.5, 1.0, 0.5, 0.3)

7 (2.0, 1.5, 1.0, 0.5, 0.3, 0.6, 0.7)

9 (2.0, 1.5, 1.0, 0.5, 0.3, 0.6, 0.7, 0.1, 0.25)

ρ 0.0, 0.3, 0.5, 0.7, 0.9

Table 4: Values to form the Σ matrices used in Study 1
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Dimension d = 1

ρ = 0

β = 0 β = 1 β = 2

GH 5.00E-01 3.03E-01 1.56E-01

RE 3.05E-10 1.56E-04 2.59E-04

Sobol 5.36E-01 3.19E-01 1.57E-01

RE 7.22E-02 5.17E-02 6.93E-03

Halton 4.64E-01 2.57E-01 1.18E-01

RE 7.22E-02 1.52E-01 2.39E-01

MC 5.14E-01 2.85E-01 1.48E-01

RE 2.74E-02 6.08E-02 4.52E-02

(se) 2.95E-02 2.31E-02 1.88E-02

Dim 5

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

β = 0 β = 1 β = 2 β = 0 β = 1 β = 2 β = 0 β = 1 β = 2 β = 0 β = 1 β = 2 β = 0 β = 1 β = 2

GH 5.00E-01 3.64E-01 2.44E-01 5.00E-01 3.94E-01 2.96E-01 5.00E-01 4.05E-01 3.16E-01 5.00E-01 4.09E-01 3.26E-01 5.00E-01 3.98E-01 3.17E-01

RE 2.56E-09 3.54E-05 2.30E-05 2.55E-09 7.63E-04 8.02E-04 2.56E-09 3.44E-03 4.66E-03 2.54E-09 1.37E-02 2.06E-02 2.55E-09 5.42E-02 8.25E-02

Sobol 4.99E-01 3.64E-01 2.44E-01 4.99E-01 3.94E-01 2.96E-01 5.00E-01 4.06E-01 3.17E-01 4.99E-01 4.14E-01 3.33E-01 4.99E-01 4.21E-01 3.45E-01

RE 1.22E-03 1.00E-03 1.41E-03 1.19E-03 1.13E-03 1.31E-03 9.75E-04 1.39E-03 1.83E-03 1.15E-03 1.35E-03 1.75E-03 1.16E-03 1.26E-03 7.96E-04

Halton 4.98E-01 3.62E-01 2.42E-01 4.98E-01 3.93E-01 2.95E-01 4.99E-01 4.05E-01 3.16E-01 4.99E-01 4.14E-01 3.32E-01 4.99E-01 4.20E-01 3.44E-01

RE 4.16E-03 5.71E-03 7.14E-03 3.37E-03 4.49E-03 6.08E-03 1.97E-03 2.87E-03 4.84E-03 1.28E-03 2.22E-03 4.04E-03 1.65E-03 2.17E-03 3.14E-03

MC 5.00E-01 3.65E-01 2.44E-01 4.99E-01 3.97E-01 2.94E-01 5.01E-01 4.12E-01 3.21E-01 5.02E-01 4.14E-01 3.33E-01 5.03E-01 4.20E-01 3.46E-01

RE 1.41E-04 8.59E-04 9.28E-04 1.90E-03 5.40E-03 9.22E-03 1.12E-03 1.32E-02 9.33E-03 4.36E-03 2.28E-03 3.91E-04 5.31E-03 2.59E-03 3.09E-03

(se) 1.88E-03 1.80E-03 1.56E-03 2.14E-03 2.10E-03 1.93E-03 2.23E-03 2.18E-03 2.06E-03 2.29E-03 2.25E-03 2.14E-03 2.34E-03 2.30E-03 2.21E-03

Dim 7

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

β = 0 β = 1 β = 2 β = 0 β = 1 β = 2 β = 0 β = 1 β = 2 β = 0 β = 1 β = 2 β = 0 β = 1 β = 2

GH 5.00E-01 3.74E-01 2.60E-01 5.00E-01 4.12E-01 3.29E-01 5.00E-01 4.23E-01 3.50E-01 5.00E-01 4.27E-01 3.59E-01 5.00E-01 4.13E-01 3.39E-01

RE 3.94E-09 1.19E-05 1.29E-05 3.58E-09 4.61E-04 6.92E-04 3.77E-09 2.71E-03 4.52E-03 2.58E-09 1.28E-02 2.25E-02 4.95E-09 5.91E-02 1.04E-01

Sobol 5.00E-01 3.74E-01 2.60E-01 5.00E-01 4.12E-01 3.29E-01 5.00E-01 4.24E-01 3.52E-01 5.00E-01 4.33E-01 3.67E-01 5.00E-01 4.39E-01 3.79E-01

RE 4.05E-05 1.27E-05 1.04E-04 2.59E-04 3.56E-04 1.31E-04 3.08E-04 2.44E-04 1.57E-05 1.33E-04 1.21E-05 1.20E-04 5.86E-05 6.32E-05 5.95E-06

Halton 5.00E-01 3.73E-01 2.60E-01 5.00E-01 4.12E-01 3.29E-01 5.00E-01 4.24E-01 3.52E-01 5.00E-01 4.33E-01 3.67E-01 5.00E-01 4.39E-01 3.79E-01

RE 3.90E-04 7.02E-04 9.63E-04 5.00E-04 4.08E-04 2.24E-04 4.26E-04 2.97E-04 9.45E-05 1.80E-04 1.42E-04 2.19E-04 2.31E-05 1.38E-04 3.25E-04

MC 5.00E-01 3.73E-01 2.60E-01 5.00E-01 4.13E-01 3.29E-01 5.00E-01 4.25E-01 3.51E-01 5.00E-01 4.33E-01 3.67E-01 4.99E-01 4.39E-01 3.79E-01

RE 6.39E-04 4.63E-04 6.27E-04 6.57E-04 1.41E-03 4.24E-04 4.70E-04 9.01E-04 1.51E-03 5.46E-04 3.40E-04 1.38E-04 1.83E-03 1.10E-03 4.74E-05

(se) 3.94E-04 3.79E-04 3.36E-04 4.55E-04 4.47E-04 4.24E-04 4.72E-04 4.66E-04 4.49E-04 4.83E-04 4.79E-04 4.64E-04 4.91E-04 4.87E-04 4.76E-04

Dim 9

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

β = 0 β = 1 β = 2 β = 0 β = 1 β = 2 β = 0 β = 1 β = 2 β = 0 β = 1 β = 2 β = 0 β = 1 β = 2

GH 5.00E-01 3.76E-01 2.64E-01 5.00E-01 4.19E-01 3.42E-01 5.00E-01 4.30E-01 3.63E-01 5.00E-01 4.34E-01 3.71E-01 5.00E-01 4.19E-01 3.49E-01

RE 4.42E-09 9.24E-06 1.07E-05 4.55E-09 3.96E-04 6.42E-04 4.08E-09 2.49E-03 4.36E-03 7.00E-09 1.22E-02 2.23E-02 4.60E-09 5.90E-02 1.08E-01

Sobol 5.00E-01 3.76E-01 2.64E-01 5.00E-01 4.19E-01 3.42E-01 5.00E-01 4.31E-01 3.65E-01 5.00E-01 4.39E-01 3.80E-01 5.00E-01 4.45E-01 3.91E-01

RE 1.05E-05 1.94E-05 1.71E-05 5.10E-05 4.93E-06 6.59E-05 3.47E-05 9.26E-06 6.32E-05 9.63E-06 6.57E-06 3.13E-06 2.07E-06 4.21E-06 3.25E-06

Halton 5.00E-01 3.76E-01 2.64E-01 5.00E-01 4.19E-01 3.42E-01 5.00E-01 4.31E-01 3.65E-01 5.00E-01 4.39E-01 3.80E-01 5.00E-01 4.45E-01 3.91E-01

RE 2.33E-06 1.59E-05 8.05E-05 5.28E-05 3.61E-05 2.33E-05 4.91E-05 4.23E-05 5.94E-06 1.05E-05 1.60E-05 1.44E-05 5.91E-06 8.36E-06 1.43E-05

MC 5.00E-01 3.76E-01 2.64E-01 5.00E-01 4.19E-01 3.42E-01 5.00E-01 4.31E-01 3.65E-01 5.00E-01 4.39E-01 3.80E-01 5.00E-01 4.45E-01 3.91E-01

RE 2.33E-04 6.86E-05 5.11E-04 3.59E-04 2.21E-04 1.90E-04 1.06E-04 2.06E-04 3.82E-05 2.87E-04 4.68E-04 3.37E-05 2.09E-04 2.07E-04 1.76E-04

(se) 7.96E-05 7.66E-05 6.83E-05 9.30E-05 9.16E-05 8.77E-05 9.63E-05 9.53E-05 9.24E-05 9.84E-05 9.76E-05 9.53E-05 9.99E-05 9.92E-05 9.73E-05

Table 5: Integral value and relative error for the four methods d = 1, 5, 7, 9
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d σ2
θ1

, . . . , σ2
θd

1 1

5 (1, 1, 1, 1, 1)

10 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

ρ 0.0, 0.5

Table 6: Values to form the Σ matrices used in Study 2

25



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Halton points

Dim 1

D
im

 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sobol points

Dim 1

D
im

 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Random points

Dim 1

D
im

 2

Figure 1: Two Low Discrepancy Sequences and random points
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Figure 2: Results of study 1
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Figure 3: Relative error versus number of points used to evaluate the test integral in

Study 2, d = 1
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Figure 4: Relative error versus number of points used to evaluate the test integral, d = 5,

and ρ = 0

Figure 5: Relative error versus number of points used to evaluate the test integral, d = 5,

and ρ = 0. ∗The Sobol results are shown for 1 to 105 points.
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Figure 6: Relative error versus number of points used to evaluate the test integral, d = 5,

and ρ = 0.5. ∗The Sobol results are shown for 1 to 105 points.

30



Figure 7: Relative error versus number of points used to evaluate the test integral, d = 10,

and ρ = 0. ∗The Sobol results are shown for 1 to 310 points.

Figure 8: Relative error versus number of points used to evaluate the test integral, d = 10,

ρ = 0.5. ∗The Sobol results are shown for 1 to 310 points.
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