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Abstract 
 
 
In this note we investigate the power of significance test for dummy-variables in the context of  

Simar and Wilson (2003) two-stage efficiency analysis model.  
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Introduction 
 
A recent paper of Simar and Wilson (2003) (hereafter SW) gives a simple but revolutionary to the 

current common practice view on analyzing how explanatory variables determine the efficiency 

scores (measured via Farrell/Debreu-type index), when the latter is estimated via DEA.   

Our comment is motivated by our application of SW procedure to various real data sets and 

observing that we often could not reject a hypothesis that a coefficient of a dummy variable 

(modeled to represent a difference in levels between some two groups) is significantly different 

from zero.  Our immediate reaction was to investigate the power of such tests and we present some 

interesting evidence here in this comment. 

Importance of our note is motivated by the fact that much of economic data involves 

categorical variables.  In (production) efficiency analysis, in particular, researchers often categorize 

firms into groups (public vs. private, local vs. foreign, or/and by different regions, etc.), desiring to 

infer whether belonging to a particular group induces different levels of efficiency.  Such inference 

is most commonly done by including dummy variables (indicator functions) into regression 

equations and testing whether their coefficients are significantly different from zero or not.   

Our main conclusion is that even for reasonably large sample sizes, it might be impossible to 

identify statistical significance of dummy-variable coefficients that are significant from economics 

perspective, unless the true coefficient is very large.  For practitioners, this means that in the so-

called Two-Stage DEA analyses, one shall be very careful with policy conclusions (such as, say, 

state ownership is as efficient as private one and thus privatization did not improve performance, 

etc.) that are just based on not finding statistical significance of the corresponding coefficients of 

dummy variables.  However, if significance is statistically identified for a particular sample then the 

difference in efficiency levels between the groups modelled by the dummy variable is likely to be 

quite large and this should add for the researcher in the corresponding policy conclusions. 

 
Design of Monte Carlo Experiment 
 
Our true model is assumed to be 

 

jjj ZTE εδ += ,  j = 1, …, n      

 
where, jTE  is the true technical efficiency score of firm j,  Zj  is a (row) vector of observation-

specific variables for firm j that effect firms’ efficiency score through the vector of parameters δ  to 

be estimated, and where jε  is a statistical noise. 

 Here, we would only present the case when jTE  is actually observed.  In this case, no 

additional DEA-estimation is needed.  Also, the percentile bootstrap method SW used is not 



expected to improve on the conventional inference based on the Fisher Information matrix, so we 

will use the latter for our inference. (As a result we save a lot of computational time, as well make 

the point more general, not related to the DEA or the bootstrap estimation.) 

 Same as in SW, we assume that ),(~ εε σµε Nj , s.t. δε jj Z−≥ 1 . The first regressor, 1jZ , 

is a vector of ones, the second regressor is a continuous variable, and we assume ),(~2 ZZj NZ σµ .  

The third regressor is a dummy variable that divides the sample into two equal groups A and B, 

)(3 AgroupinisjIZ j = , where I is the indicator function. For the sake of presentation, we choose 

parameters as in SW: 1,0 == εε σµ , 2,2 == ZZ σµ .   

For estimating the power-function, we vary the coefficient 3δ  in the range [-0.5, 0.5] and fix 

the intercept at 11 =δ  and 5.02 −=δ .  Note that since ]1,0()/1( ∈jTE , the coefficient of categorical 

variable of 0.1 and 0.5 corresponds to about 9% and 33% difference in efficiency levels, 

respectively.  Results (which were not sensitive to the change in parameters) are presented and 

discussed in the next section.   

 
Results of the Monte Carlo Experiment 
 
We repeat the Monte Carlo exercise described above for 1000 replications for the sample sizes of n 

= 100, 200, 400, 600, 800, 1000.  To save on space we only present the plots of estimated power-

functions for testing the hypothesis that the true coefficient equals zero, with the size of the test 

fixed at 5% (tables are available upon request).     

<Insert Figure 1 about here> 

Figure 1 presents power function for the sample sizes considered.  We see that the power functions 

for the case of 100 and 200 observations are quite flat.  For example, for the dummy variable case, 

the estimated probability of identifying difference (at 5%-significance level) of 20 percentage points 

in efficiency levels between two groups is only about 10% for the sample size of 100 and 20% for 

the sample size of 200.  As it is expected for the MLE, power functions improve for the sample of 

size 400 and more.  However, even for the sample size of 1000, the estimated power-functions 

suggest that it is virtually impossible to identify the difference in efficiency between groups of about 

10% percentage points, e.g., 90% efficient vs. 80% efficient, etc.  This is perhaps a good example 

when statistical (in)significance is quite different from economic significance of the estimates.  A 

technical reason for this is that the variation on the regressand is fairly small (often between 1 and 2 

or even 1.5) and might be poorly identified by a dummy variable whose variation is also small, 

unless its impact (coefficient) is quite large (e.g., reflecting 25 percentage points difference in 

efficiency for more than 400 observations).  



For practitioners, our findings suggest that in the so-called Two-Stage DEA analysis, one 

shall be very careful with policy conclusions (e.g., conclusing that foreign ownership is as efficient 

as private one, etc.) that are just based on reporting statistical insignificance of the corresponding 

coefficients of dummy variables.  This does not imply that categorical variables shall not be 

included in the truncated regression model—if so is dictated by the model then they should be 

included and might happen to be statistically significant.  But if significance is not found—it still 

might be substantial from economic point of view—but might be not empirically identified due to 

low power of the test on coefficients of dummy-variables.  On the other hand, if such significance is 

identified, it is likely to be quite large in reality.   
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Figure 1. Estimated power functions for testing hypotheses that coefficients on continuous (dotted 

curve) and dummy (solid curve) variables are equal to zero, n=100 and n=200. 


