
T E C H N I C A L

R E P O R T

0534

A COPULA MODEL FOR RESIDUAL DEPENDENCY

IN IRT MODELS

BRAEKEN, J., TUERLINCKX , F., and P. DE BOECK

*

I A P S T A T I S T I C S

N E T W O R K

INTERUNIVERSITY ATTRACTION POLE

http://www.stat.ucl.ac.be/IAP



 

 

 

 

 

 

A copula model for residual dependency in IRT models. 

IAP-statistics Technical Report Series (June 2005) 

 

Johan Braeken 

Francis Tuerlinckx 

Paul De Boeck 

 

Department of Psychology 

University of Leuven 

 

 

 

 

 



Abstract 

Most item response theory models are not robust to violations of local independence. 

However, several modeling approaches (e.g., conditioning on other responses, additional random 

effects) exist that try to incorporate local item dependencies, but they have some drawbacks (e.g., 

non-reproducibility of marginal probabilities, interpretation problems). A new class of models 

that makes use of copulas to deal with local item dependencies is introduced. These models 

belong to the bigger class of marginal models in which marginals and association structure are 

modeled separately. It is shown how this approach overcomes some of the problems associated 

with other local item dependency models. 
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Introduction 

A well-known measurement model used in different areas of research in psychology and 

educational measurement is the Rasch model (Rasch, 1960). For a person p (p=1, …, P) and item 

i (i=1,…,I), a binary random variable Ypi is defined and the probability of a realization ypi equals: 

 ( ) ( )( )
( )

exp
Pr | ,

1 exp
pi p i

pi pi p
p i

y
Y y

θ −β
= θ =

+ θ −β
   

where θp is the propensity of person p and βi is the difficulty of the item i. For the moment we 

will assume that Ypi = 1 corresponds to a correct response and Ypi = 0 to an incorrect one (but see 

the second application in the Application section). 

For the remainder of the paper, it will be convenient to define the Rasch model as a latent 

threshold model in which an underlying (latent) continuous variable piX  is logistically distributed 

with mean θ −βp i , scale parameter equal to one and a threshold parameter set at 0 (see e.g. Lord 

& Novick, 1968). More formally: 

 ( ) with  ~ Logistic 0,1pi p i pi piX = θ −β + ε ε  (1) 

such that 
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p i p i
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−θ +β θ −β
= − =

+ −θ +β + θ −β

  

This is illustrated in Figure 1. The random variable εpi can be called a latent residual for person p 

and item i. 

 

INSERT FIGURE 1 ABOUT HERE 

 



A basic assumption of the Rasch model is local independence:  

 ( ) ( )Pr | Pr | ,
I

p p p pi pi p
i

Y y= = =∏θ θY y   

 where Yp is the random vector of responses for person p on the set of I items (and yp is the vector 

of corresponding realizations). Note that in the latent threshold model formulation above, the 

local independence assumption is equivalent to uncorrelated identically distributed logistic error 

terms piε  across items. 

The Rasch model, and most item response theory models in general, are not robust to 

violations of local independence. Local item dependencies can affect the estimation and the 

reliability of the model parameters (see e.g., Ackerman, 1987; Chen & Thissen, 1997; Sireci, 

Thissen, & Wainer, 1991; Yen, 1984; 1993). Consider the extreme case wherein several slightly 

differently phrased questions are used in one test; this is almost equivalent to asking a single 

question. This redundancy situation will lead to an inflation in information, and consequently, to 

an underestimation of the standard error of a person’s propensity parameter θp (see e.g., Junker, 

1991). Moreover and in general, when an item response model that assumes local independency 

is used for a test that suffers from local item dependencies, this can result in biased estimates for 

both person and item parameters (e.g., for the effect on item discrimination parameters, see 

Masters, 1988). 

Various types of tools have been developed to detect local item or residual dependencies 

(see e.g., Chen & Thissen, 1997; Stout, 1990; Holland & Rosenbaum, 1986; Rosenbaum, 1984; 

Yen, 1984; for a comparison see Tate, 2003). Once local item dependency problems have been 

detected, there are several possible approaches to model them; for an overview see Tuerlinckx 

and De Boeck (2004): Two typical problems that are associated with some of the most popular 

models for local item dependencies are non-reproducibility and the impossibility of interpreting 



βi as the difficulty of item i. To illustrate these problems, take the constant combination 

interaction model of Hoskens and De Boeck (1997) as a starting point (for simplicity, consider an 

interaction between only two items 1 and 2). The joint probability of response (yp1,yp2) then 

equals: 

 ( ) ( ) ( )( )
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The δ parameter equals the logodds ratio (conditional on θp). If we now calculate the probability 

of answering correctly on the first item:  
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It can be seen that the marginal probability of responding correctly to item 1 is not a Rasch model 

anymore. Therefore, it is said that the marginals are not reproducible1. Moreover, the parameter 

β1 cannot be interpreted as the difficulty parameter of item 1 because it is not simply the location 

on the latent trait for which the probability of responding correctly is 0.5. It can be seen that the 

probability of responding correctly to item 1 also depends the association parameter δ . The same 

                                                 

1 Note that we employ the concept of reproducibility here in an intuitive fashion. More formal definitions can be 

found in Ip (2002) and Fitzmaurice, Laird, and Rotnitzky (1993). 



problems also occur with random-effect models (Bradlow et al., 1999) and other types of 

conditional models (e.g., Verhelst & Glas, 1993).  

 A class of models that do not suffer from the aforementioned problems are the so-called 

marginal models. In these models, the univariate marginals and the dependence structure are 

modeled separately. In consequence, these models will not suffer of the problem of not-

reproducible marginals. Examples proposed in the literature are the Bahadur-Ip model (Bahadur, 

1961; Ip, 2000; 2001) and the likelihood-based variant of the generalized estimating equation 

method (see e.g., Ip, 2002; Liang & Zeger, 1986; Fitzmaurice, Laird, & Rotnitzky, 1993).  

An interesting, but often neglected, type of marginal model is the multivariate probit 

random effect model (Ashford & Sowden, 1970). Instead of assuming a latent logistic 

distribution random variable underlying the response process, one could also use a normal 

distribution leading to the probit model. For simplicity, suppose a test consists of two binary 

items. The probit model for these two items is then defined as: 

 1 1 1
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The probability of responding correctly to item i (i=1, 2) now equals: 

 Pr( 1) ( ).pi p iY = = Φ −θ β  (2) 

Taking into account residual dependencies can be done by allowing the latent random variables 

(εp1, εp2) to be correlated: 



 1

2
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, .
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p

p

N
      
             

∼
ε ρ
ε ρ

  

 

Because the marginal distributions of the εpi’s are not affected, the marginal probability of 

responding correctly to the item will be the same as in Equation 2. Hence, the multivariate probit 

model is reproducible and the item parameter can be interpreted as a difficutly parameter. 

 Thus, the multivariate probit model has all the nice properties of a marginal model, but 

there are also some disadvantages. First, the probit link function is used instead of the logit link, 

and in consequence the nice interpretation of the parameters in terms of odds ratios is not 

available anymore. This is especially relevant if covariates are added to the model (see De Boeck 

& Wilson, 2004). Second, the multivariate probit model is computationally very demanding 

because to compute the joint probability for a certain response pattern, a multivariate normal 

cumulative distribution function has to be computed. For the two-item case this gives: 

 1 1
1 2 1 2

2 20 0

1
Pr( 1, 1| ) ; ,

1
p p

p p p p p
p p

x
Y Y dx dx

x

+∞ +∞  −      
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θ φ
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where ( ); ,φ x Rµ  denotes here the bivariate normal density function and ρ refers to the 

correlation between Xp1 and Xp2. This integral is intractable, and it can only be approximated very 

well in low dimensions through standard numerical integration techniques. For this reason, Chib 

and Greenberg (1998) propose a Bayesian approach for parameter estimation.  

If we want to make use of logistic marginals, as is the case for the Rasch model, a similar 

approach as outlined above for the multivariate probit model can be taken. However, there is no 

single multivariate logistic distribution (analogous to the multivariate normal) that can be used as 

a starting point for introducing dependencies between the latent residuals. Convenient tools to 



study and construct multivariate distributions are copula functions which will be the main focus 

of this paper.  

The remainder of the paper is organized as follows. First, some basic formal theory with 

respect to copulas will be discussed. Subsequently, a marginal residual dependency model with 

Rasch marginals will be defined. Next, the setup and results of a simulation study to investigate 

how well the model can be estimated will be described. Then the copula model will be applied to 

two data sets containing residual dependencies. Finally, the paper is closed with a discussion. 

 

An overview of copula theory 

In this section copula functions will be introduced as a mathematical concept and some 

necessary theory will be given. A more thorough overview can be found in the reference work by 

Joe (1997) or by Nelsen (1998). In mathematics a copula (Latin for link or tie) defines a function 

that relates a multivariate uniform cumulative distribution function (CDF) to its univariate 

margins that have uniform CDFs. A copula function enables the separate and independent 

modeling of the marginals and the association structure. Some more formal theory will make this 

clear. 

Definition. An R-dimensional copula is a function [ ] [ ]: 0,1 0,1RC → , 

which has the following properties: 

1.  C(u) is increasing in each component ru with { }1,2,...,r R∈ . 

2.  For every vector [ ] ( )0,1 , 0R C∈ =u u  if at least one coordinate of the vector is 0 and  

( ) rC u=u  if all the coordinates of the vector are equal to one except the r-th one. 

3.  For every [ ] [ ], 0,1  with   1,R
r ra b r R∈ ≤ ∀ ∈a b , given a hypercube  



[ ] [ ] [ ] [ ]1 1 2 2, , , ... ,R Ra b x a b x a b= =a bB  whose vertices lie in the domain of C, ( ) 0CV ≥B . 

The volume ( )CV B  is defined as: 
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C
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=
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∑
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B d d

 

 

This definition shows that the copula function C is a multivariate CDF with uniformly distributed 

margins. 

Sklar’s Theorem (Sklar, 1959).  Let ( )F Y be an R-dimensional distribution function 

with univariate margins ( ) ( ) ( )1 2, ,..., RF Y F Y F Y . Then there exists a copula C for R∈Y \  such 

that ( ) ( ) ( ) ( )1 2, ,..., RF C F Y F Y F Y=   Y . The statement holds also conversely. Moreover, if the 

margins are continuous, C is unique, else C is uniquely determined on the Range of ( )F Y . 

In words, the first part of Sklar’s theorem means that every joint distribution can be 

expressed as a copula function of its marginals. Thus, we can rephrase any known joint CDF by 

means of a copula function of its marginals. The second part is more of interest to us since it 

states conversely that, based upon the univariate marginals, a joint (i.e., multivariate) distribution 

can be constructed by means of a copula function.  

 There is a wide variety of possible copula functions. However, our modeling approach 

will focus on the class of Archimedean copulas (see e.g., Genest & MacKay, 1986; Nelsen, 

1998). Archimedean copulas have a simple structure and can be written as: 

( ) ( ) ( )1
1 1,..., ...R RC u u u u−= + +  φ φ φ  

  



where [ ] [ ]: 0,1 0,φ → ∞  is a generator function satisfying, 

( )

[ ] ( )
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for all 0,1 ,  ' 0 :   is decreasing,

for all 0,1 ,  '' 0 :   is convex.

t t
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This class of copulas has also some nice properties like for instance permutation symmetry, 

( ) ( )1 2 2 1, ,C u u C u u= , and associativity, ( ) ( )( ) ( )( )1 2 3 1 2 3 1 2 3, , , , , ,C u u u C u C u u C C u u u= = .  

These symmetry properties lead to the conclusion that the association parameter for 

Archimedean copulas has an interpretation of an association parameter between any pair of 

variables within this copula function. Since the association parameter is common to all variables 

in the copula, Archimedean copulas are best suited for data that are symmetrically dependent, as 

is often the case when there are residual dependencies.  

 In this paper, we will work with three instantiations of the class of Archimedean copulas 

(1) the independence or product copula : 

 ( ) ( ) ( ) ( ) ( )( ) ( )1 2, ,..., exp log ;
RR

R r r
r r

F C F Y F Y F Y F Y F Y  = = − − =       
∑ ∏Y  

  

(2) Frank's Copula (Frank, 1979): 
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∏
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α
α
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Frank's copula contains only one parameter α that is able to capture the whole range of 

dependency, from negative dependency (α < 0) to positive dependency (α > 0), with the 

independence case in the interior of the parameter space (α →  0). If there are only two variables 

in the copula, the parameter α can take any real value, with the values of -∞  en ∞  respectively 

corresponding to the limiting Fréchet-Hoeffding lower and upper bound. However, for the case 

that more than 2 variables appear in the copula, Meester (1991) showed that the lower bound 

needs to be adapted in function of the number of variables in the copula. For any number of 

items, this adapted lower-bound is always strictly less than zero, thus not restricting the positive 

association range and leaving the independence point in the interior of the parameter space. 

 

(3) Clayton’s copula (Clayton, 1978; Cook & Johnson, 1981): 
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Clayton’s copula contains only one parameter α that is able to capture the whole range of positive 

dependency. The parameter α can take any positive real value, with α equal to 0 being the 

independence case and α equal to ∞ being the case of absolute positive dependence. 

 

 

 



Copula model for residual dependencies 

In order to construct a residual dependency model with Rasch margins, we will start again 

from the latent underlying continuous variables as defined in Equation 1. For simplicity, assume 

for the moment that a test consists of two items and these are suspected to show local item 

dependencies. The extension to more than two items is explained below. 

The random variables εp1 and εp2 refer to the latent random variables. Instead of assuming 

two independent logistic distributions for both random variables, they could as well be modeled 

jointly such that their univariate CDFs are logistic distributions. Thus the items 1 and 2 are jointly 

modeled as 

 1 1 1

2 2 2

p p p

p p p

X

X

−     
= +          −     

θ β ε

θ β ε
  

with 

 1
1 2

2

( ) ( ( ), ( )),p
p p

p

F F C F F
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ε
ε ε

ε
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where  

 
( )
( )

exp
( ) .

1 exp
pi

pi
pi

F =
+

ε
ε

ε
  

The probability of responding correctly to item i (i=1, 2) now equals: 

 ( ) ( )
( )

exp
Pr( 1) Pr 0 Pr( ) .

1 exp
p i

pi pi pi p i
p i

Y X
−

= = > = > − + =
+ −

θ β
ε θ β

θ β
  

The residual dependency is taken into account by allowing the latent random variables (εp1, εp2)  

to be dependent; instead of the multivariate normal CDF with specified correlation matrix as used 

in the probit random effect model, a multivariate logistic CDF is created by means of a copula. 



Thus, roughly said, the logistic distribution and the copula function replace the normal 

distribution and the specified correlation matrix, respectively. 

A residual dependency model with logistic margins at the latent level is possible by 

choosing appropriate margins and an appropriate copula function. Because a copula model is a 

marginal model different association structures (by means of different copulas) for the residual 

dependency can be compared without changing something essential to the base model of the 

marginal probabilities. Figure 2 shows samples of the joint distributions of the latent logistically 

distributed random variables (εp1, εp2) constructed by means of the aforementioned three 

instantiations of Archimedean copulas with varying levels of residual dependence. Notice that the 

copulas differ in the type of dependence they induce; for instance Clayton’s copula has a 

prominent lower tail (i.e. more formally, C(u,…,u)/u converges to a constant c in [0,1] as 

0u → ). 

 

Insert Figure 3 around here. 

 

Since the continuous latent variables will be locally dependent, the discrete responses 1pY  

and 2pY will be too. In order to calculate the joint probabilities from the joint CDFs of the latent 

random variables, the volume under the density for the corresponding quadrant is calculated (see 

e.g., Mood, Graybill, & Boes, 1974): 

 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 2 1 2

1 2 1 2 1 2

1 2 2 1 2

1 2 1 1 2

Pr 0, 0 0 , 0

Pr 1, 1 1 0 0 0 , 0

Pr 1, 0 0 0 , 0 ,

Pr 0, 1 0 0 , 0 .

p p p p

p p p p p p

p p p p p

p p p p p

Y Y C F X F X

Y Y F X F X C F X F X

Y Y F X C F X F X

Y Y F X C F X F X

= = = = =

= = = − = − = + = =

= = = = − = =

= = = = − = =

  



 

Figure 3, presenting a bivariate density with quadrants made up by the solid lines (the dashed 

lines indicating the marginal means), offers an intuïtive insight in these calculations. 

 

Insert Figure 3 around here. 

 

Besides making use of latent responses (the X’s), one could also define the copula directly 

on the discrete responses (the Y’s). It can be shown that this leads to the same model as the one 

above (see Appendix I for a formal prove). 

In order to illustrate that the introduction of the copula can take residual dependency into 

account, the odds ratio for items 1 and 2 involved in the copula (conditional on θp) can be 

computed as follows:  
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Using Frank’s copula, the value of the log odds ratio is then computed for several values of α and 

for θp ranging from –4 to +4; the result is shown in Figure 4a. For Clayton’s copula, the same 

procedure is followed and this result is shown in Figure 4b. For ease of demonstration the two 

marginals were set equal to one another, with difficulty parameters 1 2and β β  equal to zero, so 

that the log odds ratio (conditional on θp) was only a function of the copula’s association 



parameter and the marginal probabilities determined by θp. From both figures it can be seen that 

there is a weak dependency between the (log) odds ratio and the value of the latent trait. The 

difference between the figures of the two copula functions can be ascribed to the lower tail 

dependence of Clayton’s copula. As shown by Trégouet et al. (1999), the (log) odds ratio is 

dependent of the association parameter and the marginal probabilities (which are, in their turn, 

influenced by θp). Hence, no perfect separation between the marginal and the association 

structure is possible. However, for low to moderate values of the association parameter α, the 

dependency is negligible.  Furthermore, for the Frank’s copula the odds ratio can reach the 

limiting cases of 0 and infinity (corresponding with absolute negative and positive dependency 

respectively) without any restriction; for Clayton’s copula, that only captures positive 

dependency, the odds ratio can reach the limiting case of infinity (i.e., absolute positive 

dependence) without any restriction. These results indicate that the existing dependency between 

the marginals and α is weak; this was also confirmed for real data by observations of Meester and 

MacKay (1994) and by our own simulation study (results presented further on in the 

corresponding section). 

If R (R>2) items are showing residual dependencies, the copula approach can be easily 

extended (see also copula definition, property 3): 
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Note that this can be easily extended beyond binary variables to polytomous variables, the 

number of possible interval points .rd  in the CDF just increases with increasing categories; with 

the limit being the continuous case. Note that the formulation of the conditional odds ratio 

remains the same given the symmetry properties of Archimedean copulas (i.e., the association 

created by the copula is exactly the same for each item pair in the copula). 

 Thus, copula functions can be easily incorporated into the regular Rasch model. The items 

with a common local item dependency issue are put into a copula function, resulting in an 

adapted joint probability of the set of items in the copula that takes into account the detected (or 

theoretical) residual dependence. For the moment let us assume that there is only one group of 

locally dependent items, than the extension of the Rasch model we propose is formulated in a 

more traditional way as: 
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C
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Thus the joint probability of a person’s vector of responses pY is calculated as the product of the 

joint probability of the person’s response vector on the items within the copula and each of the 

separate individual probabilities of the locally independent items. 

 



Statistical inference in the copula model 

The estimation of the model’s parameter can be done through marginal maximum 

likelihood (MML) estimation. In this article it is assumed that the θp‘s stem from a normal 

population distribution with mean zero and an unknown variance. Compared to a regular Rasch 

model, the only additional parameter is the association parameter in the copula. 

The major difference with models assuming conditional independence is that each time 

the likelihood has to be computed, the probabilities of the response patterns of the items involved 

in the copula have to be calculated from the joint CDF (see Equation 3). Because terms of 

approximately the same order of magnitude may get subtracted, this step in the estimation 

process might cause numerical instability. Usually it has no consequences for finding the mode of 

the loglikelihood (i.e., the parameter estimates), but our experience learns that the numerical 

approximation to the Hessian matrix may suffer from it, mainly when a moderate to a large 

number of items are involved in the copula (e.g., 4 or more). Given these computational 

problems, a parametric bootstrap approach is adopted here to estimate standard errors (see Efron 

& Tibshirani, 1993). We also recommend using appropriate starting values to let the MML 

algorithm run as smooth as possible. 

With respect to model checking and selection, the tools usually applied in nonlinear 

mixed models are available (Wald, score and likelihood ratio tests). Special attention has to be 

given to model selection with respect to the copula function. Frank’s and Clayton’s copula do not 

have a nested relation, the results should be compared with methods such as the AIC or BIC 

(Schwarz, 1978). The independence model, however, is nested within the two models. Therefore, 

a test of the null hypothesis that the association parameter equals a particular value (0 for both 



Frank’s and Clayton’s copula) is a comparison between the Rasch model and a residual 

dependency model. 

 

Simulation study 

A simulation study was carried out for two reasons. First, we wanted to investigate the 

goodness-of-recovery of the copula model. Second, we have shown that the (log) odds ratio for 

two items depends not only on the association parameter α but also on the univariate marginal 

probabilities (hence, on the θp and βi). Therefore, our goal is to find out whether the association 

parameter α can be estimated independently of the item parameters. 

The setup of the simulation study was as follows: Data sets with the binary responses of 

500 fictive persons on 10 items were simulated (person and item parameters were randomly 

drawn from a standard normal distribution) The responses on the first two items showed residual 

dependencies by means of Frank’s copula (we only used Frank’s copula here, but the results with 

Clayton’s copula were similar). To study in a systematical way how the item parameters of the 

copula items ( 1 2 and β β ) influence the association parameter estimate, these item parameters 

were manipulated following the scheme in Table 1. 

 

Insert Table 1 about here. 

 

The copula parameter α was varied systematically from 0 (being the local item 

independency case) to 4 with increments of 0.5, resulting in 9 possible values. In total, there are 

54 conditions (6 item parameter combinations for the two copula items and 9 assocation 

parameters). In each cell of the study, there are 50 replications. 



To evaluate the goodness-of-recovery, three measures were used (see also Maris, 1999):  

the Root Mean Square Deviation (RMSD), the Monte Carlo Standard Error (MCSE) and bias 

(Note that RMSD² = MCSE² + BIAS²). 

To determine the degree of dependence between the estimate of the association parameter 

α and the marginals (the second reason for the simulation study), ideally one should evaluate the 

expected value of the second derivative of the loglikelihood with respect to the assocation 

parameter and the item parameters involved in the copula and this expectation should be zero:  

 ( )2 ,
0,i

i

E
 ∂ α β

= ∂α∂β 

A
  

for i=1, 2 (the two copula items). Because there is no closed-form solution to this expectation, we 

will use the correlation (computed over replications within a cell) between the estimate of the 

association parameter and the estimate of the copula item parameters as an indication of the 

dependence between the estimates of & iα β . 

 In each condition a relative goodness-of-fit measure was constructed by taking the 

proportion of replications within a cell where the copula model was chosen above the regular 

Rasch model based upon the likelihood ratio test. 

The results of the simulation study are presented in Table 2a. For each of the 54 

conditions the RMSE of the model parameters, the empirical correlation between the association 

parameter and the estimates of respectively, the copula item parameters, one examplary item 

parameter outside the copula, and the estimated standard deviation of the proficiency in the 

population, is given, as well as the relative fit of the copula model with Rasch margins. A 

summary of the results can be found in Table 2b. where the same measures are presented but 

averaged over conditions, offering an indication of the main effects of the different manipulations 



in the simulation study (i.e., degree of residual dependence and the location of the copula item 

parameters). 

The goodness-of-recovery of the copula model for the association parameter decreases 

with increasingα . In the conditions where the copula item parameters have opposite sign, the 

copula model with Rasch margins seem to have problems in estimating the true association 

parameterα , but leaving the marginal parameters largely unaffected.  This will be probably 

caused by the limited availability of informative response patterns for the estimation of the 

association parameter (i.e., ( ) ( )1,1  and 0,0 patterns), because the copula items, each one located 

around an opposite side of the latent continuum (i.e. -2 and 2 on the logit scale), will largely 

generate ( )1,0  response patterns and almost no other response patterns. The RMSE of the item 

parameters is quite low. When α  equals 0 (i.e., the independence case) the copula item 

parameters are as well estimated as the parameters of the items outside the copula; as α  rises 

above 0 the copula item parameters are slightly less exact recovered, but still quite accurate and 

not influencing the items outside the copula (0.26 VS 0.12 RMSE). The standard deviation of the 

proficiency in the population is not affected by the association parameter α  and the recovery of 

the true parameter is quite good. The RMSE for this parameter is largest when the two copula 

item parameters are of equal sign. This is quite natural because the two items are of exact equal 

difficulty and thus are in a sense redundant while giving the same information about the 

proficiencies among the test population. 

The simulation study gives no evidence to reject the approximate independence relation 

between the association parameter α  and the marginals. The empirical correlations show no 

clear pattern over the conditions and remain within a relatively small range (between -0.3 and 

0.3). 



As could be expected the copula model with Rasch margins shows better fit than the 

regular Rasch model with increasingα , regardless of the marginal parameters. Note that the 

relative goodness-of-fit of the copula model is somehow slightly less in the extreme conditions 

(i.e., where the copula item parameters have opposite sign) compared to the other conditions. 

However the copula model remains supreme with increasingα . 

 

Applications 

In this section, we will apply the copula model to two data sets. Both Frank’s and 

Clayton’s copula will be fitted to the data. The marginal maximum likelihood method is 

implemented using a Gauss-Hermite quadrature with 21 nodes and a quasi-Newton optimization 

technique. The standard errors of the parameter estimates were approximated using a parametric 

bootstrap with 100 replications. 

 

Application 1: Small reading test 

A group of high school students interested in studying law in college (P = 441) answered 

six multiple choice questions about a text on the president and the separation of powers in the 

United States of America. The answers were binary recoded in right and false for ease of 

demonstration and scored 1 and 0, respectively. In previous analyses (Tuerlinckx & De Boeck, 

2001) it is shown that two pairs of items showed residual dependencies:  items 1 and 6, and items 

4 and 5. A series of seven models was fitted (the Rasch model and the different possible residual 

dependency models using Frank’s and Clayton’s copula) and compared using likelihood ratio 

tests and/or the AIC. 

 



Insert Table 3 about here 

 

From the results in Table 3, it can be seen that the most appropriate model is that copula 

model with a separate Frank’s copula for each item pair. The model has a significant better fit 

than the regular Rasch model (LRT=49, df=2, p<0.0001). Both association parameters differ 

significantly from zero (p<0.0001 for (1,6)α  and p<0.003 for (4,5)α ). Looking at the Mantel-

Haenszel test for equal conditional odds ratio as a diagnostic tool (Ip, 2001), one notices a strong 

reduction in unmodeled local residual dependency for the copula modeled item pairs: for the item 

pair 1 and 6, from 7.01 (p<0.0001) under the Rasch model to 0.37 (n.s.) under the chosen model, 

for the item pair 4 and 5 from 2.6 (p<0.02) to -0.61 (n.s.). Thus the copula model succeeds in its 

primary objective, namely modeling the local item dependencies. Notice that the standard errors 

of the item parameters and the standard deviation of the propensity distribution in the population 

are of comparable size between the Rasch model and the copula model with Rasch margins (see 

Table 4). 

Insert Table 4 about here 

 

Application 2: Verbal Aggression data 

As a second example, we analyze the data from a behavioral questionnaire (Vansteelandt, 

2000; see also De Boeck & Wilson, 2004). The questionnaire consists of 24 items that each refer 

to verbally aggressive reactions in a frustrating situation, and it was administered from 316 

persons. Four different situations were used to construct the 24 items: ‘A bus fails to stop for me’, 

‘I miss a train because a clerk gave me faulty information’, ‘The grocery store closes just as I am 

about to enter’, and ‘The operator disconnects me when I had used up my last 10 cents for a call’. 



The description of the situation is followed by a statement about the behavioral mode of a verbal 

aggressive reaction (‘I would want to …’ or ‘I would …’). Three verbal aggressive reactions are 

studied: cursing, scolding, and shouting (the questionnaire was translated from Dutch, and 

shouting refers to an expressive aggressive reaction in Dutch). The original items had three 

response categories (‘yes’, ‘perhaps’, and ‘no’) but we dichotomized them (‘yes’ and ‘perhaps’ 

were scored 1 and ‘no’ was scored 0). 

Because the 24 items are clustered in four groups of six items due to the common 

situations, we may expect residual dependencies. Therefore, a model with four copulas (each 

containing six items) and Rasch marginals is fitted.  

The results are presented in Table 5. The common Rasch model was fitted, a copula 

model with four copulas and also a model with copula for items 3, 6, 9 and 12. These four items 

were diagnosed by means of the Q3-index (Yen, 1984) with showing large residual dependencies 

and are all items with the question whether the person wants to shout in that situation; thus this 

residual dependency can be reasonably attributed to this item characteristic. 

From the results in Table 5, one can see that the copula models with univariate Rasch 

margins outperforms the regular Rasch model.  Not only the interpretation of the individual 

parameters remains the same, but notice that also their standard errors are largely comparable to 

the standard errors of the Rasch model (this also holds for the previous application and the 

simulation study). 

 

 



Discussion 

In this paper we have introduced the use of copulas for modeling residual dependencies. 

The model has a simple form and allows easy and flexible model construction by modeling the 

marginals and the dependence structure separately and independent of each other. Extensions to 

other more complicated models can be easily implemented and it is not restricted to binary 

response variables.  

The Rasch Copula model does not suffer from the difficulties and flaws of the other 

existing models that try to incorporate local item dependencies. The model has the property of 

reproducibility, such that the univariate marginals are still Rasch models and the item parameters 

can be interpreted as difficulty parameters. 

In the case of Frank’s copula, the association parameter α can cover the range of 

dependencies, from negative to positive association, with the independence case in the interior of 

the parameter space. For Clayton’s copula, only positive dependencies can be taken into account, 

but those are the most frequent.  

The general class of Archimedean copulas (with Frank and Clayton as special cases) is 

limited to the case in which the dependency is symmetric. Therefore, copulas are less suited to 

model learning phenomena.  
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Appendix I : Equivalence of the Rasch Copula model defined at the latent level or 

at the discrete level. 

Latent Level: 

 ( ) with  ~ Logistic 0,1pi p i pi piX = θ −β + ε ε   

such that 
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Discrete Level: 

 Since a copula is defined as a cumulative distribution function, a transformation to 

probabilities is required to make proper use of copula functions in probabilistic measurement 

models like the Rasch and other item response theory models. One can easily use property 3 in 

the definition of a copula. For continuous variables one would apply the Probability Integral 

Transform, for discrete variables as in our case one uses the discrete equivalent. 

The cumulative distribution function of a single response in the Rasch model is defined 

as: 

 = −

= = = = =

+ θ −β
 = + = = =

0 for 1

1( ) Pr( 0) for 0
1 exp( )

Pr( 0) Pr( 1) 1 for 1

pi

pi pi pi pi
p i

pi pi pi

y

F Y y Y y

Y Y y

. 



Thus, one has to evaluate the cumulative distribution functions using these three points to obtain 

the joint probability as defined by the copula function C. This means that for instance the joint 

probability of answering correctly on item 1 and 2 equals: 

( ) ( ) ( )
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Leading to: 
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Proven equivalence since ( ) ( ) ( )0 | Pr 0 | 0 |pi p pi p pi pF Y Y F X= = = = =θ θ θ . 



Tables 

Table 1: Item parameters of the residual dependency items in the simulation study. 

condition 1 2 3 4 5 6 

1β  -2 -2 0 +2 +2 -2 

2β  -2 0 0 0 +2 +2 

 

Table 2a. Results of the simulation study for each of the conditions. 

True parameters RMSE Correlation with α  Relative  fit 
α  b1 b2 α  b1 b2 b3 sd(θ) b1 b2 b3 sd(θ) %Copula 
0 -2 -2 0.74 0.14 0.17 0.10 0.58 -0.01 0.27 -0.04 0.06 0.2 

0.5 -2 -2 0.96 0.33 0.34 0.10 0.65 0.20 -0.10 -0.18 0.02 0.48 
1 -2 -2 1.01 0.40 0.39 0.12 0.63 0.16 0.52 -0.09 -0.23 0.68 

1.5 -2 -2 0.98 0.41 0.41 0.13 0.64 0.23 0.17 0.13 0.03 0.72 
2 -2 -2 0.99 0.34 0.36 0.13 0.63 0.25 0.04 0.16 0.09 0.94 

2.5 -2 -2 1.12 0.34 0.37 0.12 0.70 0.00 -0.18 -0.05 -0.08 0.94 
3 -2 -2 1.11 0.32 0.34 0.11 0.56 -0.21 -0.10 0.00 -0.02 1 

3.5 -2 -2 1.14 0.32 0.31 0.13 0.58 0.05 -0.01 0.04 -0.08 1 
4 -2 -2 1.14 0.30 0.27 0.13 0.48 0.11 0.14 0.01 -0.14 1 
0 -2 0 0.63 0.16 0.11 0.12 0.27 0.11 -0.08 -0.12 -0.17 0.12 

0.5 -2 0 0.66 0.37 0.30 0.10 0.29 0.10 -0.17 -0.04 0.06 0.36 
1 -2 0 0.72 0.41 0.31 0.13 0.06 -0.14 -0.10 -0.17 0.18 0.7 

1.5 -2 0 0.80 0.37 0.26 0.12 0.06 -0.07 -0.22 0.32 0.18 0.88 
2 -2 0 0.80 0.38 0.24 0.09 0.29 0.25 0.10 0.17 0.00 0.94 

2.5 -2 0 0.82 0.32 0.22 0.13 0.06 -0.25 -0.33 0.11 -0.05 0.98 
3 -2 0 0.80 0.35 0.16 0.13 0.29 0.15 0.33 -0.07 0.03 1 

3.5 -2 0 0.80 0.30 0.18 0.11 0.07 0.00 0.05 0.03 -0.02 1 
4 -2 0 1.00 0.33 0.17 0.11 0.06 0.15 0.08 0.18 -0.11 1 
0 0 0 0.48 0.11 0.10 0.13 0.05 0.00 0.03 0.11 0.26 0.16 

0.5 0 0 0.57 0.26 0.28 0.12 0.05 -0.17 -0.09 0.15 0.00 0.58 
1 0 0 0.56 0.27 0.27 0.12 0.05 -0.22 -0.19 -0.02 0.11 0.88 

1.5 0 0 0.46 0.26 0.25 0.12 0.06 -0.15 0.09 -0.19 -0.29 1 
2 0 0 0.52 0.21 0.21 0.13 0.06 -0.27 -0.14 -0.04 -0.10 1 

2.5 0 0 0.57 0.21 0.20 0.12 0.06 0.17 0.02 0.02 -0.01 1 
3 0 0 0.48 0.19 0.20 0.12 0.05 -0.22 0.13 0.05 0.02 1 

3.5 0 0 0.57 0.16 0.17 0.11 0.06 0.10 0.09 0.17 0.08 1 
4 0 0 0.65 0.17 0.17 0.12 0.06 -0.06 0.09 0.16 -0.21 1 
0 2 0 0.52 0.12 0.11 0.11 0.06 -0.11 -0.15 -0.28 0.11 0.1 

0.5 2 0 0.52 0.25 0.28 0.11 0.05 0.09 0.19 0.07 -0.06 0.36 

1 2 0 0.57 0.22 0.29 0.13 0.05 0.21 0.08 0.09 0.13 0.56 



1.5 2 0 0.67 0.21 0.28 0.13 0.06 -0.18 0.22 0.12 -0.37 0.86 
2 2 0 0.68 0.19 0.22 0.12 0.28 -0.12 0.18 0.26 -0.10 0.96 

2.5 2 0 0.68 0.20 0.22 0.13 0.06 -0.11 -0.21 0.01 -0.04 0.98 
3 2 0 0.79 0.16 0.21 0.11 0.06 0.19 -0.19 -0.05 0.24 1 

3.5 2 0 0.90 0.15 0.17 0.11 0.29 -0.10 -0.06 0.20 -0.14 1 
4 2 0 1.00 0.15 0.17 0.11 0.38 0.10 0.10 -0.09 0.02 1 
0 2 2 0.77 0.13 0.13 0.12 0.69 -0.19 -0.14 -0.10 0.02 0.16 

0.5 2 2 0.71 0.26 0.29 0.12 0.56 0.00 -0.06 -0.12 0.04 0.24 
1 2 2 0.69 0.26 0.25 0.11 0.49 0.13 0.08 -0.39 0.30 0.54 

1.5 2 2 0.68 0.21 0.24 0.12 0.50 0.06 -0.10 0.01 0.06 0.7 
2 2 2 0.77 0.17 0.18 0.12 0.59 0.07 -0.08 0.05 0.00 0.82 

2.5 2 2 0.81 0.18 0.16 0.15 0.69 -0.07 -0.20 0.24 0.06 0.96 
3 2 2 0.86 0.16 0.18 0.12 0.57 -0.05 -0.17 -0.08 0.01 1 

3.5 2 2 0.89 0.16 0.16 0.08 0.57 0.22 0.29 0.02 -0.06 1 
4 2 2 0.86 0.15 0.13 0.12 0.71 -0.10 -0.28 0.24 -0.15 1 
0 -2 2 0.90 0.14 0.13 0.11 0.05 0.29 0.03 -0.05 0.13 0.08 

0.5 -2 2 1.07 0.34 0.29 0.11 0.06 -0.01 0.33 0.07 0.15 0.22 
1 -2 2 3.19 0.42 0.25 0.16 0.06 0.15 0.16 0.08 0.19 0.38 

1.5 -2 2 4.88 0.39 0.22 0.12 0.08 -0.14 0.05 -0.07 0.19 0.52 
2 -2 2 6.15 0.32 0.18 0.11 0.06 0.09 -0.05 -0.14 0.16 0.6 

2.5 -2 2 6.12 0.32 0.15 0.12 0.07 -0.02 0.39 0.05 0.03 0.84 
3 -2 2 8.49 0.33 0.19 0.11 0.06 -0.14 0.20 0.13 -0.02 0.78 

3.5 -2 2 8.59 0.32 0.16 0.12 0.05 -0.07 0.20 0.15 -0.02 0.86 
4 -2 2 10.73 0.28 0.16 0.10 0.06 0.05 0.08 0.22 0.09 0.96 

  

Table 2b. Results of the simulation study averaged over conditions. 

True parameters RMSE Correlation with α Relative  fit 
α  b1 b2 α  b1 b2 b3 sd(θ) b1 b2 b3 sd(θ) %Copula Rasch 
0 averaged 0.67 0.13 0.12 0.11 0.28 0.02 0.00 -0.08 0.07 0.14 

0.5 averaged 0.75 0.30 0.30 0.11 0.28 0.04 0.02 -0.01 0.04 0.37 
1 averaged 1.12 0.33 0.29 0.13 0.22 0.05 0.09 -0.08 0.11 0.62 

1.5 averaged 1.41 0.31 0.28 0.12 0.23 -0.04 0.03 0.05 -0.03 0.78 
2 averaged 1.65 0.27 0.23 0.12 0.32 0.05 0.01 0.07 0.01 0.88 

2.5 averaged 1.69 0.26 0.22 0.13 0.27 -0.05 -0.09 0.06 -0.02 0.95 
3 averaged 2.09 0.25 0.21 0.12 0.27 -0.05 0.03 0.00 0.04 0.96 

3.5 averaged 2.15 0.23 0.19 0.11 0.27 0.03 0.09 0.10 -0.04 0.98 
4 averaged 2.56 0.23 0.18 0.12 0.29 0.04 0.03 0.12 -0.08 0.99 

averaged -2 -2 1.02 0.33 0.33 0.12 0.61 0.09 0.08 0.00 -0.04 0.77 
averaged -2 0 0.78 0.33 0.22 0.12 0.16 0.04 -0.04 0.04 0.01 0.78 
averaged 0 0 0.54 0.20 0.21 0.12 0.06 -0.09 0.00 0.05 -0.02 0.85 
averaged 2 0 0.70 0.18 0.22 0.12 0.14 0.00 0.02 0.04 -0.02 0.76 
averaged 2 2 0.78 0.19 0.19 0.12 0.60 0.01 -0.07 -0.02 0.03 0.71 
averaged -2 2 5.57 0.32 0.19 0.12 0.06 0.02 0.15 0.05 0.10 0.58 



overall mean 1.57 0.26 0.23 0.12 0.27 0.01 0.03 0.03 0.01 0.74 
overall std 2.25 0.09 0.08 0.01 0.25 0.15 0.18 0.14 0.13 0.31 

  

Table 3.  Rasch and Rasch Copula models for the small reading test. 

Model AIC 1,6α 4,5α 1,6,4,5α  

Rasch 3157 . . . 

( ) ( )1,6 4,5Frank FrankC C  3108 3.56 2.53 . 

( ) ( )1,6 4,5Frank ClaytonC C  3113 3.57 0.39 . 

( ) ( )1,6 4,5Clayton FrankC C  3111 1.00 2.50 . 

( ) ( )1,6 4,5Clayton ClaytonC C 3116 1.00 0.38 . 

( )1,6, 4,5FrankC  3140 . . 1.40 

( )1,6, 4,5ClaytonC  3148 . . 0.25 

 

Table 4. Parameter estimates for the Rasch model and the copula model with Rasch margins. 

Model Rasch ( ) ( )1,6 4,5Frank FrankC C  
Parameter Estimate Estimate 

b1 -0,36 (0.12) -0,34 (0.13) 
b2 0,99 (0.15) 0,94 (0.12) 
b3 0,01 (0.11) 0,00 (0.12) 
b4 -1,38 (0.14) -1,32 (0.16) 
b5 -1,50 (0.13) -1,44 (0.16) 
b6 -0,02 (0.13) -0,03 (0.13) 

sd(θ) 1,28 (0.09) 1,12 (0.10) 
(1,6)α  . 3,56 (0.61) 
(4,5)α  . 2,53 (0.84) 
AIC 3157 3108 

 

 



Table 5.  Rasch and Rasch Copula models for the verbal aggression data. 

Model Rasch ( )FrankC situation ( )3,6,9,12FrankC ( )3,6,9,12ClaytonC  

Parameter Estimate Estimate Estimate Estimate 
b1 -1,22 -1.20 (0.20) -1.23 (0.16) -1.22 (0.17) 
b2 -0,56 -0.57 (0.16) -0.57 (0.17) -0.56 (0.15) 
b3 -0,08 -0.08 (0.18) -0.06 (0.18) -0.10 (0.17) 
b4 -1,74 -1.72 (0.19) -1.76 (0.22) -1.75 (0.17) 
b5 -0,70 -0.71 (0.17) -0.71 (0.17) -0.71 (0.14) 
b6 -0,01 -0.00 (0.18) -0.02 (0.17) -0.04 (0.16) 
b7 -0,52 -0.47 (0.15) -0.54 (0.17) -0.53 (0.16) 
b8 0,69 0.63 (0.17) 0.68 (0.15) 0.69 (0.16) 
b9 1,53 1.50 (0.15) 1.51 (0.18) 1.51 (0.17) 
b10 -1,08 -0.98 (0.16) -1.09 (0.16) -1.08 (0.14) 
b11 0,35 0.34 (0.18) 0.35 (0.16) 0.35 (0.16) 
b12 1,05 1.06 (0.19) 1.04 (0.17) 1.03 (0.17) 
b13 -1,22 -1.19 (0.18) -1.23 (0.16) -1.22 (0.16) 
b14 -0,38 -0.40 (0.18) -0.40 (0.16) -0.39 (0.18) 
b15 0,88 0.85 (0.13) 0.87 (0.18) 0.87 (0.16) 
b16 -0,87 -0.85 (0.15) -0.88 (0.16) -0.87 (0.16) 
b17 0,06 0.03 (0.14) 0.05 (0.17) 0.06 (0.16) 
b18 1,49 1.42 (0.17) 1.48 (0.18) 1.48 (0.17) 
b19 0,22 0.23 (0.15) 0.21 (0.17) 0.21 (0.15) 
b20 1,51 1.43 (0.17) 1.50 (0.16) 1.50 (0.19) 
b21 2,98 2.86 (0.26) 2.96 (0.24) 2.95 (0.24) 
b22 -0,70 -0.67 (0.14) -0.71 (0.18) -0.71 (0.15) 
b23 0,39 0.38 (0.18) 0.38 (0.19) 0.38 (0.16) 
b24 2,00 1.94 (0.21) 1.99 (0.19) 1.99 (0.20) 

sd(θ) 1,37 1.28 (0.06) 1.37 (0.08) 1.36 (0.07) 
(sit1)α  . 1.00 (0.27) . . 
(sit2)α  . 1.22 (0.53) . . 
(sit3)α  . 1.68 (0.36) . . 
(sit4)α  . 1.92 (0.31) . . 

(3,6,9,12)α  .  2.97 (0.42) 1.02 (0.16) 
AIC 8125 7951 8043 8045 

 

 



Figures 

 

Figure 1.  Latent threshold formulation of the Rasch model. 

 

 



 

Figure 2.  Sample data of multivariate latent logistic distributions (with means zero and scale 

parameters equal to one) for varying levels of dependence and using different 

copulas. 

 

 

 

 

 

 

Figure 3. Bivariate density for different logistic copula models. 



 

 

Figure 4.  The conditional log odds ratio for different values of the copula parameter. 



 


