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Jéremie Bigot,

Department of Statistics, University Paul Sabatier,
Toulouse, France,

and
Irène Gijbels,

Department of Mathematics, Katholieke Universiteit Leuven,
Belgium.

February, 2005

Abstract

In this paper we focus on nonparametric estimation of a constrained regression

function using penalized wavelet regression techniques. This results into a convex op-

timization problem under linear constraints. Necessary and sufficient conditions for

existence of a unique solution are discussed. The estimator is easily obtained via the

dual formulation of the optimization problem. In particular we investigate a penalized

wavelet monotone regression estimator. We establish the rate of convergence of this

estimator, and illustrate its finite sample performance via a simulation study. We also

compare its performance with that of a recently proposed constrained estimator. An

illustration to some real data is given.

Key words and phrases: Besov spaces; Constrained curve fitting; Monotonicity; Splines;

Wavelets; Wavelet nonparametric regression; Wavelet thresholding.

AMS 1991 subject classifications: Primary 62G07; secondary 65Dxx.

1 Introduction

Researchers in the physical and medical sciences are often interested in investigating
an assumed monotonic relationship between an independent variable X and a depen-
dent variable Y. Typical examples include the analysis of dose-response curves in
pharmakinetics, growth curves in biology and many specific practical problems dis-
cussed in the literature cited below. Linear regression is usually too restrictive in these
situations. Incorporating monotonicity constraints into the estimation of regression
functions is then natural and dates back to the literature on isotonic regression. The
isotonic regression model assumes that the expected value of Y is constant within dis-
joint regions of X and moreover that the mean levels within regions are nondecreasing
in increasing X. An early exposition of this literature appears in Barlow, Bartholomew,
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Bremner & Brunk [3] and later in Robertson, Wright & Dykstra [21]. Consistency of
monotonic regression is proved in Hanson, Pledger & Wright [12].

Smoother estimators of monotone regression can be found in Ramsay [20], Kelly
and Rice [14], Mammen [17], Mammen and Thomas-Agnan [19], Hall and Huang [10]
and Mammen, Marron, Turlach and Wand[18].

The previous literature on isotonic regression is based on determining the fitted
values of the estimator on a finite set of points (usually the observed covariates) and
uses a set of inequality constraints to impose restrictions on the value of the regression
function at these points. The algorithms used to compute these estimators can be com-
putationally intensive and involve a large set of inequality restrictions and require a
special structure of the support. Moreover, as pointed out by Gijbels [9] many of the
constrained estimates proposed in the literature reduce the smoothness of the estima-
tor with which they started by using isotonic regression techniques or by projecting
an unconstrained curve estimate onto a constrained subspace of regression functions.
As a consequence the monotone estimates appear less smooth as the unconstrained
estimates and often have jump discontinuities.

Series estimators provide a convenient alternative to the isotonic regression litera-
ture. Gallant [8] proposes the Fourier Flexible Form (FFF) estimator which is based on
the trigonometric functions base. He identifies the set of restrictions on the coefficients
of the FFF expansion that are sufficient to impose convexity. Monotonicity, however,
cannot be easily imposed on the estimator. Especially convenient series estimators are
those that are based on wavelets. The estimator used in this paper is a least-squares se-
ries estimator of the regression function based on wavelet basis functions. Given a grid
of points on the support of the covariate the proposed estimator imposes restrictions
on the values of the estimator at the grid points and then uses interpolation to compute
the predicted values in any desired point on the support. This yields a finite number
of constraints which are translated to linear inequality restrictions on the values of the
coefficients of the wavelet functions. The regression function f is assumed to belong
to a class of functions, F , that satisfies certain regularity conditions.

As it is often the case in nonparametric regression when the regression function is
assumed to belong to a large class of functions, the wavelet based least-squares esti-
mator is inconsistent and a penalized or regularization procedure is a good remedy
to provide a consistent estimator. Regularization is also a convenient framework for
taking into account shape restrictions on the estimator and this is the approach chosen
in this paper.

The remainder of the paper is structured as follows. Section 2 lays the foundations
for wavelet based penalized estimation of a constrained regression function, in particu-
lar of a monotone regression function. Section 3 describes the optimization procedures
for computing the estimator. Asymptotic properties of the estimator are established in
Section 4. Section 5 presents a short Monte Carlo study on the efficiency and rate of
convergence of the estimator and on a comparison with another estimator developed
in the recent literature. Some concluding remarks are given in Section 6. Appendix A
recalls some facts from convex optimization while Appendix B provides the proofs of
the results.
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2 Description of the estimator

The objective of this section is to describe a regression estimator that takes into ac-
count monotonicity constraints on the shape of the regression function but does not
use functional form assumptions. This section focuses on the technical description of
the estimator. A discussion on the asymptotic properties is left for the next section. For
ease of presentation we restrict the discussion of the estimator to the one dimensional
case. All results can be extended to a higher dimensional case but not without a con-
siderable technical effort. In shape-restricted estimation, the curse of dimensionality
has an additional effect: the number of constraints, needed to assure that the estimator
satisfies certain restrictions, increases with dimensionality. An increase in the number
of constraints in addition to the usual curse of dimensionality can make the problem
intractable.

The following notations are used throughout the paper. For any n-dimensional vec-
tor v = (v1, . . . , vn)T with components vi from [0, 1] and for any real-valued function
f defined on [0, 1] define f = f (v) = ( f (v1), . . . , f (vn))T. Furthermore, for a vector
v, v ≤ 0 means coordinate wise. Finally, for x, y ∈ R

n, 〈x, y〉 denotes the usual inner
product in R

n.
Assume that we have noisy observations of an unknown function f : [0, 1] → R at

discrete time positions xi = i
n , i = 1, . . . , n:

yi = f (xi) + σǫi, i = 1, . . . , n, (2.1)

where ǫi are i.i.d. normal variables with zero mean and variance 1, and σ is an un-
known noise level parameter. The regression function f (·) is assumed to belong to a
class of functions, F , that satisfies certain regularity conditions. These conditions are
further discussed later.

In an unconstrained setting, a least-squares estimator of the regression function in
(2.1) is based on the empirical analogue of the expected value of a squared loss function
and is the solution to the following problem

min
f∈F

1

n

n

∑
i=1

(yi − f (xi))
2. (2.2)

Assuming that n is a power of 2, let Wn be the discrete orthogonal wavelet transform
matrix corresponding to some suitable wavelet basis of L2([0, 1]). Letting θ be the vec-
tor of discrete wavelet coefficients of f , i.e. θ = Wnf and d̂ = Wny be the corresponding
vector of noisy wavelet coefficients, an equivalent formulation of problem (2.2) is given
by

min
θ∈W

1

2

n

∑
i=1

(d̂i − θi)
2 = min

θ∈W
1

2
‖θ− d̂‖2

2, (2.3)

where W denotes the set of discrete wavelets coefficients of f when f ∈ F . Recall that,
for regular enough wavelets, if βi denote the continuous wavelet coefficients of f , then
the corresponding discrete wavelet coefficients θi of f are of the order

√
nβi (see e.g.

Antoniadis and Fan [1]).
Often, in a nonparametric setup, the class F (and hence W) is large and the above

least-squares estimator is inconsistent. In order to obtain a consistent estimator one
therefore must use some kind of regularization or thresholding. Antoniadis and Fan
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[1] have shown that wavelet thresholding amounts to solve a penalized least-squares
problem of the following form:

min
θ∈Rn

(

1

2
‖θ− d̂‖2

2 + λ
n

∑
i=i0

ψ(|θi|)
)

, (2.4)

where ψ : R → R
+ is an appropriate penalty function depending on the method that

is being used, and i0 is the coarse level of smoothing. To simplify the notations, we
will take hereafter i0 = 1 without any loss of generality. We will concentrate on the
following choice ψ(|x|) = |x| which yields the so-called soft thresholding estimator:

θ̂i = 0 if |d̂i| ≤ λ,

θ̂i = d̂i − λ sign(d̂i) if |d̂i| > λ,

for i = 1, . . . , n.
Antoniadis and Fan [1] show that, for a large variety of function classes F , con-

trolling the rate at which the penalty λ/n converges to 0 as n tends to infinity, leads to
estimators that achieve an optimal rate of convergence. The regularization procedure
above is also a convenient framework for taking into account monotone restrictions on
the estimator. Our task in what follows is to build such a penalized wavelet estimator
of the regression function that satisfies the desired monotonicity constraint.

Let f̂ = WT
n θ̂ be the estimation of f at the design points. In a discrete setting,

imposing shape constraints consists in determining a constrained estimate f̂c ∈ R
n

such that 〈f̂c, l j〉 ≤ 0 for j = 1, . . . , m, where the l j’s are appropriate vectors depending

on the shape constraints. For instance with m = n − 1, the choice l
j
i = 0 if i < j or

i > j + 1, l
j
j = 1 and l

j
j+1 = −1 would yield an increasing estimate in the discrete

sense. These restrictions, resulting in m inequality constraints (with m = (n − 1)) to be
imposed on the estimator can be written in matrix notation as Dm f̂c(γ) ≤ 0, where Dm

denotes the m × n differentiation matrix given by

Dm =















1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
...

. . .
. . .

...
0 · · · 0 1 −1 0
0 · · · 0 0 1 −1















and where γ is the equidistant grid vector ( 1
n , 2

n , . . . , 1)T.

For θ ∈ R
n, let

(

gj(θ)
)

j=1,...,n−1
be the components of the vector defined by DmWT

n θ.

With the choice ψ(|x|) = |x|, wavelet regression under shape constraints can then be
formulated as a convex optimization problem under linear constraints:

min
θ∈Rn

h(θ) = min
θ∈Rn

(

1

2
‖θ− d̂‖2

2 + λ
n

∑
i=1

|θi|
)

(2.5)

s.t gi(θ) ≤ 0, i = 1, . . . , n − 1

Proposition 2.1 The optimization problem (2.5) has a unique solution.

Proof: see Appendix B. �

The next section explains how to construct the estimator.
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3 Practical Implementation of the estimator

Note that the convex optimization problem that we consider in this paper is of the
following form:

min
θ∈Rn

(

1

2
‖θ− d‖2

2 + λ
n

∑
i=1

|θi|
)

, (3.1)

s.t Φθ ≤ 0,

for some d ∈ R
n, and where Φ is an m × n real matrix. To retrieve our previous set-

ting, take d = d̂ and Φ = DmWT
n . Since the objective function for problem (3.1) is not

differentiable, the optimization results recalled in Appendix A, while useful, cannot be
used directly. In this section, we show that the non-differentiable problem (3.1) falls
into the category of constrained non-smooth optimization problems (CNSO) as described
in Section 14.6 of Fletcher [7], and that necessary and sufficient conditions similar to
the KKT equations of Appendix A can be derived.

3.1 Necessary and sufficient conditions for optimality

Following the notations in Fletcher [7], problem (3.1) can be written as a penalized
constrained convex optimization problem:

min
θ∈Rn

{h(θ) + k(c(θ))} , (3.2)

s.t t(r(θ)) ≤ 0,

with

r(θ) = (g1(θ), . . . , gm(θ)) = Φθ ∈ R
m,

t(r) = max
i=1,...,m

gi(θ),

h(θ) =
1

2
‖θ− d‖2

2,

c(θ) = λθ,

k(c(θ)) = ‖c(θ)‖1 .

Now, define the Lagrangian function as:

L(θ, µ, u, π) = h(θ) + µTc(θ) + πuTr(θ) .

For non-smooth convex functions, the notion of differentiability can be extended
via the introduction of the subdifferential:

Definition 3.1 If f is a convex function defined on a convex set K, then the subdifferential of
f at θ is defined by:

∂h(θ) = {g : h(θ + δ) ≥ h(θ) + δTg; ∀θ + δ ∈ K} .
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From Fletcher [7] p. 363, we have that for θ ∈ R
n,

∂ max
i=1,...,n

θi = {µ ∈ R
n;

n

∑
i=1

µi = 1, µi ≥ 0 and θi < max
i=1,...,n

θi ⇒ µi = 0}

∂‖θ‖1 = {µ ∈ R
n; |µi| ≤ 1, and θi 6= 0 ⇒ µi = sign(θi)} .

From Fletcher [7], Theorem 14.6.1, we have that if θ∗ is a local minimizer of (3.1),
then there exist µ ∈ ∂k(θ∗), u ∈ ∂t(θ∗) and a real π ≥ 0 such that:

t(r(θ∗)) ≤ 0,

πt(r(θ)) = 0,

∇θL(θ∗, µ, u, π) = ∇h(θ∗) + µT∇c(θ∗) + πuT∇r(θ∗).

In our setting, the above necessary conditions can be written as: there exists µ ∈ R
n

and ν ∈ R
m such that

θ∗ − d + λµ + ΦTν = 0,

gj(θ∗) ≤ 0, j = 1, . . . , m

ν ≥ 0,

gj(θ∗) < 0 ⇒ νj = 0, j = 1, . . . , m

|µi| ≤ 1

θ∗i 6= 0 ⇒ µi = sign(θ∗i ), i = 1, . . . , n .

Since ∇2
θL(θ, µ, u, π) = I is positive definite for all θ ∈ R

n, we have that the above con-
ditions are also sufficient (see Theorem 14.6.3 in Fletcher [7]). Note that if we impose
no shape constraints (i.e. ν = 0), the soft thresholding estimator satisfies the above
necessary and sufficient conditions of optimality.

3.2 Dual formulation

For θ ∈ R
n, let θ+

i = max(θi, 0) and θ−i = max(−θi, 0). Note that, θ+
i − θi ≥ 0, θ−i + θi ≥

0 and θ+
i + θ−i = |θi|. Let e ∈ R

n be the unit vector with all entries equal to one, and
consider the following constrained convex optimization problem:

min
θ,θ+,θ−∈Rn

(

1

2
‖θ− d‖2

2 + λeT(θ+ + θ−)

)

, (3.3)

s.t Φθ ≤ 0,

θ+ − θ ≥ 0, θ+ ≥ 0,

θ− + θ ≥ 0, θ− ≥ 0

Proposition 3.1 The optimization problems (3.1) and (3.3) are equivalent in the sense that

they yield the same unique solution θ̂
c ∈ R

n.

Proof: see Appendix B. �
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Proposition 3.2 Problem (3.3) is a smooth convex optimization problem whose dual can be
written as

max
θ,µ,ν∈Rn

L(θ, µ, ν) = max
θ,µ,ν∈Rn

(

1

2
‖θ− d‖2

2 + λµTθ + νTΦθ

)

, (3.4)

s.t ∇θL(θ, µ, ν) = 0,

−e ≤ µ ≤ e,

ν ≥ 0

Proof: see Appendix B. �

Note that the condition ∇θL(θ, µ, ν) = 0 implies that θ = d − λµ − ΦTν. By elimi-
nating θ, the dual problem (3.4) can then be written as:

max
µ,ν∈Rn

L(µ, ν) = max
µ,ν∈Rn

(

−1

2
λ2µTµ − 1

2
νTΦΦTν + λµTd − λµTΦTν + νTΦd

)

,

s.t −e ≤ µ ≤ e,

ν ≥ 0

Let B =
[

λI ΦT
]

(note that B is an n × (n + m) real matrix which may be singular).
Hence, solving the dual problem (3.4) is equivalent to minimizing the following least-
squares problem with box constraints:

min
x∈Rn+m

1

2
‖Bx − d‖2

2, (3.5)

s.t −e ≤ µ ≤ e,

ν ≥ 0 ,

for xT = [µT νT ].

Hence, in our discrete setting, wavelet regression under shape constraints amounts
to solving a least-squares minimization problem with bound constraints for which
many algorithms are available.

4 Asymptotic properties

A large body of literature is devoted to establishing the consistency of wavelet thresh-
olding estimators and to the rate at which they converge to the true parameter. Most of
this literature treats the case where no shape restrictions are imposed on the estimator.
Therefore, before using any of the results from this literature, one has to make sure that
they remain intact under shape restrictions. The results presented in this section show
that the monotonicity restricted estimator described in the previous section is consis-
tent and that it achieves the same optimal rate of convergence as in the unrestricted
estimation problem.

Let

R( f̂λ, f ) = n−1
n

∑
i=1

{ f̂λ(xi) − f (xi)}2 ,

be the risk function of the unrestricted regularized wavelet estimator f̂λ. By translating
the problem from the function space into the wavelet domain, Antoniadis and Fan [1]
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have shown that the above estimator, with λ =
√

2 log n nearly achieves the optimal
rate of convergence for a large variety of function classes F , a typical example of which
are the Besov spaces.

Assume that the unknown signal f is in a Besov ball. Because of simple character-
ization of this space via the wavelet coefficients of its members, for C > 0, the Besov
space ball Br

p,q(C) (r > 0, 1 ≤ p, q ≤ ∞) can be defined as

Br
p,q =

{

f ∈ Lp : ∑
j

(

2j(r+1/2−1/p)‖β j·‖p

)q
< C

}

, (4.1)

where βj· is the vector of wavelet coefficients at the resolution level j. Here, r indi-

cates the degree of smoothness of the underlying signal f . Note again that the wavelet
coefficients β in the definition of the Besov space are continuous wavelet coefficients.
They are approximately a factor of n1/2 larger than the discrete wavelet coefficients
Wnf. This is equivalent to assuming that the noise level is of order 1/n.

The following theorem evaluates the rate of convergence of the maximum risk of
our estimator.

Theorem 4.1 For the penalty function ψ(x) = |x| and for r > 1/2, the maximum risk of the

restricted monotone penalized least-squares estimator f̂ c over the Besov ball Br
1,1(C) is of rate

O(n−2r/(2r+1) log n) when the universal thresholding
√

2 log n is used.

We have stated the theorem for functions belonging to the Besov ball Br
1,1(C). How-

ever, using various embedding theorems for Besov spaces, under appropriate condi-
tions on s, p and q the result is also true for more general Besov spaces Bs

p,q.
The proof of this theorem is provided in Appendix B. The proof consists in comput-

ing the difference between the wavelet coefficients of the constrained and the uncon-
strained estimate and showing that it shrinks to zero at a faster rate than the optimal
convergence rate of the unconstrained estimator.

5 Monte-Carlo Simulations and a Real Example

We have designed a small scale simulation study for illustrating the performance of
our penalized wavelet monotone smoother and for comparing it with another simple
smoothing splines based monotone smoother developed recently by Zhang [24]. The
main idea of the smoothing splines smoother is to shift the monotonicity constraint
on the underlying regression function to the positiveness or negativeness constraint
on the associated derivative curve. The interested reader is referred to the paper by
Zhang[24], where the smoothing parameter is chosen by generalized cross validation
(GCV) and closed form formulas for the estimation are derived.

We investigate the regression model with an equidistant design on [0, 1], normally
distributed errors, sample sizes n = 128 and n = 256 and signal to noise ratios (SNR)
of 3 and 5. Signal-to-noise ratios are measured as sd(m(x))/σ, where sd(m(x)) is the
estimated standard deviation of the regression function, m(xi) over the sample i =
1, . . . , n and σ is the true standard deviation of the noise in the data. The monotone
regression functions that we consider are

m1(x) =
exp(20(x − 1/2))

1 + exp(20(x − 1/2))
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m2(x) = x +
1

6π
sin(6πx),

m3(x) = u(x) + 0.1I{x>0.5}(x),

where

u(x) =

∫ x

0

(

1

2
exp(−(t − 0.2)2

2(0.052)
) + 1.5 exp(−(t − 0.6)2

2 ∗ (0.12)
)

)

dt

and

m4(x) = xI{x<0.3}(x) + 1.5xI{x>0.6}(x) + 0.3I{x>0.3}(x) + 2x ∗ I{x>0.8}(x) .

These functions correspond to, respectively, a function which changes several times
from a strongly increasing part to a flat part, a function with a continuous “jump”, a
strictly increasing curve with a discontinuous jump; and an increasing function with
linear parts and some flat parts. The different functions are displayed in Figure 1.
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Figure 1: Signals (a): m1, (b): m2, (c): m3 and (d): m4 used in the simulations.

We have used 100 simulations runs, for each regression function, each sample size
and each signal to noise ratio. For our penalized wavelet smoother estimates we used
symlets of order 8, i0 = 3 and the universal threshold λ = σ

√

2 log(n) with a ro-
bust estimate of σ based on the median absolute deviation of the wavelet transform
at the finest scale. Note that imposing monotonicity constraints tends to averaging
the oscillating parts (pseudo-Gibbs phenomema) of the unconstrained estimate. For
the monotone spline smoother we have used the matlab procedure implementing the
smoother, available at http://www.stat.nus.edu.sg/˜zhangjt. We have compared
the constrained estimates for both methods (smoothing splines and penalized wavelet
smoother). For the 100 simulations and each setting of the simulation design we cal-
culate the pointwise mean squared error (MSE) for the two estimates m̂w (wavelet esti-
mator) and m̂s (splines smoother). In the following, we present curves for the estimates
and their MSE, where only results for the sample size n = 128, SNR=5 are displayed
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(see Figure 2 and Figure 3). The results corresponding to the cases n = 256 and SNR=3
are quite similar and available from the authors (see also Table 1 for results of the in-
tegrated MSE for all cases of the simulation design). The dashed curves in the figures
correspond to the monotone splines smoother, whereas our wavelet estimator is plot-
ted as a solid curve.
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Figure 2: Average estimates over 100 simulations for the 4 signals for a sample size n = 128
and a signal to noise ratio of 5. The true regresssion function is represented as a dotted curve,
the estimate m̂w as a solid curve and the estimate m̂s as a dashed curve.

As one can see, the monotone spline smoother has a tendency to oversmooth, lead-
ing to a large squared bias. The MSE comparison shows a substantial difference be-
tween the two estimates, mainly caused by the amount of oversmoothing of the spline
smoother. The superiority of the wavelet smoother is also confirmed by the results
displayed in Table 1.

As one can see from Table 1, the order of the integrated mean squared error for each
estimator depends on the regression model under consideration, but whatever simula-
tion setup is used the wavelet estimator outperforms the spline GCV-based monotone
smoother.
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Figure 3: Simulated mean squared error of the estimators m̂w (solid curves) and m̂s (dashed
curves) for the four regression functions. The sample size is n = 128 and the signal to noise
ratio is 5.

m̂w m̂s

m(x) SNR IMSE IMSE
3 8.94E-04 0.0013

m1(x) 5 5.32E-04 0.0010497
3 0.0018 0.0096

m2(x) 5 8.25E-04 0.0085
3 5.09E-04 0.0011

m3(x) 5 0.0002813 6.89E-04
3 0.0643 0.08

m4(x) 5 0.0401 0.0666

Table 1: Simulated integrated mean squared error of the estimators m̂w and m̂s for the four
regression functions, based on samples of size n = 128.

To end this section, we apply our methodology to a real example concerning mono-
tone regression, namely the fuel consumption data that relate fuel efficiency (in miles
per gallon) to engine output. These data have also been used by Mammen et al. [18]
to illustrate a projection-based constrained smoothing procedure. A scatter plot of the
data is displayed in Figure 4. The data are available at the Statlib internet repository at
http://lib.stat.cmu.edu/datasets/cars.data.

Displayed in Figure 4 are also a spline smooth monotone fit (dashed curve) and a
wavelet monotone fit (solid curve). The number of data points is 392 but with only
93 distincts x-coordinates. In order to apply our wavelet monotone estimate, we have
used, preliminary to the estimation, the interpolation method to a fine regular grid of

11



40 60 80 100 120 140 160 180 200 220 240
5

10

15

20

25

30

35

40

45

50

engine output (hp)

fu
el

 e
ffi

ci
en

cy

observations

 splines

wavelets

Figure 4: Fuel efficiency versus Engine output.

128 points by Kovac and Silverman [16] (their makegrid procedure). The wavelet esti-
mator was then computed with symlets of order 8, i0 = 3 and the universal threshold
λ = σ

√

2 log(n) with a robust estimate of σ based on the median absolute deviation
of the wavelet transform at the finest scale. The spline monotone fit was produced
by Zhang’s monotone smoother using a smoothing parameter 4.06E − 011 chosen by
GCV. It can be seen that, overall, the difference between the two fits is small, except at
the left end of the support, where many observations are available.

6 Concluding Remarks

A nonparametric monotone restricted estimator based on a penalized wavelet least-
squares method is described in this paper. The benefits of the penalized wavelet frame-
work are as follows. First, assumptions like monotonicity are easily incorporated into
the estimator. Second, the estimator is computed using convex programming with lin-
ear inequalities constraints. Therefore, this estimator is easy to implement. Finally, the
estimator behaves well even for functions that may present jumps or discontinuities.

A drawback of our estimation procedure is that it requires that observations are
sampled on an equidistant grid and that the sample size is a power of 2. However, for
a deterministic design, one may use several procedures that have been developed to
relax these requirements without affecting the results obtained in this paper; such as,
for example, the interpolation method of Hall and Turlach [11], the binning method of
Antoniadis et al. [2], the transformation method of Cai and Brown [5], the isometric
method of Sardy et al. [23], the interpolation method to a fine regular grid of Kovac
and Silverman [16] and the penalized wavelet method of Antoniadis and Fan [1]. In
principle, any of these methods can fit into the framework of this paper, with each
interpolation method inducing a different choice of a function base for the series ex-
pansion.

12



For a random design one could use warped wavelets recently investigated by Kerky-
acharian and Picard [15]. It is shown there that for designs having a property of Muck-
enhoupt type, these new bases have a behavior quite similar to a regular wavelet basis,
leading to estimation algorithms that mimick exactly the equi-spaced case. This would
in principle enable us to prove that the associated constrained penalized procedure
achieves rates of convergence which have been proved to be optimal in the uniform
design case. However, it poses some challenges to extend this method to our setting
and we intend to pursue this in a future work.

It should be mentioned that the general setup of Section 2 allows to treat more
general constraint problems than the monotonicity constraint problem. Indeed, any
restriction on the regression function that involves signing of any discrete functional
of the wavelet coefficients of any order can be treated by our method. It is also pos-
sible to allow a number of such restrictions to apply simultaneously. For example, a
regression function can be constrained to be both monotone and concave using the
same technique.

Appendix A

We recall here some classical results for convex optimization problems that we have
used in Section 3. Further details can be found in the books by Rockafeller [22], Fletcher
[7], and Boyd and Vandenberghe [4].

Consider the following optimization problem:

min
x∈Rn

h(x) (A.1)

s.t ci(x) ≤ 0, i = 1, . . . , m

where h and c1, . . . , cm are convex and C1 functions: R
n → R. Let C = {x ∈ R

n; ci(x) ≤
0, i = 1, . . . , m}. Assume that problem (A.1) has a solution x∗ = arg minx∈C h(x) and
let p∗ = h(x∗). A point x ∈ C is said to be strictly feasible if ci(x) < 0 for all i = 1, . . . , m.
For µ ∈ R

m, define the Lagrangian function as:

L(x, µ) = h(x) +
m

∑
i=1

µici(x) .

• Karush-Kuhn-Tucker conditions

If there exists a strictly feasible point x ∈ C (Slater’s condition), then there exist La-
grange multipliers µ∗ ∈ R

m, such that x∗, µ∗ satisfy the following system of equations,
described as the Karush-Kuhn-Tucker (KKT) conditions:

∇xL(x, µ) = 0,

ci(x) ≤ 0, i = 1, . . . , m

µ ≥ 0,

µici(x) = 0, i = 1, . . . , m .

Note that the KKT conditions also hold if the functions ci(x) ≤ 0, i = 1, . . . , m are all
linear constraints (see Theorem 9.1.1 in Fletcher [7]) without assuming Slater’s condi-
tion. These conditions are also sufficient if Slater’s condition holds.
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• Duality

Define the Lagrange dual function as:

g(µ) = inf
x∈Rn

L(x, µ) .

Note that g is a convex function. Then, for any µ ≥ 0 which is dual feasible i.e. g(µ) >

−∞, we have that g(µ) ≤ p∗. Let µ∗ denote a solution (if any) of the following convex
optimization problem:

max
µ∈Rn

g(µ) (A.2)

s.t µ ≥ 0,

and let d∗ = g(µ∗). If there exists a strictly feasible point, then d∗ = p∗ and x∗ mini-
mizes L(x, µ∗) over x ∈ R

n, where µ∗ denotes a solution (if any) of the dual problem
(A.2). Note that the inequality d∗ ≤ p∗ holds when d∗ and p∗ are infinite. If p∗ = −∞,
then d∗ = −∞ and so the Lagrange dual problem is infeasible. Conversely, if d∗ = ∞,
then p∗ = ∞ i.e. the primal problem is infeasible.

Note that if x∗ is a solution of the primal problem (A.1) and if x∗, µ∗ satisfy the above
KKT conditions, then under appropriate assumptions (e.g. if the functions ci(x) ≤
0, i = 1, . . . , m are all linear constraints, see Theorem 9.5.1 in Fletcher [7]) x∗, µ∗ solves
the dual problem:

max
(x,µ)∈Rn×Rm

L(x, µ),

s.t ∇xL(x, µ) = 0, µ ≥ 0,

and p∗ = L(x∗, µ∗).

Appendix B. Proofs

Proof of Proposition 2.1: Let C = {θ ∈ R
n; gi(θ) ≤ 0, i = 1, . . . , n − 1}. Since the gi’s

are linear functions, C is a closed convex subset of R
n. Since the objective function

h, defined in equation (2.5), is a continuous and nonnegative function on C, h(C) =
{h(θ); θ ∈ C} is a closed subset of R with a lower bound. Hence h(C) has a minimum
h(θc). The strict convexity of h implies the unicity of the minimum θc. �.

Proof of Proposition 3.1: from Proposition 2.1 we have that problem (3.1) has a unique
solution. The arguments in the proof of Proposition 2.1 can also be used to show that
the convex optimization problem (3.3) has a unique solution. Let

f1(θ) =
1

2
‖θ − d‖2

2 + λ
n

∑
i=1

|θi|

f2(θ, θ+, θ−) =
1

2
‖θ − d‖2

2 + λeT(θ+ + θ−)

C1 = {θ ∈ R
n; Φθ ≤ 0}

C2 =
{

(θ, θ+, θ−) ∈ R
3n; Φθ ≤ 0, θ+ − θ ≥ 0, θ+ ≥ 0, θ− + θ ≥ 0, θ− ≥ 0

}

.
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Let θ1 ∈ R
n and (θ2, θ+

2 , θ−2 ) be the unique minimizers of problems (3.1) and (3.3)
respectively. Let θ+

1 = max(θ1, 0) and θ−1 = max(−θ1, 0) (the max is taken componen-
twise). Note that (θ1, θ+

1 , θ−1 ) ∈ C2 and that for all θ ∈ C1, f1(θ1) = f2(θ1, θ+
1 , θ−1 ) ≤

f1(θ). Then, observe that for (θ, θ+, θ−) ∈ C2, θ+ + θ− ≥ ‖θ‖1 which implies that
f2(θ, θ+, θ−) ≥ f1(θ). Hence, for all (θ, θ+, θ−) ∈ C2, f2(θ, θ+, θ−) ≥ f2(θ1, θ+

1 , θ−1 )
which finally implies that θ1 = θ2 and completes the proof. �

Proof of Proposition 3.2: by definition, the dual of problem (3.3) is:

max
θ,θ+,θ−∈Rn,µ+,µ−,τ+,τ−,ν∈R

n
+

(

1

2
‖θ − d‖2

2 + λeT(θ+ + θ−) − µT
+(θ+ − θ)

−µT
−(θ− + θ) − τT

+θ+ − τT
−θ− + νTΦθ

)

, (B.1)

s.t θ − d + µ+ − µ− + νTΦ = 0,

λe − µ+ − τ+ = 0,

λe − µ− − τ− = 0

Since τ+ ≥ 0 and τ− ≥ 0, we must have µ+ ≤ λe and µ− ≤ λe. By defining µ = µ+ −µ−
and by eliminating τ+ and τ− in (B.1), we obtain the formulation (3.4) which completes
the proof. �

Proof of Theorem 4.1: Let θ̂
c
= d − λµ̂c − ΦT ν̂ be the unique solution of problem (3.1)

where

(

µ̂c

ν̂

)

∈ R
n+m denotes the solution of problem (3.5). Let θ̂ = d − λµ̂ be the

classical soft thresholding estimator which corresponds to the optimal solution if the
problem (3.1) is unconstrained. Now, by the remark at the end of subsection 3.1 note

that −e ≤ µ̂ ≤ e which implies that ‖λµ̂c + ΦT ν̂ − d‖2
2 ≤ ‖λµ̂ − d‖2

2 since

(

µ̂c

ν̂

)

is a

minimum for problem (3.5).
Now,

‖θ̂
c − θ‖2

2 = ‖θ‖2
2 + ‖θ̂

c‖2
2 − 2〈θ, θ̂

c〉
and

‖θ‖2
2 = ‖θ̂− θ‖2

2 − ‖θ̂
c‖2

2 + 2〈θ, θ̂〉.
Hence, since ‖θ̂

c‖2
2 ≤ ‖θ̂‖2

2, the following inequality holds:

‖θ̂
c − θ‖2

2 ≤ ‖θ̂− θ‖2
2 + 2〈θ, θ̂− θ̂

c〉

If we assume that the function f satisfies the constraints of problem (3.1) namely Φθ ≤
0, then 〈θ, ΦT ν̂〉 = (Φθ)Tν̂ ≤ 0 since ν̂ ≥ 0. Hence, if f verifies the constraints that we
want to impose, the following inequality holds

‖θ̂
c − θ‖2

2 ≤ ‖θ̂− θ‖2
2 + 2λ〈θ, µ̂c − µ̂〉

Given that −e ≤ µ̂ ≤ e and −e ≤ µ̂c ≤ e, we have that |〈θ, µ̂c − µ̂〉| ≤ 2 ∑
n
i=1 |θi|.

Recall that the empirical wavelet coefficients are such that θi ≈ √
nβi where βi is the

corresponding continuous wavelet coefficient.
Hence, if f is in the Besov ball Br

1,1(C) then ∑
n
i=1 |βi| is uniformly bounded and we

obtain that for the classical universal threshold λ = σ
√

2 log(n):
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R( f̂ c, f ) =
1

n
‖θ̂

c − θ‖2
2 ≤ R( f̂ , f ) + 0(

√

log(n)√
n

)

The result now follows using Theorem 4 of Antoniadis and Fan [1]. �
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