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Abstract

For the analysis of caries experience in seven year old children we explored the
association between the presence or absence of caries experience among different
deciduous molars within each child. Some of the observed high associations have
an etiological basis (e.g., between symmetrically opponent molars), while others
(diagonally opponent molars) are assumed to be the result of the transitivity of
association and hence are believed to disappear once conditioned on the caries ex-
perience status of the other deciduous molars. However, using discrete models for
multivariate binary data, conditioning on the caries experience of the other teeth
present in the mouth and on the (un)known subject-specific characteristics did not
remove the latter type of association. When the association was explored on a la-
tent scale, say by a multivariate probit model, then the partial correlation matrix
indicated conditional independence. This contrast was confirmed when using other
models on the (observed) binary scale and on the latent scale. While it seems logi-
cal that conditional dependence partly depends on the chosen model, our example
shows that the results and conclusions can be markedly different. The explanation
for this surprising result is exemplified mathematically and illustrated using dental
data from the Signal Tandmobielr study.

Key words: Conditional independence, Multivariate binary data, Latent vari-
able representation, Multivariate probit model

1 Introduction

In oral health research it is of interest to assess the association of caries experience among
different teeth. The knowledge that caries development on one tooth is related to caries
development on another tooth can help the dentist in optimizing his/her clinical exam-
ination of the patient and directs preventive and restorative approaches. Further, the
exploration of caries experience patterns in the mouth can also help in further refining
the understanding of the etiology of the disease. Indeed, it is still not established whether
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caries is a spatially local disease or not and the answer to that question might be related
to the variety of factors determining caries activity (see, e.g., Hujoel, Lamont, DeRouen,
Davis and Lerouxi 1994, and references therein).

Based on data obtained in seven-year old children recruited in the Signal Tandmobielr

study, we examined the association between the presence/absence of caries experience on
the eight deciduous molars and found a high association between symmetrically oppo-
nent molars, matching molars from the maxilla and the mandible (vertically opponent
teeth) and diagonally opponent teeth. The first association is known and relatively easy
to explain (Psoter, Zhang, Pendrys, Morse and Mayne 2003). The second association is
somewhat more difficult to understand. However, the high association between diagonally
opponent teeth is believed to be the result of the (assumed) transitivity of the associa-
tions, i.e. due to the high association between symmetrically opponent deciduous molars
on the one hand and the association between vertically opponent molars on the other
hand. This was verified by fitting a random effects logistic regression model (with subject
as random effect) explaining the occurrence of caries experience on a deciduous molar by
the caries experience on the other molars and subject specific characteristics. However,
this model was not able to remove this high association, and the same was true for all
other considered discrete models for multivariate binary vectors. In contrast, when the
association was explored on a latent scale, say by a multivariate probit model, then the
partial correlation matrix indicated conditional independence.

While we acknowledge that conclusions can change when different statistical models
are used, we were surprised to see such a major difference when switching from one class of
models (on the observed binary scale) to another class of models (on the latent continuous
scale). In this paper we will highlight a possible reason why conditional independence is
not invariant to the scale used for the analysis.

To illustrate the markedly different conclusions that can be obtained from different
statistical models for multivariate binary responses, we analyzed the same caries experi-
ence data with two different models. First, the conditionally specified logistic regression
model (CSLRM) as suggested by Joe and Liu (1996) was applied. Like the log-linear
model (LLM) the model acts on the observed binary scale, but the model also allows
the inclusion of covariates. Further, the model is intimately related to logistic regres-
sion. In the CSLRM, the association is measured by the odds ratio of a pair of binary
responses conditional on the observed values of the remaining binary responses and the
covariates. Consequently, the estimated odds ratios automatically express conditional
(in)dependence. Secondly, the multivariate probit model (MPM) was applied, see, e.g.,
Ashford and Sowden (1970), Lesaffre and Molenberghs (1991) or Chib and Greenberg
(1998) for various implementations and examples. This model expresses the association
between the binary responses via the correlation matrix of a multivariate normal latent
random vector. Conditional (in)dependence can be evaluated by the partial correlation
matrix.

In Section 2, independence and conditional independence are reviewed. In Section 3,
we briefly review the Conditional Logistic Regression Model and the Multivariate Probit
model. An application to oral health data from the Signal Tandmobielr study is shown
in Section 4. Finally, Section 5 gives some concluding remarks.



2 Independence and Conditional Independence

Suppose that V is a m-dimensional normally distributed random vector and that a ran-
dom sample of n individuals is available yielding vectors Vi (i = 1, . . . , n). However,
we assume that V is not observed but latent and that either Y or Z is observed. The
first observed random vector is continuous, namely Zi = Vi + εi (i = 1, . . . , n), where
εi is normally distributed and independent of Vi. On the other hand, Yi is a random
multivariate binary response vector defined as Yij = I(Vij > cj), where cj (j = 1, . . . ,m)
are specific cut off points.

The correlation matrix R ≡ (ρjk)jk corresponding to V describes the association struc-
ture of the latent vector and conditional independence is seen from the elements of the
standardized concentration matrix C ≡ (cjk)jk, obtained from appropriately standardiz-
ing R−1. Namely, Vj is conditionally independent of Vk conditional on the other Vm for
m 6= k, j when cjk = 0. Observe that this property does not hold for other multivariate
distributions and hence in these cases a partial correlation equal to zero does not imply
conditional independence.

In this paper we are interested in the relationship between the association structure
on the latent scale (of V) and the observed scale (of Y and Z) especially with respect to
conditional independence. Clearly, if R is the identity matrix, then also the components
of Y and Z are statistically independent. Further, the association structure of Z depends
on the magnitude of the measurement error component defined by ε. For instance, even
when the components of V are perfectly related, the components of Z could show a poor
correlation if the variability of ε is quite high. Furthermore, conditional independence
can not be expected for Z even when it holds for V. For the binary case, ρjk = 0, j 6= k

implies independence of Yj and Yk. But again, conditional independence for V does not
imply conditional independence for Y and this will be illustrated now.

Consider the random vector V ∼ N3 (µ,R), with,

µ =





0
0
0



, R =





1.00 0.64 0.80
0.64 1.00 0.80
0.80 0.80 1.00





and the categorical variables Yj, (j = 1, 2, 3) defined as above. The standardized concen-
tration matrix then becomes

C =





1.00 0 0.62
0 1.00 0.62

0.62 0.62 1.00



 .

Since c12 = 0 the partial correlation coefficient ρV1,V2.V3
= 0 and thus V1 ⊥⊥ V2|V3. However,

the probability of Y1 and Y2 given Y3 is,

P (Y1 = 1, Y2 = 1|Y3 = 1) = 0.6557

while, P (Y1 = 1|Y3 = 1) = P (Y2 = 1|Y3 = 1) = 0.7952, and,

P (Y1 = 1|Y3 = 1) P (Y2 = 1|Y3 = 1) = 0.6323



Hence, we have shown numerically that conditional independence of variables V1 and
V2 given V3 does not imply Y1 ⊥⊥ Y2|Y3. The evaluation of these expressions involves
the computation of multivariate normal probabilities which was carried out using the
methodology described in Genz (1992) and Genz (1993). A theoretical proof of this result
is shown in the Appendix.

3 Two models for the analysis of multivariate binary

responses

In this section we will describe two models that were used to illustrate the difference
between analyzing the multivariate binary response on the observed binary scale and on
the latent continuous scale. The models are just representative for their class of models
since the above mentioned contrast remains when these models are replaced by other
models, as indicated below.

3.1 The Conditionally Specified Logistic Regression Model: a
model on the observed binary scale

Let Yi be defined as before and let Xij be the correspondent covariate vector. Joe and Liu
(1996), discuss a model for multivariate binary responses with covariates. The conditional
distribution of each binary response Yij given the other binary responses Yik = yik, k 6= j

and the covariates Xij is equivalent to a logistic regression with parameter vector βj and
parameters γjk, k 6= j. That is, for j = 1, ...,m,

logitP (Yij = 1|Yik = yik, k 6= j,Xij) = Xijβj +
∑

k 6=j

γjkyik. (1)

Joe and Liu (1996) showed that a necessary and sufficient condition for compatibility
of conditional distributions is that γjk = γkj, j 6= k, and that the joint distribution is
given by,

p(Y|X) =
n

∏

i=1

[

c(Xi,β,γ)−1 exp

{

m
∑

j=1

(Xijβj)yij +
∑

1≤j<k≤m

γjk yijyik

}]

(2)

with normalizing constant,

c(Xi,β,γ) =
1

∑

y1=0

· · ·
1

∑

ym=0

exp

{

m
∑

j=1

(Xijβj)yj +
∑

1≤j<k≤m

γjk yjyk

}

(3)

In (1) to (3), the parameters γjk are interpreted as conditional log-odds ratios, since,

exp{γjk} =
P (Yij = 1, Yik = 1|Xij,Xik, Yil = yil, l 6= j, k)

P (Yij = 1, Yik = 0|Xij,Xik, Yil = yil, l 6= j, k)
×

P (Yij = 0, Yik = 0|Xij,Xik, Yil = yil, l 6= j, k)

P (Yij = 0, Yik = 1|Xij,Xik, Yil = yil, l 6= j, k)
(4)

Note that for m = 2, there are no Yil’s so that γ12 is also the unconditional log-odds
ratio and it is constant over the covariates. For m ≥ 3, it is straightforward to show



that the bivariate marginal distributions from (2), and the log-odds ratios depend on the
covariates. Note also that the exponential family in (2) is not closed under margins and
can be easily extended if interaction terms are needed.

In the absence of covariates, it is popular to analyze conditional independence in the
observed binary scale with a log-linear model. For Y1, Y2 and Y3 a LMM up to two-way
interactions is given by

log(µjkl) = λ + λY1

j + λY2

k + λY3

l + λY1Y2

jk + λY1Y3

jl + λY2Y3

kl , (5)

where λ is the overall mean of the natural logarithm of the expected frequencies, λY1

j , λY2

k ,

λY3

l represent the main effects for variables Y1, Y2 and Y3, respectively; and λY1Y2

jk , λY1Y3

jl ,

and λY2Y3

kl represent the respective interaction effects. In this case, the null hypothesis of
conditional independence between two variables given the other one, for instance Y1 and
Y2 given Y3, is H0 : λY1Y2

jk = 0, ∀ j, k. We applied also the LLM to the dental example but
with basically the same results.

A program for maximum likelihood analysis using the R-software (R Development
Core Team 2004) was written for the analysis of the dental data with the CLRM. FOR-
TRAN subroutines are called to speed up the computations. The function was imple-
mented in the R-package cslogistic and is available from CRAN or upon request from the
authors. This package also contain functions for Bayesian analysis under the CLRM.

3.2 The Multivariate Probit Model: a model on the latent con-
tinuous scale

A common used alternative modelling strategy for multivariate categorical data involves
the introduction of latent variables (see e.g. Ashford and Sowden 1970; Lesaffre and
Molenberghs 1991; Albert and Chib 1993; Chib and Greenberg 1998). The typical repre-
sentation consists of considering the binary variables as a discrete version of underlying
continuous data divided by a threshold in two categories. Indeed, the key idea is to
introduce a m-dimensional latent variable vector Vi = (Vi1, ..., Vim), such that,

p (Yi|Vi) = Σyi1,...,yim

{

I (Yi1 = yi1, ..., Yim = yim) I

{

m
⋂

j=1

Vij ∈ Ayij

}}

, (6)

where Ayij
= (0, +∞) if yij = 1 and Ayij

= (−∞, 0) if yij = 0, j = 1, ...,m. A common dis-
tributional assumption, leading to the Multivariate Probit Model, is Vi ∼ Nm (Xiβ,R),
where Xi is a matrix of covariates associated to the regression parameters vector β and,
for identifiability reasons the matrix R must be in correlation form (Chib and Greenberg
(1998)). The correlations ρjk = corr (Vj, Vk) are known as the tetrachoric correlation
coefficients.

For convenience, i.e., to avoid laborious first and second derivatives, a Bayesian ap-
proach was taken to analyze the dental data with the MPM. Noninformative prior distri-
butions were given for all parameters of the model. Posterior distributions of the parame-
ters were estimated using Markov Chain Monte Carlo techniques and the Metropolized
hit-and-run algorithm proposed by Chen and Schmeiser (1993) was used to generate cor-
relation matrices. The Markov chain was initialized with all the regression coefficients,



except the intercepts, equal to zero. The first 10,000 samples were discarded as burn-in
and an additional 400,000 iterations were used to compute posterior summaries (posterior
mean and 95% Highest Posterior Density intervals using the method of Chen and Shao
1999). Convergence was checked using standard criteria (Cowles and Carlin 1996) as im-
plemented in the BOA package (Smith 2005).

The Bayesian Multivariate Logistic Model (MLM) of O’Brien and Dunson (2004) was
also fitted to the dental data. Since the posterior distribution of regression coefficients,
and marginal and partial correlation coefficients were basically the same as for the MPM,
they are not shown. However, is important to note that in the MLM framework the
partial correlation matrix does not represent conditional independence.

4 Analysis of the Oral Health Example

4.1 The Oral Health Question

The Signal-Tandmobielr study is a longitudinal prospective oral health screening study
conducted in Flanders (Belgium) between 1996 and 2001. For this project, 4468 children
were examined on a yearly basis during their primary school time by one of sixteen trained
and calibrated dental examiners. Data on oral hygiene and dietary habits were obtained
through structured questionnaires, completed by the parents. For a more detailed de-
scription of the Signal-Tandmobielr study we refer to Vanobbergen et al. (2000).

Based on the first year oral health data, we examined the association pattern of caries
experience in the mouth. It is well known that a strong association between neighboring
teeth exists. However, it is also of interest to know whether other relationships exist.
The knowledge of these relationships could be important for dental practice because it
can trigger the dentist to examine the mouth in a more focused manner. Also, specific
associations can direct preventive and restorative approaches. Furthermore, a thorough
exploration of the caries experience pattern is also of dental theoretical interest because
it can suggest further refinement of the knowledge on the etiology of caries.

Here, caries experience of the 8 deciduous molars was analyzed using a conditionally
specified logistic regression model and a multivariate probit model. For ease of exposition,
the European notation to indicate the location of a deciduous tooth in the mouth is
shown in Figure 1. Covariates included in the models were age (in years) (Age), gender
(boys versus girls) (Gender), age at start of brushing (in years) (Startbr), regular use
of fluoridated supplements (yes versus no) (Sysfl), daily use of sugar containing drinks
(no versus yes) (Drinks), number of between-meal snacks (two or less than two a day
versus more than two a day) (Meals) and frequency of tooth brushing (once or more a
day versus less than once a day) (Freqbrus). Except for the intercept, it was assumed
that the covariates have a common effect on the probabilities of caries experience for all
teeth.

Table 1 shows the unconditional odds ratios expressing the association of caries experi-
ence in the eight different molars. The table shows that adjacent (e.g., molars 54 and 55),
homologous (e.g., molars 54 and 64) and vertically opponent teeth (e.g., molars 54 and
84) have a high association. However, also the association between diagonally opponent
teeth (e.g., molars 54 and 74) seems to be high. Observe that in this analysis no correction



Figure 1: European notation to indicate the location of the deciduous teeth in the mouth.

for covariates was achieved nor did we take into account the caries experience pattern of
other teeth in the mouth. The dentists speculated that the high association between the
diagonally opponent teeth was due to the high association between the homologous teeth
and the high association between the opponent teeth. It was hoped that a conditional
analysis could demonstrate this.

Table 1: Signal-Tandmobielr Study: unconditional odds ratios (95% CI) for caries expe-
rience in deciduous molars.

Tooth

Tooth 64 74 84 55 65 75 85

54 16.54 8.59 7.87 11.00 7.08 5.68 5.60
(13.40 ; 20.34) (7.08 ; 10.43) (6.49 ; 9.55) (9.03 ; 13.41) (5.85 ; 8.56) (4.71 ; 6.85) (4.65 ; 6.75)

64 8.33 7.48 7.05 11.84 5.29 5.22
(6.89 ; 10.07) (6.20 ; 9.03) (5.85 ; 8.50) (9.74 ; 14.41) (4.40 ; 6.35) (4.35 ; 6.26)

74 24.18 6.64 6.19 9.46 7.58
(19.88;29.40) (5.58 ; 7.91) (5.20 ; 7.36) (7.93 ; 11.29) (6.38 ; 9.01)

84 6.48 6.46 8.27 8.88
(5.44 ; 7.71) (5.43 ; 7.68) (6.95 ; 9.84) (7.46 ; 10.58)

55 14.69 8.89 8.61
(12.12 ; 17.79) (7.42 ; 10.65) (7.19 ; 10.31)

65 7.79 8.13
(6.52 ; 9.30) (6.80 ; 9.72)

75 20.31
(16.70 ; 24.70)

4.2 Conditionally Specified Logistic Regression

Table 2 presents the regression coefficients of the conditional logistic regression model. The
results indicate clear differences in caries experience with respect to age of the child, age
at start of brushing, regular use of fluoridated supplements, daily use of sugar containing
drinks and number of between-meal snacks.

The conditional odds ratios for caries experience in deciduous molars are shown in
Table 3. The table shows that adjacent, homologous and vertically opponent teeth have



Table 2: Signal-Tandmobielr Study: Conditionally specified logistic regression analysis
for caries experience in eight deciduous molars.

Covariate Estimate 95% CI
Age(yrs) 0.067 ( 0.031 ; 0.103)
Gender(girls) 0.013 (-0.016 ; 0.042)
Startbr(yrs) 0.039 ( 0.025 ; 0.053)
Sysfl(no) 0.109 ( 0.078 ; 0.139)
Drinks(yes) 0.098 ( 0.067 ; 0.130)
Meals (> 2/day) 0.041 ( 0.010 ; 0.072)
Freqbrus(< 1/day) 0.039 (-0.001 ; 0.079)

a high association. However, all the associations between diagonally opponent teeth
remained highly positive and significant.

Table 3: Signal-Tandmobielr Study: Conditional odds ratios (95% CI) for caries experi-
ence in deciduous molars.

Tooth

Tooth 64 74 84 55 65 75 85

54 5.59 1.93 1.68 4.04 0.91 1.02 1.12
(4.46 ; 7.00) (1.44 ; 2.58) (1.25 ; 2.26) (3.14 ; 5.18) (0.68 ; 1.20) (0.75 ; 1.39) (0.83 ; 1.51)

64 2.13 1.58 1.01 5.07 1.02 0.93
(1.60 ; 2.85) (1.18 ; 2.13) (0.76 ; 1.33) (3.98 ; 6.44) (0.75 ; 1.39) (0.69 ; 1.27)

74 0.15 1.41 1.04 3.09 1.15
(0.13 ; 0.195) (1.04 ; 1.91) (0.76 ; 1.41) (2.35 ; 4.07) (0.85 ; 1.55)

84 1.14 1.70 1.51 3.10
(0.84 ; 1.55) (1.26 ; 2.28) (1.14 ; 2.02) (2.35 ; 4.09)

55 6.00 2.17 2.14
(4.80 ; 7.51) (1.65 ; 2.84) (1.63 ; 2.81)

65 1.82 2.17
(1.38 ; 2.41) (1.65 ; 2.86)

75 9.88
(8.06 ;12.10)

4.3 Multivariate Probit Model

Based on the analysis using the MPM model, we can conclude that the association of caries
experience in the mouth was high and significant between symmetrical and vertically
opponent teeth but also important for diagonally opponent teeth. This is seen from the
posterior summaries of the correlation matrix shown in Table 4. The analysis revealed
that all correlation coefficients were significant and considerably high.

The posterior summaries of the regression coefficients in the model showed basically
the same results as for the conditionally specified logistic regression model and are there-
fore omitted here.

From the estimated correlation one can calculate the partial correlation matrix. Here
all partial correlations are smaller than the corresponding correlations, but the difference
was the biggest for the diagonally opponent molars. For instance, Figures 2 and 3,
show the posterior distributions of tetrachoric correlations and partial correlations for



Table 4: Signal-Tandmobielr Study: Posterior mean (95% HPD) of latent marginal cor-
relation matrix for caries experience.

Tooth

Tooth 64 74 84 55 65 75 85

54 0.78 0.65 0.62 0.70 0.61 0.55 0.55
(0.74 ; 0.81) (0.62 ; 0.69) (0.58 ; 0.66) (0.65 ; 0.74) (0.56 ; 0.66) (0.50 ; 0.59) (0.49 ; 0.62)

64 0.64 0.61 0.61 0.72 0.53 0.53
(0.60 ; 0.68) (0.56 ; 0.65) (0.56 ; 0.66) (0.68 ; 0.76) (0.48 ; 0.58) (0.46 ; 0.58)

74 0.85 0.61 0.60 0.69 0.64
(0.82 ; 0.87) (0.56 ; 0.66) (0.55 ; 0.64) (0.64 ; 0.73) (0.59 ; 0.69)

84 0.60 0.60 0.66 0.67
(0.55 ; 0.65) (0.56 ; 0.64) (0.61 ; 0.70) (0.62 ; 0.71)

55 0.77 0.67 0.67
(0.73 ; 0.81) (0.63 ; 0.71) (0.62 ; 0.72)

65 0.64 0.66
(0.60 ; 0.68) (0.60 ; 0.70)

75 0.82
(0.79 ; 0.85)

homologous pairs 54 and 64, and diagonal opponent teeth 54 and 74, respectively. Clearly,
the largest difference between the two correlation coefficients is seen for teeth 54 and 74.

Table 5 presents posterior summaries of the whole partial correlation matrix. Note that
a zero entry in this matrix corresponds to conditional independence between correspond-
ing latent variables. While, all the associations between neighboring and symmetrical
teeth remained highly positive and significant, the association between opponent and di-
agonally opponent teeth were in most of the cases not significant, suggesting that the
highly observed marginal association could be almost totally explained by the transitivity
of the correlation structure. Further, compared to the results of the CLRM a total of
ten discordant results were found. In eight of these cases, the conditional odds ratios are
significant while the partial correlations are not.

Table 5: Signal-Tandmobielr Study: Posterior mean (95% HPD) of latent partial corre-
lation matrix for caries experience.

Tooth

Tooth 64 74 84 55 65 75 85

54 0.57 0.10 0.06 0.42 -0.23 -0.03 0.02
(0.49 ; 0.65) (-0.02 ; 0.23) (-0.07 ; 0.18) (0.33 ; 0.51) (-0.37 ; -0.13) (-0.16 ; 0.09) (-0.09 ; 0.15)

64 0.14 0.01 -0.21 0.49 -0.03 -0.04
(0.02 ; 0.26) (-0.11 ; 0.14) (-0.32 ; -0.10) (0.41 ; 0.58) (-0.16 ; 0.09) (-0.17 ; 0.08)

74 0.65 0.03 -0.05 0.26 -0.08
(0.60 ; 0.70) (-0.08 ; 0.14) (-0.17 ; 0.06) (0.16 ; 0.36) (-0.19 ; 0.02)

84 -0.01 0.06 -0.05 0.22
(-0.130 ; 0.09) (-0.05 ; 0.18) (-0.16 ; 0.06) (0.11 ; 0.32)

55 0.50 0.14 0.10
(0.42 ; 0.58) (0.03 ; 0.26) (-0.03 ; 0.21)

65 0.07 0.13
(-0.06 ; 0.19) (0.02 ; 0.26)

75 0.58
(0.52 ; 0.65)



 

Corr T54−T64

 

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

95% HPD = (0.494 ; 0.645)

95% HPD = (0.742 ; 0.805)

Figure 2: Signal-Tandmobielr Study: Tetrachoric correlation coefficients for caries expe-
rience in tooth 54 and 64. The marginal and the partial correlations are shown in solid
and dashed lines, respectively.

5 Concluding Remarks

Conditional independence is presently accepted as a fundamental concept not only in the
theory of statistical inference (see, e.g., Dawid 1979; Nogales, Oyola, and Pérez 2000), but
also in structural modelling (Pearl 1995). Model building most often deals with structural
properties underlying a process generating latent as well as observed variables.

The multivariate probit model represents one of the strategies for the analysis of clus-
tered multivariate binary data, which is described in terms of a correlated Gaussian distri-
bution for underlying latent variables that are manifested as discrete variables through a
threshold specification. Although latent variable modelling could be viewed as a dubious
exercise fraught with unverifiable assumptions and naive inferences regarding causality,
the multivariate probit model is a natural way of relating stimulus and response where
such an interpretation for a threshold approach is readily available; examples include at-
titude measurement, assigning pass/fail gradings for examinations based on mark cut-off,
and bioassay settings were the underlying continuous scale can be a lethal dose of a drug.

We showed that the association structure on the latent continuous scale is not trans-
ferable to the observed binary scale. In particular that conditional independence on the
latent scale does not transfer to the observed scale. Which of the two scales provide us
with the answer will depend on the problem and biological evidence there is. The im-
portant issue of this paper is to show that the two analyses can and often will yield two
different interpretations. With regard to our oral health example on caries experience



 

Corr T54−T74

 

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

95% HPD = (−0.019 ; 0.227)

95% HPD = (0.618 ; 0.692)

Figure 3: Signal-Tandmobielr Study: Tetrachoric correlation coefficients for caries expe-
rience in tooth 54 and 74. The marginal and the partial correlations are shown in solid
and dashed lines, respectively.

we conclude that opponent and diagonally opponent molars are indeed (conditionally)
independent for caries experience. The basis for this conclusion is: (a) our findings with
the MPM and (b) the absence of a biological explanation for a direct association of caries
experience in diagonally opponent teeth. There is further dental evidence for our con-
clusion. Indeed, Veerkamp and Weerheijm (1995) pointed out that caries experience also
very much depends on the eruption stage. Namely, that caries can only develop when the
respective tooth has been exposed long enough. Now teeth in the maxilla emerge earlier
than teeth in the mandible. Hence, symmetrically opponent molars have about the same
emergence time while opponent and diagonally opponent teeth emerge at different ages
providing extra evidence that these associations are not etiological.

Our findings are also of importance in model building exercises in general. In fact, the
decision to increase the complexity of the model depends on whether the extra variate
has a (significant) relationship with a particular response, conditional on the already in-
cluded covariates and the remaining responses. In this context, Webb and Forster (2004)
suggested a MPM, characterized by the structure of the inverse correlation matrix of the
latent variables. Their model building exercise was based on tests for conditional depen-
dence on the latent scale while the interpretations were done on the observed binary scale.
Hence if their analysis were done on the observed scale, quite different models could be
obtained implying a quite different interpretation.

Finally, it is worth mentioning that a similar phenomenon will occur when the actual
data are continuous but discretized for the sake of the analysis, a practice that is often



seen in medical papers. For the same reason as pointed out above, markedly different
conclusions might be drawn from the analysis on the continuous scale and the analysis on
the discretized scale.

Appendix

Proof that conditional independence on the latent scale does not
imply conditional independence on the binary scale

Let V ∼ N3 (µ,R), where,

µ =





µV1

µV2

µV3



, R =





1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1





When V1 ⊥⊥ V2|V3 holds, then e.g.,

P (V1 > 0, V2 > 0|V3 > 0) =

∫ ∞

0

∫ ∞

0

∫ ∞

0
f(v1|v3) f(v2|v3) f(v3) dv1 dv2 dv3

∫ ∞

0
f(v3) dv3

=

∫ ∞

0
Φ

(

µ∗

1

σ∗

1

)

Φ
(

µ∗

2

σ∗

2

)

f(v3) dv3
∫ ∞

0
f(v3) dv3

=

∫

A

Φ

(

µ∗
1

σ∗
1

)

Φ

(

µ∗
2

σ∗
2

)

h(x) dx (7)

where, A = [0,∞), µ∗
1 = µV1

+ρ13(x−µX), µ∗
2 = µV2

+ρ23(x−µX), σ2∗
1 =

√

1 − ρ2
Z1,Z3

,

σ2∗
2 =

√

1 − ρ2
23, and h(x) ≡ TN(0,∞)(µX , σ2

X), which means Truncated Normal between
zero and infinity with location µX and scale σ2

X .

On the other hand, when Y1 ⊥⊥ Y2|Y3 holds,

P (Y1 = 1, Y2 = 1|Y3 = 1) = P(Y1 = 1|Y3 = 1)P(Y2 = 1|Y3 = 1)

= P(V1 > 0|V3 > 0)P(V2 > 0|V3 > 0)

=

∫

A

Φ

(

µ∗
1

σ∗
1

)

h(x)dx

∫

A

Φ

(

µ∗
2

σ∗
2

)

h(x)dx (8)

Expression (7) is larger than expression (8), because

E (g1 (X) g2 (X)) ≥ E (g1 (X)) E (g2 (X)) (9)

holds for all real-valued functions g1 and g2 which are nondecreasing (in each component)
and are such that the expectations in (9) exist. The equality holds iff g1(X) = c or g2(X) =
c (a.s.) (see, e.g., Esary, Proschan and Walkup 1967). This shows that conditional
independence on the latent scale does not imply conditional independence on the observed
scale and vice versa.
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