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Abstract

Consider the random vector (X,Y ), where X is completely observed and Y is
subject to random right censoring. It is well known that the completely nonpara-
metric kernel estimator of the conditional distribution F (·|x) of Y given X = x
suffers from inconsistency problems in the right tail (Beran, 1981), and hence any
location function m(x) that involves the right tail of F (·|x) (like the conditional
mean) cannot be estimated consistently in a completely nonparametric way.

In this paper we propose an alternative estimator of m(x), that, under certain
conditions, does not share the above inconsistency problems. The estimator is
constructed under the model Y = m(X) + σ(X)ε, where ε and X are independent
and σ(·) is an unknown scale function. We obtain the asymptotic properties of
the proposed estimator of m(x), we compare it with the completely nonparametric
estimator via simulations and apply it to a study of quasars in astronomy.

KEY WORDS: Bandwidth; Bootstrap; Kernel estimation; Nonparametric regression;

Right censoring; Survival analysis.
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1 Introduction

Consider a random vector (X, Y ), where X is a one-dimensional covariate and Y

represents the response. We suppose that Y is subject to random right censoring, i.e.

instead of observing Y we only observe (Z,∆), where Z = min(Y, C), ∆ = I(Y ≤ C) and

C represents the censoring time, which is supposed to be independent of Y conditionally

on X. Let (Yi, Ci, Xi, Zi,∆i) (i = 1, . . . , n) be n independent copies of (Y, C,X, Z,∆).

It is well known that any location function m(x) that involves the right tail of the

conditional distribution F (·|x) = P (Y ≤ ·|X = x) of Y given X = x (like the conditional

mean E(Y |X = x) =
∫
y dF (y|x)) cannot be estimated in a consistent way in a completely

nonparametric model, due to the presence of right censoring. In fact, the completely

nonparametric (kernel) estimator of F (·|x) is inconsistent in the right tail (see Beran,

1981). In this paper, we present a way to overcome this problem by imposing the following

weak model assumption : we assume that the relation between X and Y is given by

Y = m(X) + σ(X)ε, (1.1)

where m(X) and σ(X) are some unknown but smooth location and scale functions and

the error term ε is independent of X. So, we assume that the conditional distribution of Y

given X depends on X only via its first and second conditional moment. Under this weak

model assumption, we will show that the inconsistency problems can be much reduced.

Model (1.1) has been studied extensively in the literature on censored data; see e.g. Fan

and Gijbels (1994), Van Keilegom and Akritas (1999), Einmahl and Van Keilegom (2004),

Neumeyer et al. (2004), Chen, Dahl and Kahn (2005).

The method we propose applies to any L-functional of the type (see e.g. Serfling, 1980,

p. 265) :

m(x) = a0

∫ 1

0
F−1(s|x)J(s) ds+

k∑

j=1

ajF
−1(sj|x), (1.2)

where F−1(s|x) = inf{y : F (y|x) ≥ s} is the quantile function of Y given x, J(s) is a

given weight function satisfying
∫ 1
0 J(s)ds = 1, k ≥ 0, a0, . . . , ak are real numbers such

that
∑k
j=0 aj = 1, and 0 ≤ s1, . . . , sk ≤ 1. This definition of m(x) includes a very broad

class of common location functions. For example, when J ≡ 1, a0 = 1 and k = 0, m(x)

equals the conditional mean and when a0 = 0, k = 1, a1 = 1 and s1 = 1/2, we obtain the

conditional median.

The method proposed in this paper consists in first estimating in a consistent way the

conditional distribution F (y|x) under model (1.1), and then to plug-in the obtained esti-
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mator in (1.2). To estimate F (y|x), note that under model (1.1), ε0 = (Y −m0(X))/σ0(X)

is independent of X for any location function m0(X) and scale function σ0(X) (for a for-

mal definition of location and scale functions, see Section 2). Hence,

F (y|x) = P
(
ε0 ≤ y −m0(x)

σ0(x)

∣∣∣X = x
)

= F 0
ε

(y −m0(x)

σ0(x)

)
, (1.3)

where F 0
ε is the distribution of ε0. The idea is now to choose m0 and σ0 in such a way

that they can be estimated consistently, i.e. choose location and scale functions that do

not make use of the right tail of the distribution of Y given X (like truncated mean and

variance). We then estimate F (y|x) by replacing m0(·), σ0(·) and F 0
ε (·) by appropriate

estimators. It is easy to see that, provided there is a region of the covariate space where

censoring is light, the so-obtained estimator of F (·|x) behaves well in the right tail (see

Van Keilegom and Akritas, 1999). Hence, the estimator of m(x) based on the latter

estimator of F (·|x) will outperform the completely nonparametric estimator. This fact is

explained in more detail and in a more formal way at the end of Section 2.

The estimation of the conditional quantile or mean function with censored data has

been studied extensively in the literature. Dabrowska (1987, 1992), Van Keilegom and

Veraverbeke (1998), Chen, Dahl and Kahn (2005), among others, studied the nonpara-

metric estimation of the conditional quantile function, whereas Powell (1986), Buchinski

and Hahn (1998) and Portnoy (2003) estimated this function under the assumption of

a parametric model. For the estimation of the conditional mean function, Doksum and

Yandell (1982), Dabrowska (1987), Fan and Gijbels (1994), Kim and Truong (1998) and

Cai and Hong (2003) used a nonparametric approach, whereas a large number of other

papers, including e.g. Buckley and James (1979), Akritas (1994), Heuchenne and Van

Keilegom (2004) assumed a polynomial model for the regression function.

This paper is organized as follows. In the next section, we introduce some notations

and describe the estimation procedure in detail. In Section 3 we state the asymptotic

properties of the estimator obtained in Section 2. Section 4 contains a simulation study, in

which the new estimator is compared with the corresponding completely nonparametric

estimator, while in Section 5 a data set on spectral energy distributions of quasars is

analyzed by means of the two methods. Finally, the Appendix contains the proofs of the

main results of Section 3.
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2 Notations and description of the method

We assume throughout that regression model (1.1) holds. Define F (y|x) = P (Y ≤
y|x), G(y|x) = P (C ≤ y|x), H(y|x) = P (Z ≤ y|x), Hδ(y|x) = P (Z ≤ y,∆ = δ|x), and

FX(x) = P (X ≤ x). The probability density functions of the distributions defined above

will be denoted with lower case letters, and RX denotes the support of the variable X.

Let m0(·) be any location function and σ0(·) be any scale function, meaning that

m0(x) = T (F (·|x)) and σ0(x) = S(F (·|x)) for some functionals T and S that satisfy

T (FaY+b(·|x)) = aT (FY (·|x)) + b and S(FaY+b(·|x)) = aS(FY (·|x)), for all a ≥ 0 and

b ∈ IR (here FaY+b(·|x) denotes the conditional distribution of aY + b given X = x).

Then, it can be easily seen that if model (1.1) holds, the model Y = m0(X) + σ0(X)ε0

with ε0 independent of X, is also valid.

The estimator of m(·) described below applies this idea to the following choices for

m0(·) and σ0(·) :

m0(x) =
∫ 1

0
F−1(s|x)L(s) ds, σ02(x) =

∫ 1

0
F−1(s|x)2L(s) ds−m02(x), (2.1)

where L(s) is a given score function satisfying
∫ 1
0 L(s) ds = 1 and L(s) ≥ 0 for all 0 ≤ s ≤

1. The key idea will be to choose L in such a way that m0(x) and σ0(x) can be estimated

in a consistent way (i.e. choose L in such a way that the right tail of F (·|x) does not need

to be estimated) and then to use these estimators of m0(x) and σ0(x) in the construction

of an estimator of m(x).

Before explaining the method in detail, let us introduce some more notations. Let

Fε(y) = P (ε ≤ y) and Sε(y) = 1 − Fε(y) denote the distribution and survival func-

tion of ε = (Y − m(X))/σ(X), where m and σ are the location and scale functions

of interest. Likewise, define F 0
ε and S0

ε for the distribution and survival function of

ε0 = (Y − m0(X))/σ0(X), where m0 and σ0 are defined in (2.1). Next, for E =

(Z − m(X))/σ(X) define Hε(y) = P (E ≤ y), Hεδ(y) = P (E ≤ y,∆ = δ), Hε(y|x) =

P (E ≤ y|x) and Hεδ(y|x) = P (E ≤ y,∆ = δ|x) (δ = 0, 1). Define analogous functions for

E0 = (Z −m0(X))/σ0(X).

The idea of our approach is to first estimate F (·|x) under model (1.1) and then to

plug-in this estimator in the formula of m(x) given in (1.2). In order to estimate F (·|x),

use is made of equation (1.3). The functions m0 and σ0 in (1.3) depend themselves also

on F (·|x), which we estimate by means of the completely nonparametric kernel estimator
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of Beran (1981) (in the case of no ties) :

F̃ (y|x) = 1−
∏

Zi≤y,∆i=1

{
1− Wi(x, an)

∑n
j=1 I(Zj ≥ Zi)Wj(x, an)

}
, (2.2)

where

Wi(x, an) =
Ka(x−Xi)∑n
j=1Ka(x−Xj)

(i = 1, . . . , n) are Nadaraya-Watson weights, Ka(·) = a−1
n K(·/an), K is a density function

(kernel) and {an} a bandwidth sequence. Note that this estimator reduces to the Kaplan-

Meier (1958) estimator when all weights Wi(x, an) equal n−1. This yields

m̂0(x) =
∫ 1

0
F̃−1(s|x)L(s) ds, σ̂02(x) =

∫ 1

0
F̃−1(s|x)2L(s) ds− m̂02(x) (2.3)

as estimators for m0(x) and σ02(x). In practice, the score function L will be chosen in

such a way that F̃ (·|x) is consistent on the support of L. Next, estimate the residual

distribution F 0
ε (suppose no ties) :

F̂ 0
ε (y) = 1−

∏

Ê0
(i)
≤y,∆(i)=1

(
1− 1

n− i+ 1

)
, (2.4)

where Ê0
i = (Zi− m̂0(Xi))/σ̂

0(Xi), Ê
0
(i) is the i-th order statistic of Ê0

1 , . . . , Ê
0
n and ∆(i) is

the corresponding censoring indicator. This estimator has been studied in detail by Van

Keilegom and Akritas (1999). This leads to the following estimator of F (y|x) :

F̂ (y|x) = F̂ 0
ε

(y − m̂0(x)

σ̂0(x)

)
. (2.5)

Finally, define

m̂T (x) = a0

∫ T̂x

−∞
yJ(F̂ (y|x)) dF̂ (y|x) +

k∑

j=1

aj[F̂
−1(sj|x) ∧ T̂x], (2.6)

where T̂x = T σ̂0(x) + m̂0(x), T < τH0
ε

and τF = inf{y : F (y) = 1} for any distribution F .

As it is clear from (2.6), m̂T (x) is actually estimating

mT (x) = a0

∫ Tx

−∞
yJ(F (y|x)) dF (y|x) +

k∑

j=1

aj[F
−1(sj|x) ∧ Tx], (2.7)

where Tx = Tσ0(x) + m0(x), which can be made arbitrarily close to m(x), provided

τF 0
ε
≤ τG0

ε
.
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For sake of comparison, the completely nonparametric estimator of m(x) is given by

m̃T (x) = a0

∫ T̃x

−∞
yJ(F̃ (y|x)) dF̃ (y|x) +

k∑

j=1

aj[F̃
−1(sj|x) ∧ T̃x], (2.8)

where T̃x < τH(·|x) such that infx∈RX (1 − H(T̃x|x)) > 0. Note that we truncate at T̃x,

because of the inconsistency of F̃ (y|x) for y > T̃x (see e.g. Van Keilegom and Veraverbeke,

1997).

Note that in the definition of m̂T (x) we have to truncate at the point T̂x due to the

presence of right censoring. However, Tx is always greater than or equal to the truncation

point T̃x used in the definition of m̃T (x), and the difference between the two truncation

points can be substantial, especially when the censoring proportion is not uniform over

x. Indeed, when there exists a region in the interval RX of ‘light’ censoring, then the

estimator F̂ 0
ε of the error distribution remains consistent upto far in the right tail (and

hence Tx will be large), whereas T̃x completely depends on the censoring proportion at

the point x. In heavy censored regions T̃x can therefore be quite small. This is the main

motivation for using m̂T (x) instead of the completely nonparametric estimator m̃T (x).

3 Asymptotic results

In this section we show the consistency of m̂T (x) uniformly over x. We also develop

an asymptotic representation for m̂T (x)−mT (x), which is useful for obtaining afterwards

the asymptotic normality. The assumptions mentioned in the results below, as well as the

proofs of the results, are given in the Appendix.

Theorem 3.1 Assume (A1), (A2), (A3) (i), m0 and σ0 are twice continuously differen-

tiable and infx∈RX σ
0(x) > 0, (A3) (iii), (A4), (A5), (A6) (i), J is continuously differen-

tiable,
∫ 1
0 J(s)ds = 1 and J(s) ≥ 0 for all 0 ≤ s ≤ 1. Then,

sup
x∈RX

|m̂T (x)−mT (x)| = OP ((nan)−1/2(log a−1
n )1/2).

Theorem 3.2 Assume (A1)–(A7) and supe |e3(f 0
ε )′′(e)| <∞. Then, for any x ∈ RX ,

m̂T (x)−mT (x) = n−1
n∑

i=1

Ka(x−Xi)B(Zi,∆i|x) +Rn(x),

where sup{|Rn(x)|; x ∈ RX} = oP ((nan)−1/2) and B(z, δ|x) is defined in the Appendix.
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Theorem 3.3 Under the assumptions of Theorem 3.2,

(nan)1/2(m̂T (x)−mT (x))
d→ N(0, s2(x)),

where

s2(x) =
∫
K2(u)du

∑

δ=0,1

∫
B2(z, δ|x)fX(x) dHδ(z|x).

Remark 3.4 In order to select an appropriate bandwidth sequence an, the bootstrap

procedure proposed by Li and Datta (2001) can be used. First, generate X ∗1 , . . . , X
∗
n i.i.d.

from the empirical distribution ofX1, . . . , Xn. Next, for each i = 1, . . . , n, select at random

a Y ∗i from the distribution F̃ (·|X∗i ), and a C∗i from G̃(·|X∗i ) (which is the Beran (1981)

estimator of G(·|X∗i ) obtained by replacing ∆i by 1 − ∆i in the expression of F̃ (·|X∗i )).

For the generation of these bootstrap data we use a pilot bandwidth gn asymptotically

larger than the original an. Next, let Z∗i = min(Y ∗i , C
∗
i ) and ∆∗i = I(Y ∗i ≤ C∗i ). For each

resample {(Xj∗
i , Z

j∗
i ,∆

j∗
i ) : i = 1, . . . , n}, j = 1, . . . , B for some large B, let m̂∗jTan (x) be

the estimator of mT (x) obtained by using bandwidth an. From this, the integrated mean

squared error
∫
E[m̂T (x)−mT (x)]2 dx can be approximated by

IMSE∗(an) = B−1
B∑

j=1

∫
[m̂∗jTan (x)− m̂T

gn(x)]2 dx.

We now select the value of an that minimizes IMSE∗(an). The same bootstrap procedure

can also be used to approximate the distribution of m̂T (x), instead of using the above

asymptotic distribution, which might be hard to estimate in practice.

Remark 3.5 A similar idea as the one developed above to estimate m(x), can be used

to better estimate any scale function σ(x). Indeed, the principle of using equation (1.3)

in order to better estimate the right tail of the distribution F (y|x) can also be applied in

the construction of an estimator of σ(x). Define

σ̂T2(x) = a2
0

{∫ T̂x

−∞
y2J(F̂ (y|x)) dF̂ (y|x)− m̂T2(x)

}

+
k∑

j=1

a2
j

{∫ T̂x

−∞
ρj(y − F̂−1(sj|x) ∧ T̂x) dF̂ (y|x)

}2

,

where ρj(u) = sjuI(u ≥ 0) + (sj − 1)uI(u < 0). The asymptotic results for σ̂T2(x) can

be obtained along the same lines as for the estimator m̂T (x).
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Remark 3.6 Note that when model (1.1) is homoscedastic (i.e. σ ≡ c for some c > 0) and

we estimate σ0 by a global estimator σ̂0, the representation in Theorem 3.2 simplifies. In

fact, it is easily seen that the function ζ(z, δ|x) in the definition of B(z, δ|x) equals zero

in that case.

Remark 3.7 The estimator m̂T (x) is easy to implement in practice, and the parameters

on which it depends (namely the truncation point T , the bandwidth an and the score

function L) can be chosen in a data driven way. In Remark 3.4 we explained already how

to choose the bandwidth an by means of a bootstrap procedure. The truncation point T

can be taken equal to the largest residual Ê0
(n). Finally, for the weight function L in the

definition of m0 and σ0 we recommend the following function : L(s) = I(0 ≤ s ≤ b)/b,

where b = min1≤i≤n F̃ (+∞|Xi). In this way, we avoid the values of s for which F̃−1(s|Xi)

is inconsistent, and on the other hand we exploit to a maximum the consistent region.

4 Simulations

In this section we compare the finite sample behavior of the completely nonparametric

location estimator m̃T (x) with the location estimator m̂T (x) proposed in this paper by

means of Monte Carlo simulations. We are interested in the behavior of the integrated

mean squared error of the estimators, defined by IMSE =
∫
E[m̂T (x) − m(x)]2 dx for

m̂T (x) and similarly for m̃T (x). The simulations are carried out for samples of size n = 100

and the results are obtained by using 250 simulations.

In the first setting, we generate i.i.d. data from the normal homoscedastic regression

model

Y = β0 + β1X + β2X
2 + β3X

3 + σε, (4.1)

for various choices of β0, β1, β2, β3 and σ, where X has a uniform distribution on the

interval [0, 3], and the error term ε is a normal random variable with zero mean and

variance 1. The censoring variable C satisfies C = α0 + α1X + α2X
2 + α3X

3 + σε∗,

for certain choices of α0, α1, α2, and α3, where ε∗ has a normal distribution with zero

mean and variance 1. We further assume that ε and ε∗ are independent of X, that ε is

independent of ε∗, and that σ is known. It is easy to see that, under this model,

P (∆ = 0|X = x) = 1− Φ
(α0 − β0 + (α1 − β1)x + (α2 − β2)x2 + (α3 − β3)x3

√
2σ

)
.
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For the weights that appear in the Beran estimator F̃ (y|x), we choose a biquadratic

kernel function K(x) = (15/16)(1− x2)2I(|x| ≤ 1).

For the bandwidth sequence an, we select for each estimator the minimizer of an

approximated IMSE among a grid of 20 possible values of an between 0 and 3. This

IMSE is computed as follows. For each an and each simulation, we compute an integrated

squared error (ISE) using the true parameters of the model (4.1) and we obtain the

approximated IMSE for each an by averaging those ISE over the 250 simulations. A

bootstrap technique for computing the smoothing parameter is proposed in Section 3, but

for simulations it is too computationally intensive. For small values of an, it sometimes

happens that the window [x − an, x + an] at a point x does not contain any Xi (i =

1, . . . , n) for which the corresponding Yi is uncensored (and in that case estimation of

F (·|x) is impossible). We enlarge the window in that case such that it contains at least

one uncensored data point in its interior. It also happens sometimes that the bandwidth

an at a point x is larger than the distance from x to both the left and right endpoint

of the interval. In such cases, the bandwidth is redefined as the maximum of these two

distances. Finally, we work with L(s) = I(s ≤ b)/b, where b = min1≤i≤n F̃ (+∞|Xi), as

recommended in Remark 3.7.

We compare the two methods for four different locations : the conditional mean, the

conditional truncated mean (J(s) = (1/0.9)I(0.05 < s ≤ 0.95)), the conditional median

and conditional third quartile. For the estimators F̃ (y|x) and F̂ 0
ε (y), the last data point

or the last residual is often censored. In this case, this point is redefined as uncensored.

Tables 1, 2 and 3 summarize the simulation results for different values of α0, α1, α2, α3,

β0, β1, β2, β3 and σ. For fixed values of β0, β1, β2, β3 and σ, the values of α0, α1, α2 and

α3 are chosen in such a way that some variation in the censoring probability curves

is obtained (different proportions of censoring, different degrees of smoothness of the

censoring probability curve,...). The proportion of censoring (in % and denoted by CP in

the tables) is computed as the average of P (∆ = 0|x) for an equispaced grid of values of

x.

The tables show that, in general, m̂T (x) has smaller IMSE than m̃T (x) for each of the

four considered location functions. The higher the quantile, or the smaller the support

of J , the worse the estimation. The new method resists however better. The simulations

can be explained as follows. The most important problem of the Beran estimator is its

consistency in the right tail : this is mainly due to the fact that it is a local estimator. In

regions with a large proportion of censored data, the Beran estimator therefore behaves
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badly. The other estimator also has this problem but at a lower degree : it uses a global

estimator of the distribution of the residuals. The inconsistency problems arise thus in

the right tail of a global distribution. On the other hand, the new approach is based on

the estimation of m0(·) and σ0(·). The score function L in these functions is determined

by min1≤i≤n F̃ (+∞|Xi). When censoring is heavy, this value can be small. In that case,

the estimators m̂0(·) and σ̂0(·) will be quite variable and unstable.

The results of Tables 1, 2 and 3 show that the relative performance of the two methods

depends on the shape of the regression function and the amount of censoring. In fact,

when the regression function is relatively flat, the optimal bandwidth will be quite large.

Hence, there will be little difference between the local and global estimators. Table 1

summarizes the results for this kind of regression functions. When the regression function

becomes more and more wigly, the merits of the proposed method become clearer (see

Tables 2 and 3). In Tables 2 and 3, the models are more wigly, leading to smaller

bandwidth parameters and hence the advantages of the new estimator in comparison

with the completely nonparametric estimator become more and more transparent.

The final setting we consider is a normal heteroscedastic regression model

Y = β0 + β1X + β2X
2 + β3X

3 + (γX + 0.1)ε, (4.2)

where X has a uniform distribution on [0, 1] or on [0, 3], and ε has a normal distribution

with zero mean and variance equal to one. The censoring variable is given by C =

α0 + α1X + α2X
2 + α3X

3 + γε∗, where ε∗ has a normal distribution with zero mean and

β0 β1 β2 β3 CP IMSE

α0 α1 α2 α3 σ2 mean trunc. mean median 3rd quartile

0 0.4 0 0 37.1 0.326 0.331 0.349 0.404

-0.4 1 -0.05 0 0.5 0.320 0.322 0.336 0.365

0 0.4 0 0 38.2 0.357 0.361 0.381 0.429

0.3 0.4 0 0 0.5 0.355 0.356 0.369 0.395

0 0.4 0 0 58.8 0.390 0.396 0.454 0.569

0.24 0 0 0.02 0.5 0.390 0.388 0.408 0.507

0 0.4 0 0 71.1 0.394 0.414 0.507 0.718

-0.3 0 0 0.05 0.5 0.384 0.390 0.445 0.586

Table 1: Results for m̃T (x) (first line) and m̂T (x) (second line) for model (4.1) with large

optimal bandwidth an.
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β0 β1 β2 β3 CP IMSE

α0 α1 α2 α3 σ2 mean trunc. mean median 3rd quartile

0 1 0 0 35.5 1.759 1.765 1.802 2.148

2 0 -0.2 0.09 0.5 1.749 1.747 1.762 1.772

0 1 0 0 38.2 1.333 1.347 1.392 1.604

0.3 1 0 0 0.5 1.299 1.303 1.319 1.354

0 1 0 0 58.0 1.631 1.681 1.862 1.926

0.5 0.13 0.2 0 0.5 1.517 1.525 1.547 1.676

0 1 0 0 72.0 1.760 1.832 2.091 2.015

0 0.4 0.1 0 0.5 1.618 1.626 1.698 1.824

Table 2: Results for m̃T (x) (first line) and m̂T (x) (second line) for model (4.1) with

moderately large optimal bandwidth an.

β0 β1 β2 β3 CP IMSE

α0 α1 α2 α3 σ2 mean trunc. mean median 3rd quartile

4 -7.5 6 -1.3 31.7 1.139 1.159 1.260 1.570

3.5 -7.45 7 -1.6 0.5 1.081 1.085 1.100 1.165

4 -7.5 6 -1.3 38.2 1.047 1.066 1.161 1.513

4.3 -7.5 6 -1.3 0.5 1.030 1.034 1.043 1.111

4 -7.5 6 -1.3 51.3 1.251 1.314 1.508 1.559

3.2 -7.6 7 -1.6 0.5 1.142 1.158 1.188 1.315

4 -7.5 6 -1.3 56.4 1.336 1.392 1.553 2.043

3 -7.6 7 -1.6 1 1.296 1.321 1.391 1.620

Table 3: Results for m̃T (x) (first line) and m̂T (x) (second line) for model (4.1) with small

optimal bandwidth an.
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β0 β1 β2 β3 CP IMSE

α0 α1 α2 α3 γ2 mean trunc. mean median 3rd quartile

0 0.4 0 0 58.2 0.365 0.377 0.425 0.957

-0.1 0 0 0.1 0.1 0.338 0.347 0.335 0.943

0 1 6 -4 48.9 0.621 0.631 0.638 0.950

0.5 1 -5 9 1 0.570 0.566 0.557 0.866

0 1 6 -4 56.8 1.040 1.066 1.152 2.546

0.5 0.8 -6 8.5 5 1.032 1.032 1.069 2.161

Table 4: Results for m̃T (x) (first line) and m̂T (x) (second line) for model (4.2). RX is

[0, 3] for the first model and [0, 1] for the two other ones.

variance equal to one. We further assume that ε and ε∗ are independent of X, and that ε is

independent of ε∗. The variance of Y given X is now supposed to be unknown. The results

are in Table 4. Not surprisingly, one can show that when the degree of heteroscedasticity

is small, the gain in precision of m̂T (x) with respect to m̃T (x) is relatively small, since

m̂T (x) looses some precision due to the estimation of the scale function σ0(x). However,

the estimator m̂T (x) still outperforms m̃T (x) for all models and all location functions

considered.

5 Data analysis

We illustrate the proposed method on a data set which comes from a study of quasars

in astronomy. To date, many studies have focused on the dependence on luminosity

and redshift of quasar ultraviolet-to-X-ray spectral energy distributions (characterized

by means of the spectral index αox = 0.384 log(L2 keV /L
2500 Å

), where luv = logL
2500 Å

and lx = logL2 keV denote the rest-frame 2500 Å and 2 keV luminosity densities) (see

Vignali, Brandt and Schneider (2003)). This allows to obtain information and to vali-

date the proposed mechanism driving quasar broad-band emission (accretion disk onto

a super-massive black hole). Due to technical constraints of the used instruments, only

upper bounds on 69 of the 137 values of lx are observed, leading thus to left censor-

ing. Right-censored data points are next obtained by replacing the left-censored lx,i by

Zi = (maxj:j=1,...,137(lx,j)− lx,i), i = 1, . . . , 137.

We show in Figures 1 and 2 the results of regression of lx on luv for the new estimator

12
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Figure 1: Regression curve estimation for the quasar data. The estimators m̃T (x) and

m̂T (x) are indicated by ∗ and ◦ respectively. Uncensored data points are represented by ×,

and (left) censored observations by 5. (a) Conditional mean; (b) Conditional truncated

mean (5 percent of truncation at both sides).
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Figure 2: Regression curve estimation for the quasar data. The estimators m̃T (x) and

m̂T (x) are indicated by ∗ and ◦ respectively. Uncensored data points are represented by

×, and (left) censored observations by 5. (a) Conditional median; (b) Conditional first

quantile.
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m̂T (x) and the completely nonparametric estimator m̃T (x). The bandwidth is selected

from a grid of 18 bandwidths, according to the method described in Remark 3.4. The

selected bandwidth parameter is approximately the same for each method (around 0.75).

For the conditional mean, truncated mean and median, we observe a strong linear relation

between the two variables for both methods. This suggests to fit a linear model to these

data (as is done in Heuchenne and Van Keilegom (2004)). For the first quartile, this

relation is not so obvious for m̃T (x), while the new estimator again suggests to choose a

linear model. Note that, contrary to the simulation section, we focus here on the first and

not the third quartile. This is because for left censored data, the first quartile is harder

to estimate, and hence it interests us more.

Appendix : Proofs of main results

For a (sub)distribution function L(y|x) we will use the notations l(y|x) = L′(y|x) =

(∂/∂y)L(y|x), L̇(y|x) = (∂/∂x)L(y|x) and similar notations will be used for higher order

derivatives. Also, let T̂i =
TXi−m̂0(Xi)

σ̂0(Xi)
, E0T

i = E0
i ∧ T and Ê0T

i = Ê0
i ∧ T̂i, i = 1, . . . , n.

The following functions enter the asymptotic representation of m̂T (x)−mT (x), which

we established in Section 3.

ξ(z, δ, y|x) = (1− F (y|x))



−

y∧z∫

−∞

dH1(s|x)

(1−H(s|x))2
+
I(z ≤ y, δ = 1)

1−H(z|x)



 ,

η(z, δ|x) =

+∞∫

−∞
ξ(z, δ, v|x)L(F (v|x)) dv σ0(x)−1,

ζ(z, δ|x) =

+∞∫

−∞
ξ(z, δ, v|x)L(F (v|x))

v −m0(x)

σ0(x)
dv σ0(x)−1,

B(z, δ|x) = −f−1
X (x)σ0(x)




[
a0

∫ F 0
ε (T )

0
J(s)ds+

k∑

j=1

aj
]
η(z, δ|x)

+
[
a0

∫ F 0
ε (T )

0
(F 0

ε )−1(s)J(s)ds+
k∑

j=1

aj((F
0
ε )−1(sj) ∧ T )

]
ζ(z, δ|x)



 .

The assumptions needed for the results of Section 3 are listed below.

(A1)(i) na4
n → 0 and na3+2δ

n (log a−1
n )−1 →∞ for some δ < 1/2.

(ii) RX is a compact interval.

(iii) K has compact support,
∫
uK(u)du = 0 and K is twice continuously differentiable.
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(A2)(i) There exist 0 ≤ sa ≤ sb ≤ 1 such that sb ≤ infx F (T̃x|x), sa ≤ inf{s ∈ [0, 1];L(s) 6=
0}, sb ≥ sup{s ∈ [0, 1];L(s) 6= 0} and infx∈RX infsa≤s≤sb f(F−1(s|x)|x) > 0.

(ii) L is twice continuously differentiable,
∫ 1
0 L(s)ds = 1 and L(s) ≥ 0 for all 0 ≤ s ≤ 1.

(A3)(i) FX is three times continuously differentiable and infx∈RX fX(x) > 0.

(ii) m0 and σ0 are three times continuously differentiable and infx∈RX σ
0(x) > 0.

(iii) E[ε02] <∞ and E|E0| <∞.

(A4) η(z, δ|x) and ζ(z, δ|x) are twice continuously differentiable with respect to x and

their first and second derivatives (with respect to x) are bounded, uniformly in x ∈ RX ,

z < T̃x and δ.

(A5) For L(y|x) = H(y|x), H1(y|x), H0
ε (y|x) or H0

ε1(y|x) : L′(y|x) is continuous in (x, y)

and supx,y |y2L′(y|x)| <∞, and the same holds for all other partial derivatives of L(y|x)

with respect to x and y up to order three.

(A6)(i) Let sα < F 0
ε (T ) and sβ be such that 0 < sα < sj < sβ < 1 for all j = 1, . . . , k and

let Q = [sα, sβ ∧ F 0
ε (T )]. Then, infs∈Q f 0

ε ((F 0
ε )−1(s)) > 0.

(ii) J is three times continuously differentiable,
∫ 1

0 J(s)ds = 1, J(s) ≥ 0 for all 0 ≤ s ≤ 1.

(A7)(i) For the density fX|Z,∆(x|z, δ) of X given (Z,∆), supx,z |fX|Z,∆(x|z, δ)| < ∞,

supx,z |ḟX|Z,∆(x|z, δ)| <∞, supx,z |f̈X|Z,∆(x|z, δ)| <∞ (δ = 0, 1).

We start with three lemmas, that are needed in the proofs of the main results.

Lemma A.1 Assume (A1)–(A5), (A6)(ii), (A7) and supe |e3(f 0
ε )′′(e)| <∞. Then,

n−1
n∑

i=1




Ê0
i J(F̂ 0

ε (Ê0
i ))I(Ê0

i ≤ T̂i)I(∆i = 1) +

∫ T̂i
Ê0T
i

eJ(F̂ 0
ε (e)) dF̂ 0

ε (e)

1− F̂ 0
ε (Ê0T

i )
I(∆i = 0)





−
∫ T

−∞
eJ(F 0

ε (e)) dF 0
ε (e) = oP ((nan)−1/2).

Proof. We first consider

n−1
n∑

i=1

{Ê0
i J(F̂ 0

ε (Ê0
i ))I(Ê0

i ≤ T̂i)− E0
i J(F 0

ε (E0
i ))I(E0

i ≤ T )}I(∆i = 1) (A.1)

+n−1
n∑

i=1

{
∫ T̂i
Ê0T
i

eJ(F̂ 0
ε (e)) dF̂ 0

ε (e)

1− F̂ 0
ε (Ê0T

i )
−
∫ T
E0T
i
eJ(F 0

ε (e)) dF 0
ε (e)

1− F 0
ε (E0T

i )

}
I(∆i = 0) = A1 + A2.
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Using Corollary 3.2 and Proposition 4.5 in Van Keilegom and Akritas (1999) (hereafter

abbreviated by VKA), the differentiability of J and the fact that E|ε0| <∞, we have

A1 = n−1
n∑

i=1

I(Zi ≤ TXi)I(∆i = 1){(Ê0
i − E0

i )J(F 0
ε (Ê0

i ))

+E0
i [J(F 0

ε (Ê0
i ))− J(F 0

ε (E0
i ))]}+OP (n−1/2).

Next, using Proposition 4.5 in VKA, and the fact that supy |y2f 0′
ε (y)| < ∞ and

supy |yf 0
ε (y)| <∞,

F 0
ε (Ê0

i )− F 0
ε (E0

i )

= (Ê0
i − E0

i )f
0
ε (E0

i ) + oP ((nan)−1/2)

= −m̂
0(Xi)−m0(Xi)

σ0(Xi)
f 0
ε (E0

i )−
σ̂0(Xi)− σ0(Xi)

σ0(Xi)
E0
i f

0
ε (E0

i ) + oP ((nan)−1/2). (A.2)

From this, the fact that J is twice continuously differentiable and that E|ε0| < ∞, A1

can be rewritten as

A1 = n−1
n∑

i=1

I(Zi ≤ TXi)I(∆i = 1)(Ê0
i − E0

i )[J(F 0
ε (E0

i )) + J ′(F 0
ε (E0

i ))E0
i f

0
ε (E0

i )]

+oP ((nan)−1/2)

= (n2an)−1
n∑

i=1

I(Zi ≤ TXi)I(∆i = 1)f−1
X (Xi)[J(F 0

ε (E0
i )) + J ′(F 0

ε (E0
i ))E0

i f
0
ε (E0

i )]

×
{ n∑

j=1

K
(Xi −Xj

an

)
[η(Zj,∆j|Xi) + ζ(Zj,∆j|Xi)E

0
i ]
}
, (A.3)

where the last equality follows from Propositions 4.8 and 4.9 in VKA. Next, we treat

the term A2. Using Corollary 3.2 in VKA, Lemma A1 in Heuchenne and Van Keilegom

(2004) and the uniform consistency of m̂0 and σ̂0 in (A.2) (see Proposition 4.5 in VKA),

we have

A2 = n−1
n∑

i=1

I(∆i = 0)
{ F̂ 0

ε (Ê0T
i )− F 0

ε (E0T
i )

(1− F̂ 0
ε (Ê0T

i ))(1− F 0
ε (E0T

i ))

∫ T̂i

Ê0T
i

eJ(F 0
ε (e)) dF̂ 0

ε (e)

+
1

1− F 0
ε (E0T

i )

[ ∫ T̂i

Ê0T
i

eJ(F 0
ε (e)) dF̂ 0

ε (e)−
∫ T

E0T
i

eJ(F 0
ε (e)) dF 0

ε (e)
]}

+ oP ((nan)−1/2)

= n−1
n∑

i=1

I(∆i = 0){A21i + A22i + A23i}+ oP ((nan)−1/2). (A.4)

For A21i, we write

∫ T̂i

Ê0T
i

eJ(F 0
ε (e))dF̂ 0

ε (e) =
∫ T

E0T
i

eJ(F 0
ε (e))dF 0

ε (e) +
∫ T̂i

T
eJ(F 0

ε (e))dF̂ 0
ε (e)

17



+
∫ E0T

i

Ê0T
i

eJ(F 0
ε (e))dF̂ 0

ε (e) +
∫ T

E0T
i

eJ(F 0
ε (e))d(F̂ 0

ε (e)− F 0
ε (e))

= B1i +B2i +B3i +B4i.

Easy calculations show that the three last terms of this expression are |E0T
i |

OP ((nan)−1/2(log a−1
n )1/2) uniformly in i, such that

n−1
n∑

i=1

I(∆i = 0)A21i = n−1
n∑

i=1

I(∆i = 0)
F 0
ε (Ê0T

i )− F 0
ε (E0T

i )

(1− F 0
ε (E0T

i ))2

∫ T

E0T
i

eJ(F 0
ε (e)) dF 0

ε (e)

+oP ((nan)−1/2), (A.5)

using the fact that E|E0T | <∞. Next,

n−1
n∑

i=1

I(∆i = 0){A22i + A23i} = n−1
n∑

i=1

I(∆i = 0)
(B2i +B3i +B4i)

1− F 0
ε (E0T

i )
.

B4i is |E0T
i |oP ((nan)−1/2) uniformly in i. For B3i, we write

∫ E0T
i

Ê0T
i

eJ(F 0
ε (e))dF 0

ε (e) +
∫ E0T

i

Ê0T
i

eJ(F 0
ε (e))d(F̂ 0

ε (e)− F 0
ε (e))

= −
{ ∫ Ê0T

i

0
eJ(F 0

ε (e))dF 0
ε (e)−

∫ E0T
i

0
eJ(F 0

ε (e))dF 0
ε (e)

}
+ |E0T

i |oP ((nan)−1/2)

= −E0T
i J(F 0

ε (E0T
i ))f 0

ε (E0T
i )[Ê0T

i − E0T
i ] + |E0T

i |oP ((nan)−1/2).

The last equality is obtained using Proposition 4.5 in VKA, the fact that J is continuously

differentiable, that supe |ef 0
ε (e)| < ∞ and that supe |e2f 0′

ε (e)| < ∞. A similar expression

is found for B2i. This together with (A.5), (A.4), (A.3) and (A.1) leads to

A1 + A2 = (n2an)−1
∑

i6=j
B0(Xi, Zi,∆i, Zj,∆j)K

(Xi −Xj

an

)
+ oP ((nan)−1/2), (A.6)

where

B0(Xi, Zi,∆i, Zj,∆j) = f−1
X (Xi)

[
I(∆i = 1, Zi ≤ TXi)M

′(E0
i )γij(E

0
i )

+I(∆i = 0)





∫ T
E0T
i
M(e)dF 0

ε (e)

(1− F 0
ε (E0T

i ))2
− M(E0T

i )

1− F 0
ε (E0T

i )



 f

0
ε (E0T

i )γij(E
0T
i )

+I(∆i = 0)
M(T )

1− F 0
ε (E0T

i )
f 0
ε (T )γij(T )

]
,

M(e) = eJ(F 0
ε (e)) and γij(e) = η(Zj,∆j|Xi) + eζ(Zj,∆j|Xi).

Next, let Vk = (Xk, Zk,∆k), A(Vi, Vj) = B0(Xi, Zi,∆i, Zj,∆j)K(
Xi−Xj
an

) and A∗(Vi, Vj) =
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A(Vi, Vj) − E[A(Vi, Vj)|Vi] − E[A(Vi, Vj)|Vj] + E[A(Vi, Vj)]. Then, the main term on the

right hand side of (A.6) can be written as

(n2an)−1
∑

i6=j
{A∗(Vi, Vj) + E[A(Vi, Vj)|Vi] + E[A(Vi, Vj)|Vj]− E[A(Vi, Vj)]}

= C1 + C2 + C3 + C4.

First, consider

(n2an)−1
∑

i6=j
E[A(Vi, Vj)|Vi]

=
n− 1

n2an

n∑

i=1

∫ ∑

δ=0,1

∫
B0(Xi, Zi,∆i, z, δ)K

(Xi − x
an

)
hδ(z|x)fX(x)dzdx

=
n− 1

n2

n∑

i=1





∫ ∑

δ=0,1

∫
B0(Xi, Zi,∆i, z, δ)K(u)[hδ(z|Xi)− uanḣδ(z|Xi) +O(a2

n)]

×[fX(Xi)− anuf ′X(Xi) +O(a2
n)] dz du

}

=
n− 1

n2

n∑

i=1

fX(Xi)
∫ ∑

δ=0,1

B0(Xi, Zi,∆i, z, δ)hδ(z|Xi) dz +O(a2
n) = O(a2

n),

since E[η(Z,∆|X)|X] = E[ζ(Z,∆|X)|X] = 0. Hence, we also have that E[A(Vi, Vj)] =

O(a2
n). In a similar way, we have for E[A(Vi, Vj)|Vj], using three Taylor developments of

order two, that

(n2an)−1
∑

i6=j
E[A(Vi, Vj)|Vj]

= n−1
n∑

j=1

fX(Xj)
∫ ∑

δ=0,1

B0(Xj, z, δ, Zj,∆j) dHδ(z|Xj) +O(a2
n) = OP (n−1/2).

For C1, note that E[C1] = 0 and hence, by Chebyshev’ s inequality,

P (|C1| > K(nan)−1E[A∗(V1, V2)2]1/2)

≤ K−2(nan)2E[A∗(V1, V2)2]−1E[C2
1 ]

= K−2n−2E[A∗(V1, V2)2]−1
∑

j 6=i

∑

m6=l
E[A∗(Vi, Vj)A

∗(Vl, Vm)]. (A.7)

Since E[A∗(Vi, Vj)] = 0, the terms for which i, j 6= l, m are zero. The terms for which

either i or j equals l or m and the other differs from l and m, are also zero, because, for

example when i = l and j 6= m,

E[A∗(Vi, Vj)E[A∗(Vi, Vm)|Vi, Vj]] = 0.
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Thus, only the 2n(n−1) terms for which (i, j) equals (l, m) or (m, l) stay such that, (A.7)

is bounded by 2K−2, which can be made arbitrarily small for K large enough. It now

follows that C1 = OP ((nan)−1) and hence (A.1) is oP ((nan)−1/2). The result now follows

since it is easily seen that (using E[ε02] <∞)

n−1
n∑

i=1

{
E0
i J(F 0

ε (E0
i ))I(E0

i ≤ T )I(∆i = 1) +

∫ T
E0T
i
eJ(F 0

ε (e))dF 0
ε (e)

1− F 0
ε (E0T

i )
I(∆i = 0)

}

−
∫ T

−∞
eJ(F 0

ε (e))dF 0
ε (e)| = OP (n−1/2).

Remark A.1 A weaker version of Lemma A.1 can be obtained under less restrictive

conditions. In fact, it can be easily seen that if (A1), (A2), (A3)(i) hold, if m0 and σ0 are

twice continuously differentiable and infx∈RX σ
0(x) > 0, if (A3)(iii), (A4), (A5) hold and

J is continuously differentiable,
∫ 1
0 J(s)ds = 1 and J(s) ≥ 0 for all 0 ≤ s ≤ 1, then the

expression at the left hand side in Lemma A.1 is OP ((nan)−1/2(log a−1
n )1/2).

Lemma A.2 Assume (A1), (A2), (A3) (i), m0 and σ0 are twice continuously differ-

entiable and infx∈RX σ
0(x) > 0, (A3) (iii), (A4), (A5), J is continuously differentiable,

∫ 1
0 J(s)ds = 1 and J(s) ≥ 0 for all 0 ≤ s ≤ 1. Then,

∫ T

−∞
eJ(F̂ 0

ε (e))dF̂ 0
ε (e)−

∫ T

−∞
eJ(F 0

ε (e))dF 0
ε (e) = OP ((nan)−1/2(log a−1

n )1/2).

Proof. By Lemma A.1, it suffices to prove that

n−1
n∑

i=1

{
Ê0
i J(F̂ 0

ε (Ê0
i ))I(Ê0

i ≤ T )− Ê0
i J(F̂ 0

ε (Ê0
i ))I(Ê0

i ≤ T̂i)
}
I(∆i = 1)

+n−1
n∑

i=1





∫ T
Ê0
i ∧T

eJ(F̂ 0
ε (e))dF̂ 0

ε (e)

1− F̂ 0
ε (Ê0

i ∧ T )
−
∫ T̂i
Ê0T
i

eJ(F̂ 0
ε (e))dF̂ 0

ε (e)

1− F̂ 0
ε (Ê0T

i )




I(∆i = 0)

= OP ((nan)−1/2(log a−1
n )1/2). (A.8)

The left hand side of (A.8) can be written as

n−1
n∑

i=1

{
Ê0
i J(F̂ 0

ε (Ê0
i ))[I(Ê0

i ≤ T )− I(Ê0
i ≤ T̂i)]

}
I(∆i = 1)

+n−1
n∑

i=1





∫ T
Ê0
i ∧T

eJ(F̂ 0
ε (e))dF̂ 0

ε (e)

1− F̂ 0
ε (Ê0

i ∧ T )
I(Ê0

i ≤ T, Ê0
i > T̂i)
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−
∫ T̂i
Ê0T
i

eJ(F̂ 0
ε (e))dF̂ 0

ε (e)

1− F̂ 0
ε (Ê0T

i )
I(Ê0

i > T, Ê0
i ≤ T̂i)

+

∫ T
T̂i
eJ(F̂ 0

ε (e))dF̂ 0
ε (e)

1− F̂ 0
ε (Ê0T

i )
I(Ê0

i ≤ T, Ê0
i ≤ T̂i)



 I(∆i = 0). (A.9)

Using classical arguments, the three last terms in the above expression are

OP ((nan)−1/2(log a−1
n )1/2) and the first one can be rewritten as

n−1
n∑

i=1

E0
i J(F 0

ε (E0
i ))[I(Ê0

i ≤ T )− I(Ê0
i ≤ T̂i)]I(∆i = 1) +OP ((nan)−1/2(log a−1

n )1/2),

since E|E0| <∞. Using arguments similar to those used in Lemma A.1 in VKA, we find

that

n−1
n∑

i=1

{
E0
i J(F 0

ε (E0
i ))∆i[I(Ê0

i ≤ T )− I(E0
i ≤ T )]− E[E0J(F 0

ε (E0))∆I(Ê0 ≤ T )|Xn]

+E[E0J(F 0
ε (E0))∆I(E0 ≤ T )]

}
= oP (n−1/2), (A.10)

where E[·|Xn] is the mean conditional on the data (Xj, Zj,∆j), j = 1, . . . , n. Finally, since

E[E0J(F 0
ε (E0))∆I(Ê0 ≤ T )|Xn]− E[E0J(F 0

ε (E0))∆I(E0 ≤ T )]

=
∫

RX

∫ Tσ̂0(x)+m̂0(x)−m0(x)

σ0(x)

T
eJ(F 0

ε (e))he1(e|x)fX(x) de dx

= OP ((nan)−1/2(log a−1
n )1/2), (A.11)

it follows that the first term of (A.9) is also OP ((nan)−1/2(log a−1
n )1/2).

The next lemma is a refinement of Lemma A.2, obtained under somewhat stronger

conditions.

Lemma A.3 Assume (A1)–(A5), (A6)(ii), (A7) and supe |e3(f 0
ε )′′(e)| <∞. Then,

∫ T

−∞
eJ(F̂ 0

ε (e))dF̂ 0
ε (e)−

∫ T

−∞
eJ(F 0

ε (e))dF 0
ε (e) = oP ((nan)−1/2).

Proof. Similarly as in the proof of Lemma A.2, we will prove the lemma by showing that

the four terms of (A.9) are of the stated order. First, we treat the first term of (A.9). It

can be written as

n−1
n∑

i=1

I(∆i = 1)
{
E0
i J(F 0

ε (E0
i ))[I(Ê0

i ≤ T )− I(Ê0
i ≤ T̂i)]

+E0
i [J(F̂ 0

ε (Ê0
i ))− J(F 0

ε (E0
i ))][I(T̂i < Ê0

i ≤ T )− I(T < Ê0
i ≤ T̂i)]

+(Ê0
i − E0

i )J(F̂ 0
ε (Ê0

i ))[I(T̂i < Ê0
i ≤ T )− I(T < Ê0

i ≤ T̂i)]
}
. (A.12)
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Note that |Ê0
i − E0

i |I(T̂i < Ê0
i ≤ T ) = OP ((nan)−1/2(log a−1

n )1/2) uniformly in i by

Proposition 4.5 in VKA. When Ê0
i ≤ T it holds that E0

i ≤ T σ̂0(Xi)/σ
0(Xi) + [m̂0(Xi)−

m0(Xi)]/σ
0(Xi) ≤ T + V , where V = [infx σ

0(x)]−1[supx |m̂0(x)−m0(x)|+ supx |σ̂0(x)−
σ0(x)|] = OP ((nan)−1/2(log a−1

n )1/2) and hence the third term of (A.12) is bounded by

OP ((nan)−1/2(log a−1
n )1/2)n−1

n∑

i=1

{I(T < E0
i ≤ T + V ) + I(T − V < E0

i ≤ T )}

= OP ((nan)−1/2(log a−1
n )1/2) {[H̃0

ε (T + V )− H̃0
ε (T )] + [H̃0

ε (T )− H̃0
ε (T − V )]},

where H̃0
ε (·) is the empirical distribution of E0

i , i = 1, . . . , n. Using the fact that H̃0
ε (y)−

H0
ε (y) = OP (n−1/2) uniformly in y, the above term is oP (n−1/2). The second term of

(A.12) and the second and third terms of (A.9) are treated similarly. In the same way,

the last term of (A.9) becomes

n−1
n∑

i=1

I(∆i = 0)

∫ T
T̂i
eJ(F̂ 0

ε (e))dF̂ 0
ε (e)

1− F̂ 0
ε (Ê0T

i )
I(E0

i ≤ T ) + oP ((nan)−1/2). (A.13)

Next, using classical arguments, (A.13) is written

n−1
n∑

i=1

I(∆i = 0)

∫ T
T̂i
eJ(F 0

ε (e))dF 0
ε (e)

1− F 0
ε (E0T

i )
I(E0

i ≤ T ) +OP (n−1/2)

= −(n2an)−1
n∑

i=1

n∑

j=1

I(E0
i ≤ T )B01(Xi, Zi,∆i, Zj,∆j)K

(Xi −Xj

an

)
+OP (n−1/2),

where

B01(Xi, Zi,∆i, Zj,∆j) = I(∆i = 0)f−1
X (Xi)

TJ(F 0
ε (T ))f 0

ε (T )

1− F 0
ε (E0T

i )
[η(Zj,∆j|Xi)+Tζ(Zj,∆j|Xi)].

Treating the function B01 in a similar way as the function B0 in Lemma A.1, we find that

the above expression equals

−n−1
n∑

i=1

fX(Xi)
∫ TXi

−∞
B01(Xi, z, 0, Zi,∆i) dH0(z|Xi) +O(a2

n) = OP (n−1/2),

since it is a sum of i.i.d. random variables with zero mean.

Finally, together with (A.10) and (A.11), the first term of (A.12) becomes using a Taylor

development and Propositions 4.8 and 4.9 in VKA,

∫

RX
TJ(F 0

ε (T ))he1(T |x)
{
T
σ̂0(x)− σ0(x)

σ0(x)
+
m̂0(x)−m0(x)

σ0(x)

}
fX(x)dx+ oP (n−1/2)

= (nan)−1
n∑

j=1

∫

RX
W (Zj,∆j|x)K

(x−Xj

an

)
dx+ oP (n−1/2), (A.14)
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where W (Zj,∆j|x) = −TJ(F 0
ε (T ))he1(T |x){Tζ(Zj,∆j|x)+η(Zj,∆j|x)}. Using three Tay-

lor developments of order two for ζ(Zj,∆j|x), η(Zj,∆j|x) and he1(T |x) around Xj, we

obtain using condition (A4), that (A.14) equals

n−1
n∑

j=1

W (Zj,∆j|Xj) + oP (n−1/2), (A.15)

which is a sum of i.i.d. random variables with zero mean and hence it is OP (n−1/2). This

finishes the proof.

We are now ready to prove the main results of the paper.

Proof of Theorem 3.1. Write for any x ∈ RX ,

m̂T (x)−mT (x)

= a0m̂
0(x)

{∫ T

−∞
J(F̂ 0

ε (e))dF̂ 0
ε (e)−

∫ T

−∞
J(F 0

ε (e))dF 0
ε (e)

}

+{m̂0(x)−m0(x)}
{
a0

∫ T

−∞
J(F 0

ε (e))dF 0
ε (e) +

k∑

j=1

aj
}

+a0σ̂
0(x)

{∫ T

−∞
eJ(F̂ 0

ε (e))dF̂ 0
ε (e)−

∫ T

−∞
eJ(F 0

ε (e))dF 0
ε (e)

}

+{σ̂0(x)− σ0(x)}


a0

∫ T

−∞
eJ(F 0

ε (e))dF 0
ε (e) +

k∑

j=1

aj((F
0
ε )−1(sj) ∧ T )





+σ̂0(x)




k∑

j=1

aj
{

(F̂ 0
ε )−1(sj) ∧ T − (F 0

ε )−1(sj)
}
I(sj ≤ F̂ 0

ε (T ), sj ≤ F 0
ε (T ))

+
k∑

j=1

aj
{
T − (F 0

ε )−1(sj)
}
I(F̂ 0

ε (T ) < sj ≤ F 0
ε (T ))

+
k∑

j=1

aj
{

(F̂ 0
ε )−1(sj) ∧ T − T

}
I(F 0

ε (T ) < sj ≤ F̂ 0
ε (T ))




=
7∑

`=1

A`(x).

Since E|ε0| <∞, supx |A2(x)| and supx |A4(x)| are OP ((nan)−1/2(log a−1
n )1/2) using Propo-

sition 4.5 in VKA. From Corollary 3.2 in VKA and Theorem 1 in Doss and Gill (1992)

we obtain that sups∈Q |(F̂ 0
ε )−1(s) − (F 0

ε )−1(s)| = OP (n−1/2) and hence supx |A5(x)| =

OP (n−1/2). For supx |A3(x)|, we use Lemma A.2. In a similar way, it can be shown that

23



supx |A1(x)| is of negligible order. Finally, A6(x) and A7(x) are uniformly negligible using

Corollary 3.2 in VKA.

Proof of Theorem 3.2. We use the same decomposition of m̂T (x) − mT (x) as in the

proof of Theorem 3.1. Using Propositions 4.8, 4.9 in VKA and the fact that E|ε0| <∞,

we obtain that

A2(x) = −
[
a0

∫ F 0
ε (T )

0
J(s)ds+

k∑

j=1

aj
]
(nan)−1f−1

X (x)σ0(x)
n∑

i=1

K
(x−Xi

an

)
η(Zi,∆i|x)+Rn(x),

and

A4(x) = −(nan)−1f−1
X (x)σ0(x)

{
a0

∫ F 0
ε (T )

0
(F 0

ε )−1(s)J(s)ds

+
k∑

j=1

aj((F
0
ε )−1(sj) ∧ T )

} n∑

i=1

K
(x−Xi

an

)
ζ(Zi,∆i|x) +Rn(x),

where Rn(x) = OP ((nan)−3/4(logn)3/4). For A3(x) (and similarly for A1(x)) we use Lemma

A.3. The remaining terms A5(x), A6(x) and A7(x) are oP ((nan)−1/2), as shown in the

proof of Theorem 3.1. Therefore,

m̂T (x)−mT (x) = (nan)−1
n∑

i=1

K
(x−Xi

an

)
B(Zi,∆i|x) + oP ((nan)−1/2).

Proof of Theorem 3.3. The result follows immediately from Theorem 3.2 and the cen-

tral limit theorem for triangular arrays (see e.g. Serfling (1980)).
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