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Abstract

Shephard’s distance functions are widely usedunstnts for characterizing technology and
for estimating efficiency in contemporary econothieory and practice. Recently, they have
been generalized by the Luenberger shortage fumabio Chambers-Chung-Fare directional
distance function. In this study, we explore ayvenportant property of an economic

measure known asommensurabilityor independence of units of measurement up taiscal
transformation. Our study discovers both negatig @ositive results for this property in the

context of the directional distance function, whiohturn helps us narrow down the most

critical issue for this function in practice—theoite of direction of measurement.
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Introduction

Since Shephard [12], the production theory in nlegsical economics, especially duality
issues, has been dominated by what his followeledccéhe Shephard’'s distance functions
(DFs). Recently, Luenberger [8, 9] and Chamberginghand Fare [2, 3] have introduced
and explored what is now widely known as the direetialistance function (DDF), or the

shortage and benefit function in the terminology.oénberger. The DDF was shown to be a
generalization of DFs: it also gives complete ch@r@ation of a technology set, under quite
weak regularity conditions, and has somewhat moveepiol duality relationships (not only

to revenue and cost, but also to profit functio®ne of the major critiques, however, that is
often pitched into the DDF, at least from empiricadearchers, is that it is often not clear

what directional vector must be chosen for eachiquéatr empirical study.

Indeed, while researchers often argued whether iapwutput orientation must be
chosen in a particular research involving Sheplsabis, now, for DDF there is infinite (in
fact, a continuum) of possibilities. A natural wiyreduce the set of possibilities for the
directional vector would be to postulate a listdefsirable properties that the DDF must
satisfy. This is in the fashion of axiomatic apgrb to efficiency analysis, where DF and
DDFs are extensively used, proposed by Fare andliLf8leand elaborated by Bol [1],
Russell [10, 11] and others to justify the useafis measures and warn about using others.
In this paper we will focus on one of the most impot properties for efficiency measure—
commensurability—introduced by Russell [10], on #m®&logy of property introduced by
Eichhorn and Voeller [5], as an independence of Hiiciency measure from units of

measurement (up to scalar transformation) of the.da

The rest of the paper is organized as follows. W $tudy what we call absolute-

commensurability and ranking-commensurability prtpes for the DDF with theunit



directional vector. To our surprise, we find thahe of these properties is satisfied. We then
examine whether such DDF can be ‘de-commensuratél’ éogpostand exante Finally,

we find a particular type of DDF that does possesshoemsurability property.

|. Basic Definitions

Let xOO" denote a vector of inputs, while1OY denote a vector of outputs and assume

technology can be characterized hgehnologysetT, defined in general terms as
T ={(x,y) :xcan producey}. (1.1)

We assumeT satisfies the standard regularity conditions ob-okassical production

economics. In particular, we assume

Al. Tis closed and non-empty.

A2.  Inputs and outputs are freely disposable;y) 07T = (x',y' )07, DOx'2x,y'<y.
A3. There is no free lunchg. (0,,y) 0T =y =0,,.

A4.  Doing nothing is possiblée. (x,0,, )07, OxO07Y .

A5, P(x)={y:(x,y)07T} is bounded for ak 007" .

A6.  Technology is productive, i.(x) # {0,,} for somex 07 .

Given these regularity conditions and any (dire@lp vector (—dx,dy)D aoNxOM , the

directional distance function (DDF), defined as

D(x,y |—dx,dy)Esup{92 0: ((X—de),(y+9dy))DT}, (1.2)



gives a complete characterization of technologylsetLuenberger [8, 9], Chambers, Chung
and Fare [2, 3], and Fare and Grosskopf [7] havivettiother properties of the DDF, but no
one has addressed tbemmensurabilityproperty of DDF—the issue we address in the next

section.

I1. Commensur ability of distance functions

The commensurability axionmas been introduced to efficiency analysis by Bii$$0] in

one of his works on axiomatics of efficiency measwnt. Russell convincingly argued that
commensurability (independence of units of measargmp to scalar transformation) is a
very desirable property of any efficiency measumdeed, an efficiency measure not
satisfying commensurability may cause differeneaeshers, that use the same data and the
same methodology, to arrive to different resultst jhecause one used, for example,
kilograms and the other one used pounds to measynets or outputs. Formally,
commensurability (adapted to the case of DDF, whemesadditional parameteps such as

directional vector, are set exogenously) can baeeéfas follows.

Definition 1 (Absolute Commensurability)

Let E(x,y,p)00, for OxO0OY,yOO be an efficiency measure, whepel 07 is a Z-
dimensional vector of exogenous parameters of ffieiesicy measure €.g, directional
vector coordinates in the case of DDF). ket Q x andy =Q y, whereQ, andQ, are
(any) diagonal matrices (further called ‘commentara matrices) of dimensionsixN and
MxM, respectively, with all diagonal elements being c$lyi positive constants. The

efficiency measure=(x,y,p) is said to be commensurable in inputs and ouipatsd only if



Tl Ox00Y;yooY (2.1)

T)=E& 3.p

E(X,y,p

where

T={(&%): (xy)01} ={& 7): (@'=.0;F)07}. (2.2)

Intuitively, absolute commensurability shall be argtood as a property of independence (of
the score yielded by the efficiency measure) frown $cale of any inputs and any outputs.
For example, efficiency score obtained for any oket@n with the inputs expressed in tons
and outputs in Watts should lakentical to efficiency score of the same observation butrwhe

inputs are expressed in kilograms and outputsris ¢d oil equivalent.
Consider first the DDF with anit directional vector (henceforth UDDF), i.e.,
D(x,y |-1,.1, )=sud8=0:(x-61,)(y+61,))OT}. (2.3)

This direction is one very common choice for the DibBt has been used in practice—
perhaps due to its simplicity, normalizing natured,aas a consequence, convenience in
explaining the results of measurement. Specificadifficiency measure based on such
direction givesone number indicating (regardless of units of measeminhow many units

of each input must be deducted and how many uniesaoh output must be added to any
particular point in technology set to reach thep@m frontier of this set. Despite such

appealing nature, it turns out that UDDFist absolute-commensurable, as we show in the

next proposition.

Proposition 1. UDDF is not absolute-commensurable for all techniekg

o Using (2.2), it follows that



D%, |-14.1,) =suplg20: (x-0071, )y +60;1, )01} (2.4)

Let us scale up all inputs and outputs by the samséive scalari.e.

Q, =yl y>1 = Q;lzilN y>1 (2.5)
14
and
Q, =yl, y>1 = Q;lz%/lM y>1 (2.6)

Then (2.4) transforms into
D(§’§; |_1N’1.w) = VD(X’Y |_1N’1.\7)¢ ]_j(x,y |_1.’\T91.\7)' (2.7)

Hence, [Q,,Q, such thatD(%,y|-1, .1, )# D(x,y |-1,.1,) and, thus, confirming that

UDDEF is not absolute-commensurable. n

The practical implication of this result is thatfdient researchers using the same data and
methodology may arrive to different estimates—jostause the researchers used different
units of measurement. One may wonder whether thdtsesould be the same at least
gualitatively: i.e., if, under some units of measuent, firm A was more efficient than firm B
then this ranking would, hopefully, remain the sameer any other units of measurement
(different by a scalar transformation). We thull ttas conceptranking-commensurability

and formally define and apply it to UDDF below.

Definition 2 (Ranking-Commensurability)

An efficiency measurei(x,y,p) is said to be ranking-commensurable if and only if



E(XE’YE’p)>E(Xj’Yj’p) e E(ik’yk’p)>E(§/’§;/’p) (28)
UXy, X DDT;kayJ' ool

wherex =Q x andy =Q_y are as in definition 1.

The intuition behind (2.8) is that if an efficiencyeasure is ranking-commensurable, then
changing the units of measurement of any inputndr/autput by a scalar transformation
should not affect theanking of the efficiency scores, although may changestitees per se.

It turns out that UDDF is alsmot ranking commensurable, as we show it in the next

proposition.

Proposition 2. UDDF is not ranking-commensurable for all technadsgi
o To prove this statement, consider a simple skigput-single-output technology,
T={(x,): y<6ifx215 y=0if0<x<15} «,y00,, (2.9)

where the numbers are provided for the sake oftiitisn. Measuring DFU scores of two

observationsA at (x , =2, y, =0) andB at (x, =3.5, y, =4.5), we would conclude that
observation A is more efficient than B, since D(2,0|-1,1)=68,=05 and

D(3.54.5|-1,1)= 86, =1.5. Graphical illustration of this problem is provitim Figure 1.

Now, suppose we decide to transform inputs and outippugich a way that we

measure inputs i =3x and outputs ify = y/3. Combining (2.3) and (2.9) implies

T={(%7):7<2if ¥ 2457 =0if 0< X <4.5} %,5700,. (2.10)



Therefore, changing the units of measurement aérvbsions would transform observatién
into A(%., =6,7, =0) and observatiol into B(%; =10.5,F, =1.5) respectively. This
would result inD(6,0(-1,1)=6- =1.5and D(10.5,1.5|-1,1)=6, =0.5, i.e, observatior is

now concluded to be more efficient tharfgraphical illustration is provided in Figure 2).

\813.5,4.5}

9, =13
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Figurel. Graphical illustration of techndogy (2.9), observations A and B and their DFU scor es

24 o
A
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Figure2. Graphical illustration of technd ogy (2.10), obser vations A and B and their DFU scores



Therefore, the change in units of measurement baused different ranking. Thus, UDDF

measure is not ranking commensurable for all telciyies. [

The practical implication of this result is thateevthe qualitative difference in
efficiency measurement with UDDF may occur just diwe change in the units of
measurement, which in turn may even lead to ragichdferent policy implications. It must
be clear that the type of technology we used in argument was taken to be simple for
illustration purposes, not some pathological one, tae same argument would hold for many
other technologies, though one is enough to prawectaim. A natural question now is
whether we could cure the situation with UDDF—withr, €&xample, what we call here exs

postandex antede-commensurations’
Definition 3. Ex post de-commensuration

An efficiency measureE(x,y, p) can be de-commensuratee postif and only if

0G:0) - 0,: G(ER¥,p)=Ey,p), 0T, OxO00Y;,yOOY,  (2.11)

and wherex =Q x andy =Q_y are as in definition 1.

In words, this is a situation when it is possiblettansform,ex post i.e., after
computation, a score from UDDF for ‘commensuratedada such a way that it becomes
identical to the UDDF score for the original data.otéthat here we require that de-
commensurating transformati@works for all technologies. Therefore, transforioyatcan
depend on observed inputs and outputs as well asneasuration matrices, but shall be
independent of the parameters of technology. We wil see that UDDF cannot be ‘cured’

by theex postde-commensuration.

Proposition 3. UDDF is not de-commensurald& postindependently of technology.

10



o Consider a single-input-single-output CRS te by

T={(xy):Mx2y} xyOO,. (2.12)
Then,

Ax—y
A+1

ﬁ(x,y|—l,l) =sup{020: A(x-8)=2 y+6} = (2.13)

LetQ =y>1andQ =1, thus¥=xandj =y y. Combining (2.3) and (2.12) implies

T={(%7):Ay5=7}, x,y00, (2.14)

and therefore,

~ Ayx=yy Ax-—y
D -1,1) = = . 2.15
(X’Jl ) Ay+1 A+1/y ( )

Finally, combining (2.13) and (2.15) implies
D, y|-1,1)= A;igyb(&', F1-1,1). (2.16)

Thus, (2.16) proposes a (unique) way to transf@rms) to obtain (2.13) under single-input-
single-output CRS technology when output is scalpd However, this transformation

dependson parameter of the technologywhile our definition required such independence
(since true technology sets are typically unobsimepractice by researchers). Thus, (2.11)

does not hold and therefore UDDF is not de-commenkueatpost [

In words, once UDDF was calculated for the commensurdtdd, there is no unique
(independent of technology) function that would sfanm UDDF score into the one for non-

commensurated original data.

11



What shall be clear from the intuition of the pro@ that not only the UDDF but also
any DDF with afixed directional vector will not satisfy even rankingramensurability for
all technologies. The intuition for this can bekned by theadditive nature of such DDF,
which becomes irreconcilable with theultiplicative nature of the commensurability
property. This intuition encourages us to raisetlagr natural question: Is it possible to cure
UDDF measure in some way to ensure that an efficiemegsureafter commensuration is
equal to its valubeforecommensuration? One possible cure might be apfi¢ice (fixed)

directional vector. We call this concept ante'de-commensuration,” defining it below.

Definition 4. Ex ante de-commensuration

An efficiency measuré(x,y,p) is said to be de-commensurableanteif and only if
OF :0% - 0% : E(x.y.F(p)) =E(x,y,p), OT, OxooV;yooW. (2.17)
and wherex =Q x andy =Q_y are as in definition 1.

In words, an efficiency measure is de-commensureklante if and only if along
with the change of units of measurement of inpuid autputs one shall also modify the
parameter vectagp (e.g, directional vector in the case of DDF) to obtai@ same numerical
value of efficiency as for the observation in th@imal units of measurements. Trying this
on, for our UDDF, we finally get a positive result: UBs de-commensurabéx anteif its
directional vector is ‘commensurated’ along witk thputs and outputs by pre-multiplying it

by the respective commensuration matrices. Foymnaltan be easily shown that

E(ﬁ,? |Qx(_1;\")’Qy1M)= E(x,y =1y al.w) : (2.19)

12



It is worth noting, however, that once the direcaibrector of UDDF's has been pre-
multiplied by the (non-identity) commensuration neds, the DDF is no longer a UDDF.
Therefore, once commensuration takes place anseaneher wants to compare her results to
the results of the other study with the ‘non-comsugated’ data, she cannot use UDDF, but
shall rather use directional distance function vatltommensurated’ directional vector. In
other words, only the ‘lucky first’ gets to use DDFthvunit directional vector and thus
setting the standard for units of measurement tdsvavhich others have to comply by
commensurating their unit directional vectors with same matrices that relate their units of
measurement to that of this standard. As standeate §s rather a question of tastes,
traditions and practices, which may differ from @shto school and from society to society,
it might be difficult to achieve a consensus ouas tissue, as it is hard to convince the
Europeans, for example, to switch to British weightsd measures (e.g., pounds) or
Americans to metric system (e.g., kilograms). A coonise might be to use a directional
distance function with a directional vector thatulkb‘commensurate’ itself when the data is
commensurated. In fact, the result (2.19) hintsonshow to obtain a more general
conclusion. Specifically, the necessary and sieffic condition for the DDF to yield the
same values for commensurated and non-commensutatads that the directional vector is

commensurated along with the data. Formally,

blxy|-d,,d,)=D(%,y|-d,.d,) O(x,y)OT;(%,y)OT (2.20)

ifand onlyifd, =Q_d, d,=Q d, . (2.21)
An interesting special (but still quite broad) calsat ensures (2.20), which actually would

not require commensuration of the directional veaaplicitly, but would be obtained

automatically, is when(-d,,d )=(-= x,=)y), where = and= are any diagonal

13



matrices of dimensionadNxN and MxM, respectively, where elements are constants that,
intuitively, assign weights of each input (outpuBlative to other inputs (outputs) in

measuring the distance. (The diagonal elements afnd = can be zero or even negative).

Special cases of this function have appeared hefeoe example, Chung, Fare and Groskopf

[4] used it for

Ex :0N><N1 Ey =[IGXG OGXB jv

OBXG -1 BxB

wherel . is aG byG identity matrix assigning equal weights@good outputs] g, is a

B by B identity matrix assigning equal weights Bobad outputs and the rest are zero
matrices of dimensions indicated in subscripts.ISOA Zelenyuk [13] used it when

=_.and = were scalars multiplied by corresponding identitgtmeces. Even more special

X J

cases are the popular directional vectofrs, y), as well ag 0, y) and (—x, 0) under which

one-to-one closed-form relationship with the Shpelsadistance functions are known.

Concluding, it might be worth noting that the tiestsatisfying absolute (and ranking)
commensurability helps us reducing the problemtafosing the direction of measurement
for DDF considerably. In particular, it discouradesm using DDF with anyixed vector,
but the one satisfying (2.20)-(2.21). Moreovencsi the DDF in (2.20)-(2.21) is a special
case of the general DDF, it thus not only passeseasts for commensurability, but (under the
regularity conditions) also satisfies all the gehgroperties derived by Luenberger [8, 9],
Chambers, Farand Chung [2, 3], and Fare and Grosskopf [7]. Kinalnatural extension to
our work would be an exploration of other propextier DDF that are generally desirable for

theoretical or empirical characterizations of tedbgies and efficiency measurement.
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