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Abstract 

Shephard’s distance functions are widely used instruments for characterizing technology and 

for estimating efficiency in contemporary economic theory and practice.  Recently, they have 

been generalized by the Luenberger shortage function, or Chambers-Chung-Färe directional 

distance function.  In this study, we explore a very important property of an economic 

measure known as commensurability or independence of units of measurement up to scalar 

transformation.  Our study discovers both negative and positive results for this property in the 

context of the directional distance function, which in turn helps us narrow down the most 

critical issue for this function in practice—the choice of direction of measurement. 
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Introduction 

Since Shephard [12], the production theory in neo-classical economics, especially duality 

issues, has been dominated by what his followers called the Shephard’s distance functions 

(DFs).  Recently, Luenberger [8, 9] and Chambers, Chung and Färe [2, 3] have introduced 

and explored what is now widely known as the directional distance function (DDF), or the 

shortage and benefit function in the terminology of Luenberger.  The DDF was shown to be a 

generalization of DFs: it also gives complete characterization of a technology set, under quite 

weak regularity conditions, and has somewhat more powerful duality relationships (not only 

to revenue and cost, but also to profit function).  One of the major critiques, however, that is 

often pitched into the DDF, at least from empirical researchers, is that it is often not clear 

what directional vector must be chosen for each particular empirical study.  

Indeed, while researchers often argued whether input or output orientation must be 

chosen in a particular research involving Shephard’s DFs, now, for DDF there is infinite (in 

fact, a continuum) of possibilities.  A natural way to reduce the set of possibilities for the 

directional vector would be to postulate a list of desirable properties that the DDF must 

satisfy.  This is in the fashion of axiomatic approach to efficiency analysis, where DF and 

DDFs are extensively used, proposed by Färe and Lovell [6] and elaborated by Bol [1], 

Russell [10, 11] and others to justify the use of some measures and warn about using others.  

In this paper we will focus on one of the most important properties for efficiency measure—

commensurability—introduced by Russell [10], on the analogy of property introduced by 

Eichhorn and Voeller [5], as an independence of an efficiency measure from units of 

measurement (up to scalar transformation) of the data. 

The rest of the paper is organized as follows.  We first study what we call absolute-

commensurability and ranking-commensurability properties for the DDF with the unit 
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directional vector.  To our surprise, we find that none of these properties is satisfied.  We then 

examine whether such DDF can be ‘de-commensurated’ both ex post and ex ante.  Finally, 

we find a particular type of DDF that does possess commensurability property. 

 

I.  Basic Definitions 

 Let N
+ℜ∈x  denote a vector of inputs, while M

+ℜ∈y  denote a vector of outputs and assume 

technology can be characterized by a technology set T, defined in general terms as  

( ){ }yxyx producecanT :,≡ .       (1.1) 

We assume T satisfies the standard regularity conditions of neo-classical production 

economics.  In particular, we assume  

A1. T is closed and non-empty. 

A2. Inputs and outputs are freely disposable:  ( ) ( ) yyxxyxyx ≤′≥′∀∈′′⇒∈ ,,,, TT . 

A3. There is no free lunch, i.e. ( ) MN T 0yy0 =⇒∈, . 

A4. Doing nothing is possible, i.e. ( ) N

M T +ℜ∈∀∈ x0x ,, . 

A5.  ( ){ }TP ∈≡ yxyx ,:)(  is bounded for all N

+ℜ∈x . 

A6. Technology is productive, i.e. }{)( MP 0x ≠  for some N

+ℜ∈x .   
    

Given these regularity conditions and any (directional) vector ( ) MN
+− ℜ×ℜ∈− yx dd ,  , the 

directional distance function (DDF), defined as 

 

( ) ( ) ( )( ){ }TD ∈+−≥≡− yxyx dydxddyx θθθ ,:0sup,|,
r

,   (1.2) 
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gives a complete characterization of technology set T.   Luenberger [8, 9], Chambers, Chung 

and Färe [2, 3], and Färe and Grosskopf [7] have derived other properties of the DDF, but no 

one has addressed the commensurability property of DDF—the issue we address in the next 

section.  

 

II. Commensurability of distance functions 

The commensurability axiom has been introduced to efficiency analysis by Russell [10] in 

one of his works on axiomatics of efficiency measurement.  Russell convincingly argued that 

commensurability (independence of units of measurement up to scalar transformation) is a 

very desirable property of any efficiency measure. Indeed, an efficiency measure not 

satisfying commensurability may cause different researchers, that use the same data and the 

same methodology, to arrive to different results just because one used, for example, 

kilograms and the other one used pounds to measure inputs or outputs. Formally, 

commensurability (adapted to the case of DDF, where some additional parameters p, such as 

directional vector, are set exogenously) can be defined as follows. 

 

Definition 1 (Absolute Commensurability) 

Let ( ) +ℜ∈pyx ,,E  for MN

++ ℜ∈ℜ∈∀ yx ,  be an efficiency measure, where Z

+ℜ∈p  is a Z-

dimensional vector of exogenous parameters of the efficiency measure (e.g., directional 

vector coordinates in the case of DDF).  Let xx xΩ=~  and yy yΩ=~ , where xΩ  and yΩ  are 

(any) diagonal matrices (further called ‘commensuration’ matrices) of dimensions NxN and 

MxM, respectively, with all diagonal elements being strictly positive constants. The 

efficiency measure ( )pyx ,,E  is said to be commensurable in inputs and outputs if and only if 
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( ) ( ) MNTETE ++ ℜ∈ℜ∈∀= yxpyxpyx ;,
~

,~,~,,     (2.1) 

where  

( ) ( ){ } ( ) ( ){ }TTT ∈ΩΩ=∈≡ −− yxyxyxyx yx
~,~:~,~,:~,~

~ 11 .    (2.2) 

 

Intuitively, absolute commensurability shall be understood as a property of independence (of 

the score yielded by the efficiency measure) from the scale of any inputs and any outputs.  

For example, efficiency score obtained for any observation with the inputs expressed in tons 

and outputs in Watts should be identical to efficiency score of the same observation but when 

inputs are expressed in kilograms and outputs in tons of oil equivalent.  

Consider first the DDF with a unit directional vector (henceforth UDDF), i.e.,  

( ) ( ) ( )( ){ }TD MNMN ∈+−≥≡− 1y1x11yx θθθ ,:0sup,|,
r

.  (2.3)  

This direction is one very common choice for the DDF that has been used in practice—

perhaps due to its simplicity, normalizing nature and, as a consequence, convenience in 

explaining the results of measurement.  Specifically, efficiency measure based on such 

direction gives one number indicating (regardless of units of measurement) how many units 

of each input must be deducted and how many units of each output must be added to any 

particular point in technology set to reach the (upper) frontier of this set.  Despite such 

appealing nature, it turns out that UDDF is not absolute-commensurable, as we show in the 

next proposition. 

 

Proposition 1. UDDF is not absolute-commensurable for all technologies. 

□    Using (2.2), it follows that 
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( )MND 11yx ,|~,~ −
r

 ( ) ( )( ){ }TMN ∈Ω+Ω−≥= −− 1y1x yx

11 ,:0sup θθθ .  (2.4) 

Let us scale up all inputs and outputs by the same positive scalar, i.e. 

1
1

1 1 >=Ω⇒>=Ω − γ
γ

γγ NN II xx     (2.5) 

and 

1
1

1 1 >=Ω⇒>=Ω − γ
γ

γγ MM II yy     (2.6) 

Then (2.4) transforms into 

( )MND 11yx ,|~,~ −
r ( ) ( )MNMN DD 11yx11yx ,|,,|, −≠−=

rr
γ .   (2.7) 

Hence, yx ΩΩ∃ ,  such that ( ) ( )MNMN DD 11yx11yx ,|,,|~,~ −≠−
rr

  and, thus, confirming that 

UDDF is not absolute-commensurable.     ■ 

 

The practical implication of this result is that different researchers using the same data and 

methodology may arrive to different estimates—just because the researchers used different 

units of measurement.  One may wonder whether the results would be the same at least 

qualitatively: i.e., if, under some units of measurement, firm A was more efficient than firm B 

then this ranking would, hopefully, remain the same under any other units of measurement 

(different by a scalar transformation).  We thus call this concept ranking-commensurability, 

and formally define and apply it to UDDF below.  

 

Definition 2 (Ranking-Commensurability) 

An efficiency measure ( )pyx ,,E  is said to be ranking-commensurable if and only if 
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( ) ( ) ( ) ( )pyxpyxpyxpyx ,~,~,~,~,,,, jjkkjjkk EEEE >⇔>     (2.8) 

M
jk

N
jk ++ ℜ∈ℜ∈∀ yyxx ,;, , 

where xx xΩ=~  and yy yΩ=~  are as in definition 1.      

  

The intuition behind (2.8) is that if an efficiency measure is ranking-commensurable, then 

changing the units of measurement of any input or/and output by a scalar transformation 

should not affect the ranking of the efficiency scores, although may change the scores per se.  

It turns out that UDDF is also not ranking commensurable, as we show it in the next 

proposition. 

 

Proposition 2. UDDF is not ranking-commensurable for all technologies. 

□   To prove this statement, consider a simple single-input-single-output technology,  

( ){ } +ℜ∈<≤=≥≤= yxxyxyyxT ,5.10 if0,5.1 if6:, ,   (2.9) 

where the numbers are provided for the sake of illustration.  Measuring DFU scores of two 

observations: A at )0,2( == AA yx  and B at )5.4,5.3( == BB yx , we would conclude that 

observation A is more efficient than B, since ( ) 5.01,1|0,2 ==− AD θ
r

 and 

( ) 5.11,1|5.4,5.3 ==− BD θ
r

.  Graphical illustration of this problem is provided in Figure 1. 

Now, suppose we decide to transform inputs and outputs in such a way that we 

measure inputs in xx 3~ =  and outputs in 3/~ yy = .  Combining (2.3) and (2.9) implies 

T
~ ( ){ } +ℜ∈<≤=≥≤= yxxyxyyx ~,~5.4~0 if0~,5.4~ if2~:~,~ .  (2.10) 
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Therefore, changing the units of measurement of observations would transform observation A 

into )0~,6~(
~

~~ ==
AA
yxA  and observation B into )5.1~,5.10~(

~
~~ ==
BB
yxB  respectively.  This 

would result in ( )1,1|0,6 −D
r

= 5.1~ =
A

θ and ( )1,1|5.1,5.10 −D
r

= 5.0~ =
B

θ , i.e., observation B is 

now concluded to be more efficient than A (graphical illustration is provided in Figure 2).  

 

 

Figure 1.  Graphical illustration of technology (2.9), observations A and B and their DFU scores 

  

 

Figure 2.  Graphical illustration of technology (2.10), observations A
~

 and B
~

 and their DFU scores 
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Therefore, the change in units of measurement have caused different ranking. Thus, UDDF 

measure is not ranking commensurable for all technologies.     ■ 

The practical implication of this result is that even the qualitative difference in 

efficiency measurement with UDDF may occur just due to change in the units of 

measurement, which in turn may even lead to radically different policy implications.  It must 

be clear that the type of technology we used in our argument was taken to be simple for 

illustration purposes, not some pathological one, and the same argument would hold for many 

other technologies, though one is enough to prove our claim.  A natural question now is 

whether we could cure the situation with UDDF—with, for example, what we call here as ex 

post and ex ante ‘de-commensurations’ 

Definition 3. Ex post de-commensuration 

An efficiency measure ( )pE ,, yx  can be de-commensurable ex post if and only if 

++ ℜ→ℜ∃ 1:G :   ( )( ) ( )pEpEG ,,,~,~ yxyx = , MNT ++ ℜ∈ℜ∈∀∀ yx ;, ,  (2.11) 

and where xx xΩ=~  and yy yΩ=~  are as in definition 1.      

In words, this is a situation when it is possible to transform, ex post, i.e., after 

computation, a score from UDDF for ‘commensurated’ data in such a way that it becomes 

identical to the UDDF score for the original data.  Note that here we require that de-

commensurating transformation G works for all technologies.  Therefore, transformation can 

depend on observed inputs and outputs as well as commensuration matrices, but shall be 

independent of the parameters of technology.  We now will see that UDDF cannot be ‘cured’ 

by the ex post de-commensuration. 

Proposition 3.  UDDF is not de-commensurable ex post, independently of technology. 



 11

□   Consider a single-input-single-output CRS technology 

( ){ } +ℜ∈≥= yxyxyxT ,:, λ .      (2.12) 

Then,    

( ) ( ){ }
1

:0sup1,1|,
+
−

=+≥−≥≡−
λ

λθθλθ yx
yxyxD

r
.   (2.13) 

Let 1>=Ω γx  and 1=Ω y , thus xx =~ and yy γ=~ .  Combining (2.3) and (2.12) implies 

( ){ } +ℜ∈≥= yxyxyxT ,,~~:~,~
~ λγ      (2.14) 

and therefore, 

( )1,1|~,~ −yxD
r

γλ
λ

λγ
γλγ

/11 +
−

=
+
−

=
yxyx

.     (2.15) 

Finally, combining (2.13) and (2.15) implies  

( ) ( )1,1|~,~
1

/1
1,1|, −

+
+=− yxDyxD

rr

λ
γλ

.     (2.16) 

Thus, (2.16) proposes a (unique) way to transform (2.15) to obtain (2.13) under single-input-

single-output CRS technology when output is scaled up.  However, this transformation 

depends on parameter of the technology λ, while our definition required such independence 

(since true technology sets are typically unobserved in practice by researchers).  Thus, (2.11) 

does not hold and therefore UDDF is not de-commensurable ex post.  ■ 

 

In words, once UDDF was calculated for the commensurated data, there is no unique 

(independent of technology) function that would transform UDDF score into the one for non-

commensurated original data. 
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What shall be clear from the intuition of the proofs is that not only the UDDF but also 

any DDF with a fixed directional vector will not satisfy even ranking-commensurability for 

all technologies.  The intuition for this can be explained by the additive nature of such DDF, 

which becomes irreconcilable with the multiplicative nature of the commensurability 

property.  This intuition encourages us to raise another natural question: Is it possible to cure 

UDDF measure in some way to ensure that an efficiency measure after commensuration is 

equal to its value before commensuration?  One possible cure might be applied to the (fixed) 

directional vector.  We call this concept ex ante ‘de-commensuration,’ defining it below. 

 

Definition 4. Ex ante de-commensuration 

An efficiency measure ( )pyx ,,E  is said to be de-commensurable ex ante if and only if 

zzF ℜ→ℜ∃ :   : ( )( ) ( )pyxpyx ,,,~,~ EFE = ,   MNT ++ ℜ∈ℜ∈∀∀ yx ;, . (2.17)  

and where xx xΩ=~  and yy yΩ=~  are as in definition 1.      

In words, an efficiency measure is de-commensurable ex ante if and only if along 

with the change of units of measurement of inputs and outputs one shall also modify the 

parameter vector p (e.g., directional vector in the case of DDF) to obtain the same numerical 

value of efficiency as for the observation in the original units of measurements.  Trying this 

on, for our UDDF, we finally get a positive result: UDDF is de-commensurable ex ante if its 

directional vector is ‘commensurated’ along with the inputs and outputs by pre-multiplying it 

by the respective commensuration matrices.  Formally, it can be easily shown that 

( ) ( )MNMN DD 11yx11yx yx ,|,),(|~,~ −=Ω−Ω
rr

 .    (2.19) 
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It is worth noting, however, that once the directional vector of UDDF’s has been pre-

multiplied by the (non-identity) commensuration matrices, the DDF is no longer a UDDF.  

Therefore, once commensuration takes place and a researcher wants to compare her results to 

the results of the other study with the ‘non-commensurated’ data, she cannot use UDDF, but 

shall rather use directional distance function with a ‘commensurated’ directional vector.  In 

other words, only the ‘lucky first’ gets to use DDF with unit directional vector and thus 

setting the standard for units of measurement towards which others have to comply by 

commensurating their unit directional vectors with the same matrices that relate their units of 

measurement to that of this standard. As standard scale is rather a question of tastes, 

traditions and practices, which may differ from school to school and from society to society, 

it might be difficult to achieve a consensus over this issue, as it is hard to convince the 

Europeans, for example, to switch to British weights and measures (e.g., pounds) or 

Americans to metric system (e.g., kilograms).  A compromise might be to use a directional 

distance function with a directional vector that would ‘commensurate’ itself when the data is 

commensurated.  In fact, the result (2.19) hints us on how to obtain a more general 

conclusion.  Specifically, the necessary and sufficient condition for the DDF to yield the 

same values for commensurated and non-commensurated data is that the directional vector is 

commensurated along with the data.  Formally, 

( ) ( ) TTDD ~)~,~(;),(~,~|~,~,|, ∈∈∀−=− yxyxddyxddyx yxyx

rr
  (2.20) 

if and only if xxx dd Ω=~  yyy dd Ω=~ .   (2.21) 

 

An interesting special (but still quite broad) case that ensures (2.20), which actually would 

not require commensuration of the directional vector explicitly, but would be obtained 

automatically, is when ),(),( yxdd yx yx ΞΞ−=− , where yx ΞΞ and  are any diagonal 
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matrices of dimensions  NxN  and  MxM, respectively, where elements are constants that, 

intuitively, assign weights of each input (output) relative to other inputs (outputs) in 

measuring the distance.  (The diagonal elements of yx ΞΞ and  can be zero or even negative).  

Special cases of this function have appeared before.  For example, Chung, Färe and Groskopf 

[4] used it for  

NNx ×=Ξ 0 , 








−
=Ξ

××

××

BBGB

BGGG
y I0

0I
,  

where GG×I  is a G  by G identity matrix assigning equal weights to G good outputs, BB×I  is a 

B  by B identity matrix assigning equal weights to B bad outputs and the rest are zero 

matrices of dimensions  indicated in subscripts.  Also, Zelenyuk [13] used it when 

yx ΞΞ and  were scalars multiplied by corresponding identity matrices.  Even more special 

cases are the popular directional vectors ),( yx− , as well as ),( y0  and ),( 0x−  under which 

one-to-one closed-form relationship with the Shpehard’s distance functions are known. 

Concluding, it might be worth noting that the test for satisfying absolute (and ranking) 

commensurability helps us reducing the problem of choosing the direction of measurement 

for DDF considerably.  In particular, it discourages from using DDF with any fixed vector, 

but the one satisfying (2.20)-(2.21).  Moreover, since the DDF in (2.20)-(2.21) is a special 

case of the general DDF, it thus not only passes the tests for commensurability, but (under the 

regularity conditions) also satisfies all the general properties derived by Luenberger [8, 9], 

Chambers, Färe and Chung [2, 3], and Färe and Grosskopf [7].  Finally, a natural extension to 

our work would be an exploration of other properties for DDF that are generally desirable for 

theoretical or empirical characterizations of technologies and efficiency measurement.  
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