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Abstract
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1 Introduction

Nonparametric estimation of probabilistic functions such as probability density functions (pdf) and
cumulative distribution functions (cdf) has attracted recent new interest when considering the task
of constructing shape-preserving estimators, see for instance Cheng et al. (1999). Quite naturally,
when estimating a pdf, it is highly desirable to have an estimator which fulfills conditions on a
pdf, i.e. non-negativity and integration to one. Similarly an estimator of a cdf should respect
monotonicity and right-continuity. In contrast to most nonparametric approaches, we aim at being
able to treat probabilistic functions with low spatial regularity, i.e. allowing for occasional jumps
or other discontinuities. This is a set-up where typically wavelet methods have been proven ad-
vantageous (Vidakovic (1999), Ogden (1996)), but it is not obvious how to do wavelet estimation
under the afore-mentioned shape constraints.

In this paper we treat shape-preserving wavelet estimation of pdf and cdf having observed
time series data. We do not need post-processors to make existing wavelet estimators satisfy the
shape constraints. Our construction is shape-preserving but not shape-imposing (we can treat also
non-monotone or non-positive functions). We start from the construction of Dechevsky and Penev
(1997, 1998), hereafter DP, who study, from a pure theoretical point of view, the univariate case of
estimating probabilistic functions with low spatial regularity with non-orthogonal wavelets, in the
case of i.i.d. data, only. In particular they do not come up with any algorithm to implement their
method on data. Our goal here is to examine a broad multivariate set-up where each component
can be either a pdf or a cdf, under least stringent conditions on these functions compared to
the usual ones underlying nonparametric approaches. We will see that a direct transfer of the
DP-construction to a multivariate set-up is not possible. One of the main motivations for this
framework is conditional quantile estimation, for dependent data in financial time series. Hence we
are aiming at a general methodology which can estimate a d−dimensional function which is a cdf
in the first component, and a multivariate pdf in the remaining d− 1 components. In order to do
so we have to take into account, on top of the shape-preserving property of our resulting estimator,
the fact that the usual wavelet methodology does not apply to cdf. To summarize the main three
contributions of this paper are, in this context,

• the definition of appropriate norms of convergence of a multivariate estimator in case one
component consists in a cdf; we recall that cdf are not integrable over the real line and hence
a classical Lp−construction, p <∞, for wavelets cannot be used. Additional problems in the
multivariate set-up arise as well;

• the generalisation of the univariate results of DP derived for i.i.d. data to the multivariate case
of dependent (time series) data under mixing conditions; here we will provide for conditions
that are weaker than those given in the literature (e.g. by Masry (1994); for more details on
the literature on density estimation, see right below);

• the proposal of fast and tractable algorithms which have not yet been considered, even in the
univariate case; having quick algorithms proves particularly useful for statistical inference via
computer intensive methods.

Of course, results in wavelet density estimation have already been established previously. Early
work has been made by Doukhan (1988) and by Doukhan and Léon (1990) for univariate inde-
pendent data. Masry provides a generalisation to dependent data using orthonormal bases in the
univariate case (Masry (1994)) and in the multivariate case (Masry (1997)), but the latter analysis
is limited to the case of uniform convergence on compact sets. Kerkyacharian and Picard (1992)
are, to our knowledge, the first to derive, for linear wavelet methods, optimality results for densities
in certain function spaces, such as Besov spaces. Tribouley (1995) studies multivariate densities us-
ing linear wavelet methods. Later, non-linear wavelet threshold methodology has successfully been
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applied to (univariate) density estimation, in, e.g., Donoho et al. (1996) and Kerkyacharian et al.
(1996), and Tribouley and Viennet (1998) for the specific case of β−mixing data. Note that for
these latter non-linear methods, orthogonality (or some slight deviation such as bi-orthogonality)
of the underlying wavelet bases has to be imposed. More recent studies on density estimation with
wavelets aim at dealing with the shape preserving properties mentioned above, see for instance
Penev and Dechevsky (1997) and Pinheiro and Vidakovic (1997). We recall that these approaches
use devices such as pre- or post-processing in order to have estimates satisfying the desired shape
properties.

Choosing the DP shape preserving wavelets as starting point for our work does not only over-
come the need of pre- or postprocessors but also provides us with the following advantages: 1) As
orthogonality has to be given up for those wavelets, we rely on an extremely simple construction
using B-splines. It allows us to have analytic expressions of our basis functions in the time domain,
and this is essential to be able to construct the cdf reconstruction by integration. 2) The same proof
technique can be used for the results in the pdf case and in the cdf case. 3) Our approach derives
very general results for linear wavelet density estimation without needing to restrict ourselves to
the Besov space framework of Kerkyacharian and Picard (1992).

Shape-preserving estimation of probabilistic functions turns out to be interesting for a variety
of nonparametric estimation problems. To give only a few examples beyond multivariate den-
sity estimation, we state hazard rate estimation (Hall and Van Keilegom (2004)) which calls for
monotonicity, and logistic regression, see for instance McFadden and Train (2000) for an applica-
tion to Mixed Multinomial Logit Models (MMNL). As a matter of fact, D. McFadden in his Nobel
Prize lecture (McFadden (2003)), precisely suggests that an appropriate multivariate extension of
the DP set-up should be used in the MMNL framwork. This would assure that the multivariate
indirect utility functions determining the choice probabilities display the required shape restric-
tions. Another application is quantile regression, with its inherent property to provide for robust
estimators (such as the median). We briefly discuss quantile regression when we develop our main
application, namely nonparametric estimation of conditional quantiles for time series, the condi-
tioning information being the past realized observations of the time series. As pointed out by Hall
et al. (1999) and Cai (2002), the shape preserving property of the estimates of cdf is particularly
important for the problem of quantile estimation. Here we strongly benefit in having directly (with-
out post-processing) a wavelet estimate which is monotone and constrained to lie between 0 and 1.
This is in contrast to other popular methods for quantile regression - see for instance the modified
local linear quantile estimators of Yu and Jones (1998).

Note that the time series framework where the conditioning variable is the lagged value of the
observed process calls for a particular care in proving consistency of our estimator, again under
least stringent smoothness assumptions on the conditional and marginal distribution functions of
the random process.

Our paper will be organized in the following way.
Section 2 gives an introduction to shape preserving wavelets and estimation of univariate prob-

abilistic functions, both pdf and cdf, as constructed by DP. We present the relevant terminology
and concepts such as moduli of smoothness, seminorms, as well as appropriate risk definitions. In
Section 3 we briefly recall the main results of DP which are essential for our work. For details sum-
marizing their work we refer to our Appendix A. Section 4 presents our theoretical contributions:
Theorem 1 states the most general result of this article. It is an extension of the univariate results
of Section 3 to higher dimensions and to the case of dependent data. Section 5 treats as important
applications, quantile regression and, in particular, conditional quantile estimation in the case of
financial time series data. For the latter one, we discuss numerical implementation via B-splines,
and present a simulation study. In a short conclusion we discuss some ideas for future research.
All proofs are deferred to an appendix section.
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2 Preliminaries on shape-perserving wavelets

We start this section by introducing the concept of Multiresolution Analysis (MRA). Let L2(R) be
the usual space of square integrable functions defined on the real line, that is L2(R) =

{
f : R →

R
∣∣ ∫ +∞
−∞ dxf(x)2 < ∞

}
. A MRA is a sequence of closed subspaces Vj ⊂ L2(R), j ∈ Z, with the

following properties (Meyer (1992)):

Vj ⊂ Vj+1, ∩Vj = {0}, ∪Vj = L2(R), (2.1)

and for all v(x) ∈ L2(R) and j, k ∈ Z, v(x) ∈ Vj ⇔ v(2x) ∈ Vj+1 and v(x) ∈ V0 ⇔ v(x − k) ∈ V0.
Moreover, a scaling function ϕ ∈ V0 exists such that {ϕ(x − l)|l ∈ Z} is a Riesz basis of V0. It
follows that in general ϕ(2jx) ∈ Vj and

{
ϕjk(x)

}
k∈Z

.
= {2j/2ϕ(2jx− k) | k ∈ Z} is a Riesz basis in

Vj .
The idea of orthogonal projection was the first one to be exploited in wavelet analysis, leading to

the construction of orthonormal bases of scaling functions, such that
∫ +∞
−∞ ϕ(x− l)ϕ(x−k)dx = δkl.

However, orthogonality poses a number of constraints on the construction of scaling functions, that
is for instance it is not possible to construct {ϕ(· − l)}l∈Z that are at the same time orthogonal,
non-negative, symmetric, and compatible with some degree of smoothness. Moreover we want to
build shape preserving operators, that is projection operators that map nonnegative functions to
nonnegative functions and monotone functions to monotone functions. To achieve this, we need
some extra freedom in building the proper scaling functions. We then introduce a non-orthogonal
projection operator starting from two different families of scaling functions {ϕ(2jx − k)}k∈Z and
{ϕ̃(2jx− k)}k∈Z. The projector on the space Vj is given by:

Aj
(
f
)
(x) =

∑

k∈Z
2j〈f, ϕ̃(2j · −k)〉 ϕ(2jx− k). (2.2)

The two families of functions are called primal basis, the one generated from the scaling function
ϕ, and dual basis, the one generated from the scaling function ϕ̃. We ask for the two families to
display the following properties. Let ϕ be such that

ϕ(x) > 0, x ∈ R; (2.3)

ϕ(x) bounded, right continuous; (2.4)

supp ϕ ⊂ [−a, a), a > 1/2; (2.5)
∞∑

k=−∞
ϕ(x− k) ≡ 1, on R; (2.6)

There exists b ∈ (−a, a) such that

ϕ is not decreasing for x 6 b and non-increasing for x > b.
(2.7)

Then let the dual scaling function, be such that:

ϕ̃ satisfies (2.3), (2.5), ϕ̃ ∈ L1, and

∫ +∞

−∞
dt ϕ̃(t) = 1. (2.8)

Analogously to the primal basis, we define the scaled versions of ϕ̃:
{
ϕ̃jk(x)

}
k∈Z

.
= {2j/2ϕ̃(2jx −

k) | k ∈ Z}.
The conditions given on ϕ̃ are weaker than those on ϕ. Condition

∑∞
−∞ ϕ(x − k) = 1 implies∫ +∞

−∞ dt ϕ(x) = 1 (for a proof see Anastassiou and Yu (1992), but the result is straightforwardly
obtained by swapping integral and summation signs). In particular, this means that both ϕ(x) and
ϕ̃(x) are normalized in the L1 norm.
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The following notation is also used:

ςϕ,ϕ̃(t) =

∫ +∞

−∞
dτ τϕ̃(τ)−

+∞∑

k=−∞
(t− k)ϕ(t− k). (2.9)

Let us examine why these assumptions guarantee a shape-preserving approximation (2.2) of a
pdf and of a cdf, respectively. Assumption (2.3) on ϕ and ϕ̃ ensures that the reconstruction (2.2) of
both pdf and cdf is non-negative. If Assumption (2.6) is also satisfied by ϕ̃, then the approximation
of a pdf integrates to 1. Assumptions (2.4) and (2.7) are specific to cdf shape preserving approx-
imation. The former guarantees that the reconstruction has the minimum regularity conditions
of a cdf (bounded and right continuous), while the latter, jointly with the non-negativity of ϕ̃,
guarantees the monotonicity of the reconstruction.

Assumption (2.5) is a usual compact support assumption which amounts to using finite length
filters in the implementation of the discrete wavelet transform and implies that

νa = #
{
ϕjk

∣∣ x ∈ Supp (ϕjk)
}

(2.10)

is independent of scale j and location k. Assumptions (2.6) and (2.9) together with the condition
ςϕ,ϕ̃ = 0 a.e. are equivalent to usual moment conditions in wavelet approximation theory, defining
the moments of the dual scaling function:

M̃0 =

∫ +∞

−∞
dt ϕ̃(t), M̃1 =

∫ +∞

−∞
dt t ϕ̃(t).

Then (2.6) and condition ςϕ,ϕ̃ = 0 can be rewritten in the following way:

+∞∑

k=−∞
(t− k)p ϕ(t− k) = M̃p, p = 0, 1 . (2.11)

These two conditions ensure that the multiresolution analysis Vj reproduces exactly polynomials
of degree less or equal to 1, or to say differently, fulfills a Strang-Fix condition of order 1.

We finish this preparatory section by recalling the useful concept of the modulus of smoothness.
This concept is used later on to derive the approximation properties of the projection operator
(2.2) in general function spaces, such as Sobolev and Besov spaces (for which we refer to Nikol’skĭı
(1975)). For functions defined on a region Ω ∈ Rd, we introduce the increment of the function f in
the direction i and the corresponding modulus of smoothness:

∆1
itf(x) = f(x + it)− f(x), ∆µ

itf(x) = ∆1(∆µ−1
it f(x)) ,

then, for h > 0, µ ∈ N and 1 6 p 6 ∞, the integral p-moduli of smoothness in the i direction is
given by

ωµi (f, h)p = sup
0<t6h

∥∥∆µ
itf(x)

∥∥
p

(2.12)

with the usual convention of the sup
x

-norm for p =∞, which is the classical modulus of continuity.

3 Shape preserving estimation of univariate probabilistic func-
tions

First we briefly summarize the main concepts of DP in the i.i.d. case of estimating univariate
probabilistic functions (pdf and cdf) by means of shape preserving wavelets. We recall these results
since they have inspired our own work for multivariate dependent data. Note that we need to define
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an estimation risk in a function norm which is appropriate for treating simultaneously the error
when estimating a pdf or a cdf nonparametrically (see Equation (3.5)). In the two cases the inner
products in Equation (2.2) can be estimated from the observed data (X1, . . . , Xn) in the following
way:

̂〈f, ϕ̃jk〉 = 〈f, ϕ̃jk(X)〉 =
1

n

n∑

i=1

ϕ̃jk(Xi), if f is a pdf; (3.1)

̂〈F, ϕ̃jk〉 = 〈F, ϕ̃jk(X)〉 =
1

n

n∑

i=1

2−
j
2
{

1− Φ̃(2jXi − k)
}
, if F is a cdf, (3.2)

with Φ̃(x) =
∫ x
−∞ ϕ̃(t) dt. Since f is a pdf, 〈f, ϕ̃〉 = E[ϕ̃]. Then (3.1) is an estimator of the expected

value of ϕ̃. In a similar way we can obtain (3.2) by integration by parts

〈F, ϕ̃jk〉 = 2−j/2 − 2−j/2E[Φ(2jX − k)],

using the boundness of the support and the normalization properties of ϕ̃jk. It then follows that
the estimators for the univariate pdf and cdf will be given by:

f̂(x) = Â
(n)
j

(
f
)
(x) =

1

n

∑

k∈Z

n∑

i=1

ϕ̃jk(Xi)ϕjk(x), if f is a pdf; (3.3)

F̂ (x) = Â
(n)
j

(
F
)
(x) =

1

n

∑

k∈Z

n∑

i=1

2−
j
2
{

1− Φ̃(2jXi − k)
}
ϕjk(x), if F is a cdf. (3.4)

Lemma 1. Let f be either a pdf or a cdf. Let ϕ, ϕ̃ fulfill Assumptions (2.3) to (2.8) and, if f is a
pdf, let ϕ̃ fulfill also (2.6). Then the estimator Âj

(
f
)

derived from the operator (2.2) using (3.4)
or (3.3) is shape preserving.

By shape preserving, we mean that if f is a pdf, then Aj
(
f
)

is a non-negative function that
integrates to 1, and that if F is a cdf, then Aj

(
F
)

is a monotone, right-continuous function and
limx→±∞Aj

(
F
)
(x) = 0, 1. For the proofs we refer to Lemma 2.2.1 in Dechevsky and Penev (1997)

for the pdf case, and Lemma 2.1.1 in Dechevsky and Penev (1997) and Lemma 3 in Anastassiou
and Yu (1992) for the cdf case.

To assess the behavior of the estimators we define a risk using the following quasi-norm for
functions g(x) defined on R, taking random variable values which depend on the realization of
(X1, . . . , Xn) :

∥∥ g
∣∣Lp(Lq)

∥∥ =

{∫ +∞

−∞
dx
(
E |g(x)|q

)p/q
}1/p

,

with 0 < p, q 6∞. Recall that for a quasi-norm the triangular inequality holds with
∥∥ g + h

∥∥
A
6

cA(
∥∥ g
∥∥
A

+
∥∥h
∥∥
A

), cA > 1. In order to be able to work with the usual triangular inequality, i.e.
cA = 1, we move to the space Lp(Lq)

ρ (defined in Appendix E) with an appropriately chosen ρ > 0
(see again the discussion in Appendix E).

In the Lp(Lq) quasi-norm the p parameter takes into account, via (2.12), the smoothness of
the function to be estimated, while the q parameter allows an additional degree of freedom when
imposing conditions on the tails of the density for the estimation risk to be finite. (Note that in the
original work of Dechevsky and Penev (1998) the role of the two parameters is inverted, and that
in contrast to usual Besov spaces, q is here connected to the stochastic dimension of the problem).
For p = q, we get the usual Lp−risk, i.e. E‖ · ‖p. The notation ‖ · ‖p continues to be associated
with the usual Lp(Rd)-norm.
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For now on let f̂ be generically an estimator for the density or for the cumulative. It follows
from the discussion above that

∥∥ f̂ − f
∣∣Lp(Lq)

∥∥ρ =
∥∥ f̂ − E(f̂) + E(f̂)− f

∣∣Lp(Lq)
∥∥ρ

6 c(p, q, ρ)
{∥∥ f̂ − E(f̂)

∣∣Lp(Lq)
∥∥ρ +

∥∥E(f̂)− f
∣∣Lp(Lq)

∥∥ρ
}
,

(3.5)

where in the sequel we will restrict ourselves for the range of parameters 1 6 p 6 ∞, 0 < q 6 2,
and we will always work with a choice of ρ such that c(p, q, ρ) = 1.

From Equations (3.1) and (3.2), we can easily see that the estimators (3.1) and (3.2) are unbiased
estimators of the inner products 〈f, ϕ̃〉, and that also Âj is unbiased for Aj . In total the triangular
inequality (3.5) can be rewritten as:

∥∥ f̂ − f
∣∣Lp(Lq)

∥∥ρ 6
{∥∥Aj

(
f
)
(·)− f(·)

∥∥ρ
p

+
∥∥ Â(n)

j

(
f
)
(·)−Aj

(
f
)
(·)
∣∣Lp(Lq)

∥∥ρ
}
. (3.6)

The first result (Dechevsky and Penev (1997), Theorem 2.1.1) treats the first part of Equa-
tion (3.6) which concerns the ”bias” of estimating either a cdf or a pdf denoted by f :

∥∥Aj
(
f
)
(·)− f(·)

∥∥
p
6 c1‖ςϕ,ϕ̃‖∞ · ω1(f, 21−ja)p + c2‖ϕ̃‖p′ · ‖ϕ‖∞ · ω2(f, 21−ja)p, (3.7)

where p′ ∈ [1,∞] is such that 1
p + 1

p′ = 1, a is the length of the support of the scaling functions,
and c1 > 0 and c2 > 0 are absolute constants that do not depend on the resolution level j.

Note that, in contrast to densities, cdf are not in Lp with 1 6 p < ∞, but only in L∞. Yet
by (3.7) the Lp distance between Aj(F ) and F is bounded. This means that the approximations
properties of Aj(F ) can be studied in an appropriately chosen Lp norm.

An explicit expression of the dependence of the bias on the resolution level j can be obtained
by specifying the function space to which f belongs and by taking advantage of the properties
of the modulus of smoothness of functions belonging to that specific space. Since, by definition,
ωµ(f, 21−ja)p is increasing in the argument 21−ja, both for pdf and cdf the bias can be bounded
by a decreasing function of j, so that Equation (3.7) can be rewritten as:

∥∥Aj
(
f
)
(·)− f(·)

∥∥
p
6 B(j), (3.8)

where B(j) is a decreasing function of j.
For the second term of (3.5), which is rewritten as

∥∥∥ Â(n)
j

(
f
)
(·) − E

(
Â

(n)
j

(
f
)
(·)
)∣∣∣Lp(Lq)

∥∥∥ =

{∫ +∞

−∞
dx
(
E
∣∣Â(n)

j

(
f
)
(x)− E(Â

(n)
j

(
f
)
(x)
∣∣q
) p
q

} 1
p

, (3.9)

we have two different behaviors depending on f being a cdf or a pdf.
For cdf. (Theorem 2.1.1 in Dechevsky and Penev (1998)) The variance term (3.9) has a

parametric decay O
(
( 1
n)ρ/2

)
to zero. In this case the bias rate can be adapted by opportunely

choosing the increasing function j∗ = j∗(n) such that B(j∗) = O(n−ρ/2) and the total risk, i.e. the
rate of convergence of (3.6), decays at a parametric rate:

∥∥ Âj
(
F
)
(·)− F (·)

∣∣Lp(Lq)
∥∥ρ = O

((
1

n

)ρ/2)
, n→∞ . (3.10)

It can be easily seen that the above convergence rate can be achieved by choosing j > (p/2) log 2 n.
For pdf. (Theorem 2.2.1 in Dechevsky and Penev (1998)) The variance term is an increasing

function of j, that is (3.9) is bounded by a function V (2j/n) = O
(
(2j/n)ρ

)
. When choosing the

function j∗ = j∗(n), we face the typical nonparametric trade-off between the competing behaviors
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of B and V as functions of j. In particular, j∗ = j∗(n) has to be an increasing function such that
V (2j

∗
/n) = O

(
B(j∗)

)
. The convergence rate we obtain for the estimator of pdf is of order

∥∥ Âj
(
f
)
(·)− F (·)

∣∣Lp(Lq)
∥∥ρ = O (2−j

∗(n)ρ), n→∞ . (3.11)

which is typically slower than the parametric one. These findings are the same as the ones in
classical wavelet estimation (Härdle et al. (1998), Kerkyacharian and Picard (1992)). For detailed
results, we refer to Appendix A, Corollaries 10 - 14 .

4 Shape preserving estimation of multivariate probabilistic func-
tions

This is the main section of our paper. Here we provide our original contribution, namely a multi-
variate extension of the results of DP summarized in the previous section. Our particular interest,
partially motivated from application to quantile estimation (see Section 5), lies in a situation where
the multivariate function F ∈ Rd is actually a cdf in the first argument, and a d− 1-variate pdf in
the remaining arguments, i.e.

FY (x, y) =

∫ y

−∞
dt f(t,x). (4.1)

However, our set-up allows for constructing estimators of multivariate densities f(x) ∈ Rd as well.
For ease of notation we present only the bivariate case and this in the specific cdf-pdf case, since
this set-up is the most innovative in our work. From now on the argument y will always denote the
variable with respect to which FY (x, y) is cumulated, and x the argument with respect to which
FY (x, y) is a density. The extension to higher dimensions is immediate. On the other hand, the
extension of the results on the bivariate pdf-cdf to a purely bivariate pdf can be obtained with
minor changes that will be given in the sequel.

Our constructions are based on tensor product wavelets, a concept that we briefly recall now.
The primal and dual wavelet bases ϕ, ϕ̃ introduced in Equations (2.3) - (2.8) are functions defined
from R to R so that functions f : R → R can be approximated. It is straightforward to build
scaling functions defined on Rd, so that multivariate functions can be approximated by wavelet
series, using tensor product wavelets. It is known (see, e.g., Meyer (1992) Section 3.3) that, if
{VJ}J∈Z is a multiresolution analysis of L2(R), then:

L2(R2) =

∞⋃

j1,j2=0

Vj1 ⊗ Vj2 .

Now we define J = (j1, j2) and VJ = Vj1 ⊗ Vj2 , from which we can derive the 2-d basis for each of
these approximation spaces VJ :

{ϕJk(x, y)}k∈R2 = {ϕj1k1(x)}k1∈Z ⊗ {ϕj2k2(y)}k2∈Z . (4.2)

Note that this construction can obviously be extended to any dimension d > 2.

In the sequel we provide approximation and estimation results of bivariate probability functions
treating both the i.i.d. and the dependent data (time series) case. To emphasize on the latter one
(including the first one), we suppose that we have real-valued bivariate time series observations
(Y1, X1), . . . , (YT , XT ), generated from a stationary stochastic process {(Yt, Xt)}t∈Z, whose depen-
dence structure is controlled via mixing conditions. In particular we could have that Yt = Zt and
Xt = Zt−1, where {Zt}t∈Z is a univariate stationary process. Let F k

i be the sigma-field of events
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generated by the random variables {(Yt, Xt), i 6 t 6 k}. The stationary process {(Yt, Xt)}t∈Z is
called strongly or α- mixing if

sup
A∈F0

−∞
B∈F∞p

∣∣P [AB]− P [A]P [B]
∣∣ = α(p) −−−→

p→∞
0 .

Below, if not differently stated, let f(·) be the “design” density fXt(x), which is the marginal
distribution of the stationary process in the pure time series case.

Our results are then derived under the following assumptions on the stochastic process.
Assumption 1: For every integer s > 0 there exist the joint distribution F(X0,Y0),(Xs,Ys) and a
positive constant M such that for every bounded zero-mean random variable T (Xt, Yt):

E[|T (X0, Y0) T (Xs, Ys)|] 6M E[|T (X0, Y0)|] E[|T (Xs, Ys)|] . (4.3)

Assumption 2 : The process {(Xt, Yt)} is α-mixing and the coefficients α(p) are such that:

∞∑

p=N

[
α(p)

]1−2/r
= O(N−1), (4.4)

for some r > 2.
Many processes verify the condition given on the mixing coefficients. Gaussian processes, non

Gaussian autoregressive moving average processes (see Pham and Tran (1980)), many nonlinear
functionals of these processes, and various GARCH and stochastic volatility models, see Carrasco
and Chen (2002).

We construct now our estimators in complete analogy of the univariate constructions (3.3) and
(3.4), using the shape preserving scaling functions ϕ and ϕ̃ that fulfill Assumptions (2.3) to (2.8).
Recall that J = (j1, j2). Let {ϕJk(x, y)}k∈R2 , {ϕ̃Jk(x, y)}k∈R2 be the bivariate primal and dual
bases built accordingly to (4.2), then the estimators of FY (x, y) and f(x, y) are given by:

Â
(T )
J

(
f
)
(x, y) =

∑

k∈Z2

{ 1

T

T∑

t=1

ϕ̃j1k1(Xt)ϕ̃j2k2(Yt)
}
ϕJk(x, y), (x, y) ∈ R2, (4.5)

Â
(T )
J

(
F
)
(x, y) =

∑

k∈Z2

T∑

t=1

2−
j2
2

(
ϕ̃j1,k1(Xt)

T
− ϕ̃j1,k1(Xt)Φ̃(2j2Yt − k2)

T

)
ϕJk(x, y), (x, y) ∈ R2.

(4.6)

Let us further introduce the multivariate approximator of the probabilistic function f :

AJ
(
f
)
(x, y) =

∑

k∈Zd
〈f, ϕ̃Jk〉ϕJk(x, y) . (4.7)

Note that the properties of the functions and of the projectors AJ

(
f
)
(x, y) that allow to approx-

imate cdf of one variable, cannot play the same role when we move to the multivariate analysis.
In particular (3.7) does not continue to hold in the multivariate Lp−norm because in two dimen-
sions it is not possible to bound the moduli of smoothness of a function which is in L∞ only, for
the y-variable. Consequently, and instead of using an L∞−norm which would urge us to assume
continuity of the density part of FY (x, y), we take advantage of the different convergence rates for
pdf and cdf as discussed in Section 3, and work with the following risk:

d
{
f̂(x, y), ĝ(x, y)

}
p

= sup
y∈R

∥∥ f̂(·, y) − ĝ(·, y)
∣∣Lp(Lq)

∥∥ . (4.8)
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Note that in order to be able to use this norm, we have to assume continuity of FY (x, y) as a
function of y. In the framework just introduced, we will see that the results in the approximation
and estimation of the bivariate FY (x, y) will look like the usual results on estimation of a univariate
pdf, and no additional theoretical effort is needed to interpret them. Moreover, these results
on the bivariate pdf-cdf can be adapted with minor changes to a bivariate pdf, where the norm
(4.8) becomes the usual Lp(R2)-norm. In the latter case, we do not need to make any continuity
assumption on bivariate pdf while we have to impose the continuity of FY (x, y) with respect to the
y argument. More details on the changes needed to adapt the pdf-cdf results to the pure pdf case
will be given at the end of each of the following sub-sections.

4.1 Bias in multivariate cdf-pdf approximation

We now bound the deterministic bias made by approximating FY (x, y), which will be measured in
the norm (4.8). The proof can be found in Appendix B. The proof technique is largely inspired
by the one in Dechevsky and Penev (1997), and changes have been made in order to adapt it to
the norm (4.8). As the proof is based on approximations by Steklov means, allowing to relate the
approximation error to the modulus of smoothness, we refer to Appendix D for a definition and
relevant properties of Steklov means. Recall the definitions of ςϕϕ̃ in (2.9). Further let ex or ey be
the unit vector in the x and y directions.

Lemma 2. Let Assumptions (2.3) to (2.8) hold. Let F (x, y) be, for a fixed x, a continuous function
in y. Then, for 1 6 p 6∞:

sup
y
‖AJ

(
F
)
(·, y)− F (·, y)‖p

6 c1 sup
y
ω1

ex

(
F (·, y), 21−j1a

)
p

+ c2 sup
y

sup
0<δ<1

∥∥∆eyδ(21−j2a)F (·, y)
∥∥
p

+ c3 sup
y
ω2

ex

(
F (·, y), 21−j1a

)
p

+ c4 sup
y

sup
0<δ<1

∥∥∆2
eyδ(21−j2a)F (·, y)

∥∥
p
.

(4.9)

The constants c1 and c2 include the value of the norms ‖ςϕϕ̃(2j1x)‖∞ and ‖ςϕϕ̃(2j2y)‖∞. If the
latter two L∞-norms are 0, then the constants c1 and c2 will be smaller but they cannot be equal to
0.

We remark in passing that, differently from Equation (3.7) of the univariate setting, in (4.9) the
first order terms, i.e. the terms in which appear the constants c1 and c2, apparently do not vanish
even if the conditions ‖ςϕϕ̃(2j1x)‖∞ = 0 and ‖ςϕϕ̃(2j2y)‖∞ = 0 are fulfilled. This should rather be
related to the proof technique and not to some fundamental reason.

Remark 1. If it is a bivariate pdf to be approximated, then in Lemma 2 we do not need to assume
continuity of f(x, y) with respect to y. In (3.7) the Lp-norm is taken with respect to both arguments
and the bound is given by the usual moduli of smoothness in the two directions, thus obtaining the
bivariate equivalent of (3.7).

4.2 Estimation of multivariate cdf-pdf estimation from dependent data

We come now to our main results where we study the estimation of the bivariate FY (x, y) from
a set of observations {(X1, Y1), . . . , (XT , YT )}, generated from a time series under Assumptions 1
and 2. The case where (Xi, Yi) are i.i.d. will be contained as a subcase of this one.

Again we make use of the triangular inequality to split the risk in a stochastic term and in a
bias term:

sup
y∈R

∥∥ Â(T )
J

(
F
)
(·, y)− F (·, y)

∣∣Lp(Lq)
∥∥ρ

6
{

sup
y

∥∥AJ
(
F
)
(·, y)− F (·, y)

∥∥ρ
p

+ sup
y

∥∥ Â(T )
J

(
F
)
(·, y)−AJ

(
F
)
(·, y)

∣∣Lp(Lq)
∥∥ρ
}
.
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The bias part has been bounded in Lemma 2. We now give an estimate from above of the stochastic
part of the risk of the estimator.

Lemma 3. Let ϕ, ϕ̃ be as in (2.3) - (2.8). Let {(Xt, Yt)}t=0,...,T be realizations of a stationary
process fulfilling Assumptions 1 and 2. Let p > 1, 0 < q 6 2 and ρ = min{2, p}. Assume, for fixed
y, that FY (x, y) ∈ Lp/2 ∩ L1 ∩ Lp/r for some r > 2 . Let j2 > (p/2) log2 T . Then

sup
y

∥∥∥ Â(T )
J

(
F
)
(·, y) − E

[
Â

(T )
J

(
F
)
(·, y)

]∣∣∣Lp(Lq)
∥∥∥
ρ
6 V0 + V1, (4.10)

where

V0 =

(
2j1

T

)ρ/2 [
d1 max

{
sup
y

∥∥F (·, y)
∥∥

1
, sup
y

∥∥F (·, y)
∥∥
p/2

}ρ/2

+ d2(a) max
{

sup
y
ω1

ex

(
F (·, y), 21−j1a

)
1
, sup
y
ω1

ex

(
F (·, y), 21−j1a

)
p/2

}ρ/2]

+O
(
T−ρ/2

)
;

(4.11)

V1

V0
−→ 0, as T →∞ . (4.12)

Moreover, we have

max
{

sup
y

ω1(F (·, y), 21−j1a)1, sup
y

ω1(F (·, y), 21−j1a)p/2
}

= o(1), j1 →∞,

if 2 6 p <∞ ,
or if p =∞ and F is continuous also with respect to the argument x,

or if 1 < p < 2 and sup
y

sup
06t6h

∫ +∞

−∞
dx
(∫ 1

0
dαF (x+ αt, y)

)p/2
<∞.

Here d1 and d2(a) are absolute constants that do not depend on the resolution levels J = (j1, j2),
and a is the support of ϕ, ϕ̃. As it can be seen from Equation (4.10) the stochastic component of
risk has two contributions V0 and V1 (for an explicit form of the latter one we refer to the proof).
V0 is the only variance term we would obtain if F̂Y (x, y) were estimated from i.i.d. data.

In Appendix F we provide a slightly more general expression for the variance term in the i.i.d.
set-up, in which we can allow for a parameter range 0 < q <∞.

A close inspection of (4.11) indicates that only the resolution parameter j1 appears. Formally
the variance term obtained in Lemma 3 is equivalent to the one we would obtain for a univariate
pdf, see Appendix A. This is because, as remarked in the discussion following Equations (3.10)
and (3.11), the cdf like component of the variance has a faster convergence, and with the choice
j2 > (p/2) log2 T the convergence of the entire y component of the stochastic error is taken into
account by the O(T−ρ/2) term . We can finally put together the results of Lemmas 2 and 3 to
obtain the convergence rates of ÂTj .

Theorem 1. Let the assumptions of Lemmas 2 and 3 hold. Then the total risk of the estimator
ÂTj of FY (x, y) is:

sup
y∈R

∥∥ Â(T )
J

(
F
)
(·, y) − f(·, y)

∣∣Lp(Lq)
∥∥ρ

6 c1 sup
y
ω1

ex

(
F (·, y), 21−j1a

)ρ
p

+ c3 sup
y
ω2

ex

(
F (·, y), 21−j1a

)ρ
p

+

(
2j1

T

)ρ/2{
C1 + o(1)

}

+O(T−ρ/2) + o(1).

(4.13)
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The constants c1, c3 and C1, can be made explicit by comparing (4.13) with (4.9) and (4.11).
Again we remark that only the j1 parameter appears. The increments ‖∆i

eyf‖ of the function
FY (x, y) in the direction y that can be found in (4.9) are missing in (4.13), since they are taken into
account in the O(T−ρ/2) term once the j2 > (p/2) log2 T choice is made. The o(1) term takes into
account the V1 component of the variance. Since the risk given in Theorem 1 is formally equivalent
to the one we would obtain in the estimation of a univariate pdf, the explicit convergence rates
of ÂJ

(
f
)

can be obtained again by choosing a resolution level j1 in the x direction that balances
the bias and variance competing behaviors, and will be equivalent to the convergence rates of the
estimator of a univariate pdf having the same smoothness as the pdf part of FY . A corollary on
the rates of convergence of our estimator in the bivariate case is then immediate and is similar to
Corollaries 10-14 in Appendix A.

Remark 2. Lemma 3 can be extended to a bivariate pdf by relaxing the continuity assumption
on the y variable and by asking for f(x, y) ∈ Lp/2 ∩ L1 ∩ Lp/r. Then in (4.11) we would have a

(2j1+j2/T ) factor instead of (2j1/T ), and the O(T−ρ/2) term would disappear.

Theorem 3 and the proofs deal with the bivariate distribution function FY (x, y), but a close
look at the proof shows that the results can be immediately extended to dimension d > 2. As a
multivariate density has finite Lp-module of smoothness for some p <∞, we can extend Theorem 1
to functions FY (x, y), by looking at the uniform convergence in y of

sup
y

∥∥∥Â(T )
J (f)(·, y)− EÂ(T )

J (F )(·, y)
∣∣∣Lp(Lq)

∥∥∥

where ‖ · ‖p would now be the Lp(Rd−1)-norm.
Let us briefly comment on the results obtained for the convergence of the distribution function

FY (x, y). We derived the upper bound and asymptotic behavior of the stochastic term of the risk
of the estimator (4.6) when the data come from a weakly dependent process. The risk is computed
in the Lp(Lq)-norm. The advantage of separating the pointwise expectation from the global norm
is probably more evident here than in other contexts. This can be seen by comparing our results
with the ones in Masry (1994). First of all Masry computes the risk in the Sobolev W s

2 norm, while
starting from the Lp(Lq) risk we can specify the risk in a variety of different norms, especially in the
norm of the Besov spaces built starting from Lp. But the main difference concerns the conditions
that have to be imposed on the tails of the density for the risk not to explode. While we simply
need to impose that f ∈ Lp/r, r > 2, in Masry (1994) the decay of the density tails has to be related

to the smoothness s of the density, asking for a decay of order x−β , with β > 0.5 + s.

5 Statistical applications: quantile regression and estimation of

conditional quantiles of financial data

As important application of our methodology, we address the estimation of conditional quantiles.
Let us consider the stationary process {(Xt, Yt)} introduced in Section 4. We wish to estimate the
conditional distribution function FY (y|x) = P (Yt 6 y|Xt = x) and, from this, the p-th conditional
quantile, that is the value Q(x, p) = inf{y ∈ R|F (y|x) > p}, for a probability level 0 < p < 1. The
conditional median Q(x, p = 0.5) has often been object of interest. It is used as an alternative to
the conditional mean to deliver a robust estimate of the effect of the variable X on the response
variable Y . In general given a collection of conditional quantiles we can build confidence intervals
for the variable Y . In the case of a stationary process {Zt}t∈Z, when Yt = Zt and Xt = Zt−1, it
is possible to build prediction intervals for Zt having observed Zt−1. The estimation of conditional
quantiles of financial time series partially motivates this work. In this section we start by linking
the problem of the estimation of conditional quantiles to the one of the estimation of the bivariate
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FY (x, y) studied in the previous sections. In order to achieve this, we show that a modification of
the norm (4.8) is needed. We then provide a couple of scaling functions ϕ, ϕ̃ fulfilling Assumptions
(2.3) to (2.8) and (2.11), and we build explicitly shape preserving estimators, thus providing an
algorithm for the implementation of the shape preserving set-up. Finally we carry out a Monte
Carlo experiment to test our methodology.

5.1 Set-up and conditional quantiles

We retain the same assumptions on the stochastic process as in Section 4. In particular we consider
observations {Y1, . . . , YT } of a stationary process {Yt}t∈Z such that the couples {(Yt, Xt = Yt−1)}t∈Z
form a Markovian process of order one fulfilling Assumption 1 and the mixing conditions of As-
sumption 2. Moreover we assume that the conditional distributions FYt(y|x) and fYt(y|x) of Yt
given Xt = x exist. Here we are interested in the p-th conditional quantile, which is assumed to be
unique. We define the estimator Q̂(x, p) to be such that

Q̂(p, x) = inf
{
y ∈ R

∣∣ F̂ (y|x) > p
}
. (5.1)

We remark that the solution of (5.1) always exists since F̂ (y|x) is monotone and bounded between
0 and 1.

Now, since we assumed the existence of the conditional pdf f(y|x), and that by definition F (y|x)
is its integral, we can write a Taylor expansion with integral remainder:

F (Q̂(p, x)|x) − F (Q(p, x)|x)

=
(
Q̂(p, x)−Q(p, x)

) ∫ 1

0
dθf

(
Q(p, x) + θ(Q̂(p, x)−Q(p, x))

∣∣ x
)
.

(5.2)

Denote f̃Q̂,Q(x)
.
=
∫ 1

0 dθf
(
Q(p, x) + θ(Q̂(p, x)−Q(p, x))

∣∣ x
)
.

In order to invert (5.2) we additionally assume some local lower bound on the conditional
densities such as the existence of a positive c such that f(y|x) ≥ c > 0,∀y ∈ |y − Q(p, x)| < εδ .
Here εδ is chosen as a function of the convergence of F̂ to F (see Theorem 1) implying that for
T sufficiently large, F̂ (Q̂(p, x)|x) is in a δ− neighborhood of F (Q̂(p, x)|x), and by a (uniform)
continuity argument, Q̂(p, x) is in a εδ− neighborhood of Q(p, x).

Remarking now that we can express F (y|x) = FY (x, y)/f(x), and that, by definition,
F̂ (Q̂(p, x)|x) = p = F (Q(p, x)|x), we can write

Q̂(p, x)−Q(p, x) =
1

f̃Q̂,Q(x)

{
FY (x, Q̂(p, x))

f(x)
− F̂Y (x, Q̂(p, x))

f̂(x)

}
. (5.3)

It is not possible to evaluate the right-hand side of (5.3) with the norm (4.8), since the densities
in the denominator pose a measurability problem upon integration with respect to the x variable.
We then restrict our attention to studying the convergence of the conditional quantile in a neigh-
borhood of the conditioning value X = x. It remains to determine how big the neighborhood of
x should be. Since from Lemma 2 we know that the bound on the bias of FY (x, y) is given by
ωµex
(
F (·, y), 21−j1a

)
p
, that is a measure of the variation of FY in a set of radius 21−j1a, we compute

the convergence of Q̂(x, p) to Q(x, p) in a neighborhood of x of radius 21−j1a, since no improvement
in the estimation error could be made by restricting ourselves to a smaller set containing x. We
then state the following theorem.

Theorem 2. Let the assumptions of Lemmas 2 and 3 hold with {(Yt, Xt = Yt−1)}, {Yt}t∈Z being a
stationary stochastic process. Let furthermore the marginal density fXt(x) of the stationary process
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be bounded away from 0 for x ∈ |x− ξ| < 21−j1a, where Xt = ξ is value taken by the conditioning
variable. Then

∥∥ Q̂(p, ·)−Q(p, ·)
∣∣Lp(Lq)

∥∥ρ
[|x−ξ|<21−j1a]

6 C̃(ξ) · sup
y

∥∥ Â(T )
J

(
F
)
(·, y)− F (·, y)

∣∣Lp(Lq)
∥∥ρ

[|x−ξ|<21−j1a]

6 C̃(ξ) · sup
y

∥∥ Â(T )
J

(
F
)
(·, y)− F (·, y)

∣∣Lp(Lq)
∥∥ρ

(5.4)

where C̃ depends on the value of the conditioning value ξ. The bound and convergence rate of the
right hand side of (5.4) are given in Theorem 1.

5.2 Implementation and Monte Carlo experiments

In this section we implement our method on simulated time series, and compare it with a kernel
based conditional quantile estimator. We start by choosing a pair of primal and dual bases {ϕ(· −
k)}k∈Z, {ϕ̃(· − k)}k∈Z verifying Properties (2.3) to (2.8). As primal basis we use translates of
B-Splines. B-Splines of order N are piecewise polynomials of order N − 1 defined on the N
segments determined by N + 1 distinct nodes. They are N − 1 times differentiable at the nodes
by construction. We consider a B-Spline function of order N , from now on, Nϕ(x), translated so
that its nodes correspond to integer values, regardless of whether N is even or odd. The function

Nϕ(x) can be characterized via its Fourier transform:

N ϕ̂(ξ) = e−iκξ/2
( sin ξ/2

ξ/2

)N
= e−ibN/2cξ

(
1− e−iξ

iξ

)N
,

where κ = 0 if N is even, κ = 1 if N is odd, and btc denotes the largest integer not exceeding t.
The choice of the knots implies that Nϕ(x) is not always symmetric. We have that:

2Nϕ(−x) =2N ϕ(x) but 2N+1ϕ(1 − x) =2N+1 ϕ(x).

Note that 1ϕ(x) is the Haar scaling function. As a dual basis we use the translates of the indicator
function of the support of the generator of the primal basis. That is, if Nϕ(x) is the B-Spline that
lives on

[
b−N/2+1c, bN/2+1c

)
, then N ϕ̃(x) = 1

N I
(
[b−N/2+1c, bN/2+1c)

)
. Let us have a closer

look at some properties of the estimators built with this choice of primal and dual basis. Consider
the density estimator of Equation (4.5). The coefficients of the scaling functions Nϕjk are given by:

1

T

T∑

t=1

N ϕ̃jk(Xt) =
1

T
· {number of Xt in the support ofNϕjk},

so that the estimation procedure boils down to counting the number of points that fall within
the support of the scaling functions. We could think of the operator (4.5) as a special version of
a smoothed histogram, even though we are actually dealing with overlapping supports. Such a
density estimator is interesting because it is fast. Indeed suppose you want to estimate the density
of a random variable on a grid of M points. Since the reconstructing functions ϕjk are known
beforehand, you know the ν ×M matrix of values taken on the grid by the ϕjk’s, where ν is the
number of overlapping basis functions on each grid point. Then the estimation consists in counting
the number of data falling in the support of every ϕjk, then in multiplying element by element with
the former ν ×M matrix, and finally in summing on the columns to get your density estimates
at the M selected points. Such an algorithm is simple and quick, and there are no constraints
on the number of points, unlike in Fast Fourier Transform based algorithms. Besides the wavelet
estimator compares well with more traditional ones, as we will see in the next small simulation
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study. The simulations (for which code and datasets are available on request) are carried out with
the free programming software Ox, see Doornik (2002).

The design of the Monte Carlo experiments is as follows. We consider a centered stationary
autoregressive process of order one, whose root is equal to 0.6. The innovations are chosen to be
either symmmetric or asymmetric. For the symmetric case, we draw from a Gaussian distribution
with zero mean and unit variance. For the asymmetric case we draw from a skewed histogram.
This histogram is plotted in Figure 1. The sample size is equal to 2000, while the number of Monte
Carlo replications is equal to 1000. The kernel estimator relies on a product quartic kernel. Our
estimators require the choice of four smoothing parameters, two in the pdf-like direction, hx and
jx, and two in the cdf-like direction, hy and jy. As discussed after Equations (3.10) and (3.11), the
crucial choice is the one of the smoothing parameters in the x direction, while the choice of the
smoothing parameters in the y direction is not as critical, since there is no bias-variance trade-off
for this component. The smoothing parameters in the y direction will be chosen to be smaller than
all the possible choices of the parameters in the x direction.

First we opt for a ”best case” framework in the sense that we select the bandwidth or resolution
level which minimizes a given loss function for each Monte Carlo run. Some preliminary simulations
have been made to determine suitable grids.

We have chosen to select the bandwith hx in the grid {0.15, 0.20, . . . , 0.60} × 2.6226 for the
symmetric case, namely 10 values, and {0.05, 0.07, . . . , 0.25} × 2.6226 for the asymmetric case,
namely 11 values. The resolution level jx is selected among three values {2, 3, 4}. The smoothing
parameters in the y direction are chosen to be hy = 0.03 and jy = 6. We use two different loss
functions, namely an Integrated Absolute Deviation and an Integrated Square Error. We integrate
over the probability interval [0, 1], and condition with respect to the simulated 2000th value in
predicting the conditional quantile associated with the next observation. The deviation or error
is computed with respect to the true conditional quantile. Loss function values are then averaged
through all runs to get a Mean Integrated Absolute Deviation (MIAD) and a Mean Integrated
Square Error (MISE). The results of the simulations are reported in Table 1. As it can be seen, the

Symmetric case Asymmetric case
Kernel Wavelet Kernel Wavelet

MIAD 5.90E-02 6.60E-02 4.91E-02 4.16E-02
MISE 8.36E-03 9.96E-03 5.74E-03 4.01E-03

Table 1: MIAD and MISE for the kernel and wavelet estimators when choosing the optimal band-
width or resolution level within each run.

wavelet estimator performs better in the asymmetric case, and only slightly worse in the symmetric
case. More specifically, in the symmetric case, we have a 12% increase in the MIAD and a 19%
increase in the MISE, while, in the asymmetric case, we have a 18% decrease in the MIAD and a
43% decrease in the MISE - compared to the kernel method. In the asymmetric case the better
performance of the wavelet estimator could have been anticipated. In the symmetric case we would
have anticipated a similar performance for the two methods. We believe that the slightly better
performance of the kernel estimator is here explained by the finer grid of values for the bandwidth
choice compared to the choice of the resolution level of the wavelet estimator.

The first part of the simulation study has just allowed us to say that the wavelet estimator gives
us a better global picture of the conditional distributions when the innovations are asymmetric and
present local irregularities. However the clear advantages of the wavelet estimator are even better
described by the second part of the simulation study. Here we select one bandwidth or resolution
level, and maintain it fixed across all runs to check robustness of the estimation procedures with
respect to the selection of the bandwidth value or the resolution level. We use the same grids as
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above. The results of the experiments are given in Table 2 for the symmetric case, and in Table 3
for the asymmetric case.

Average Min Max Range

MIAD
Wavelet 8.23E-02 7.27E-02 10.14E-02 2.86E-02
Kernel 9.06E-02 7.27E-02 13.02E-02 5.75E-02

MISE
Wavelet 1.46E-02 1.27E-02 1.83E-02 0.55E-02
Kernel 1.77E-02 1.23E-02 2.74E-02 1.51E-02

Table 2: MIAD and MISE for the kernel and wavelet estimators in the symmetric case when a fixed
bandwidth or resolution level is kept fixed across all runs.

Average Min Max Range

MIAD
Wavelet 62.51E-03 58.85E-03 69.83E-03 10.98E-03

Kernel 64.34E-03 57.73E-03 75.65E-03 17.92E-03

MISE
Wavelet 9.90E-03 9.16E-03 10.27E-03 1.11E-03

Kernel 10.60E-03 8.66E-03 17.53E-03 8.87E-03

Table 3: MIAD and MISE for the kernel and wavelet estimators in the asymmetric case when a
fixed bandwidth or resolution level is kept fixed across all runs.

From Tables 2 and 3 it can be seen than MIAD and MISE delivered by the wavelet estimator
lie in a range of values unambiguously narrower than the one given by the kernel estimator, and
this for both the symmetric case and the asymmetric case. These results indicate that the wavelet
estimator can be considered as more robust than the kernel estimator with respect to the choice of
the smoothing parameter. Putting together the results of the first and second parts of the simulation
study, we argue that if we allow for a fine tuning of the bandwidth parameter, the kernel estimator
can match the performance of the wavelet estimator in some cases, but it displays a much higher
sensitivity with respect to the smoothing parameter. The robustness of the wavelet estimator is
advantageous since it assures that the choice of the resolution parameter is not as critical, provided
it is chosen within a sensible range.

We think that this robustness feature of the wavelet method can be explained by the biorthogo-
nal basis approach used to build the estimator, see Equation (4.7). Whereas for the kernel estimator
there is the classical variance-bias trade off with the quartic kernel function which becomes nar-
rower and hence more variable as the bandwidth decreases, the wavelet estimator benefits from
the fact that for increasing resolution level jx only the primal scaling function ϕjk(x) behaves as
the classical kernel. However, the dual scaling function ϕ̃jk(x), a boxcar (Haar) function used to
construct the coefficients in the reconstruction (4.7), suffers less from increasing variability on finer
levels. (A boxcar function used to construct the local average assigns equal weights to all observa-
tions which tends to be numerically more stable than a local average provided by a higher order
scaling function, or a kernel of higher order such as the quartic one). This is likely to temper the
increase of the numerical variability for the wavelet compared to the kernel estimator.

6 Conclusion

In this paper we have further developed the DP approach of constructing shape-preserving non-
parametric estimators of probabilistic functions (cdf and pdf). The wavelet methodology, taylored
to reconstruct functions with low spatial regularity, has been extended to higher dimensions and
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Figure 1: Distribution of the innovations for the asymmetric case.

to serially dependent (time series) data. In contrast to existing work this approach does not need
to use pre- or postprocessors applied to traditional wavelet estimators in order to render, for pdf
estimation, them positive and integrating to one, and, for cdf estimation, monotone. We have in-
vestigated and solved the problem of defining appropriate norms of convergence and derived rates
of consistency for our estimators in these norms. We have applied our general methodology to
the specific problem of conditional quantile estimation for dependent data in financial time series
analysis. This has required to treat the specific situation of the intertwining of a cdf component
and a pdf component in a (w.l.o.g.) bivariate nonparametric curve estimation set-up, and to face
and solve the technical difficulties of this framework. Last but not least we have designed tractable
algorithms relying on B-splines in that context.

Our method is still linear, and some words of comparison with both linear kernel estimation
and non-linear wavelet estimation seem to be necessary here. First, our linear wavelet estimators
are performing uniformly not worse than kernels, meaning that they offer advantages for some
functions with local structure without losing performance in general for smoother functions. They
also exhibit some robustness properties with respect to the selection of the smoothing parameter.
Second, they provide a starting point for more flexible constructions which give more degrees of
freedom. Indeed with our non-orthogonal wavelets (scaling functions) we have more options to
adapt the construction of the estimator to the situation at hand. We have seen for instance that
computing the empirical inner products boils down to counting the number of observations falling
in a given interval. Further, since primal and dual bases are not so tightly related as they would be
in a biorthogonal set-up, changes in the primal scaling function to obtain smoother reconstructions
only require a change in the support of the indicator function used as dual basis for the moment
conditions to continue to hold. Linear wavelet methods have shown practical interest in empirical
analysis anyway. Lee and Hong (2001) find that even linear wavelet methods capture irregularities
in the spectral density better than kernel methods.

We have to acknowledge that the real strength of wavelet estimators shows up when it comes to
non-linear, i.e., threshold estimators. But, for one, it is not clear how to design a neat methodology
to maintain the shape-preserving property of the resulting wavelet threshold estimator. Simply
deleting the non-significant empirical wavelet coefficients at ”arbitrary” locations will surely destroy
this property. We believe that the ”zero-tree” wavelet estimators of Shapiro (1993) could be an
interesting alley for future research in that respect. This construction keeps a group of empirical
wavelet coefficients at a specific location and scale together with all ”coarser scale parents” at the
same location over all coarser scales. This yields a kind of ”locally linear” complete reconstruction
structure. However, it is even not obvious how to build the wavelet functions in this specific non-
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orthogonal set-up. We think that one possibility is to follow the rather general device of Cohen
(2003) to extend our work.

To finish we summarize again the points of methodological interest of this work which are:

1. Our method can be applied to probabilistic functions belonging to a large variety of smooth-
ness classes, and, in particular, to specific classes of non smooth functions.

2. The wavelet estimators are shape preserving (but not shape imposing). This type of wavelets
are well suited for applications in many fields of statistics in which some shape restriction is
imposed to the function to be estimated. The extension of the set-up of DP (Section 3) to a
multivariate setting has therefore a theoretical interest that goes beyond the application we
have investigated in this work.

3. A large flexibility is permitted in choosing the wavelet bases, which implies clear computa-
tional advantages.
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APPENDICES

A The Dechevsky-Penev construction

This Appendix A gathers some of the details of the results of DP as far as they have not already been
included in Section 3. For definitions of the given function spaces, such as Ẇ 1

q , we refer to Nikol’skĭı (1975).

A.1 Approximation of Univariate Probability Distribution Functions

Cumulative Approximation
Let ϕ, ϕ̃ satisfy (2.3) to (2.8). Let F be a cumulative distribution function. In the first set of corollaries,

‖ςϕ,ϕ̃‖∞ may not be equal to zero. If it is, the constants appearing in the bounds will be smaller.

Corollary 1. There exists c > 0 independent of F , such that
∥∥Aj

(
F
)
(·)− F (·)

∥∥
1
6 c · 2−j . (A.1)

Corollary 2. There exists c > 0 independent of F , such that
∥∥Aj

(
F
)
(·)− F (·)

∥∥
p
6 c · 2− jp . (A.2)

Corollary 3. If F is absolutely continuous, and f = F ′ ∈ Lp, 1 6 p 6 ∞, then there exists a c > 0
independent of f , such that ∥∥Aj

(
F
)
(·)− F (·)

∥∥
p
6 c · 2−j‖f‖p. (A.3)

Corollary 4. Let F ∈ Ḃsp∞, 1 6 p 6∞, 0 < s < 1. Then there exists a c > 0 independent of F , such that
∥∥Aj

(
F
)
(·)− F (·)

∥∥
p
6 c · 2−js|F |Bsp∞ . (A.4)

Corollary 5. Let 1 < p 6 ∞, 1/p 6 s < 1 and F ∈ Ḃsp∞. Then for every q : p 6 q 6 ∞, there exists a
c > 0 independent of F , such that

∥∥Aj
(
F
)
(·)− F (·)

∥∥
q
6 c · 2−j

(
s− 1

p+ 1
q

)
|F |Bsp∞ . (A.5)

Additional Assumption. In the following corollaries, ςϕ,ϕ̃ = 0 a.s., has to be assumed.

Corollary 6. Corollary 4 still holds and s can be taken to be 0 < s < 2. Moreover, for 1 6 s < 2, we can
rewrite inequality (A.4) as ∥∥Aj

(
F
)
(·)− F (·)

∥∥
p
6 c · 2−js|f |Bs−1

p∞
, (A.6)

where f = F ′ is the density.

Corollary 7. When s = 2, inequality (A.4) is modified, and can be rewritten
∥∥Aj

(
F
)
(·)− F (·)

∥∥
p
6 c · 2−js|F |Ẇ 2

p
, (A.7)

or

∥∥Aj
(
F
)
(·)− F (·)

∥∥
p
6 c · 2−js|f |Ẇ 1

p
, (A.8)

where f = F ′ is the density.

Density Approximation
For density estimation similar results hold as for the case cdf estimation. Corollaries 1 to 7 still hold if

substituting F with f . The main difference is that cumulates are naturally smoother than densities functions.
Corollary 1 automatically holds for cumulative distribution functions, which are by definition of bounded
variation. We will instead have to assume that a density is of bounded variation for Corollary 1 to hold.
The only result that one can obtain for a density without any assumption on its regularity is:

∥∥Aj
(
f
)
(·)− f(·)

∥∥
1

= o(1), as j →∞ , (A.9)

since f ∈ L1 by definition and ω(f, 2−j) →j→∞ 0 iff f ∈ L1 by definition of the modulus of smoothness.
The following corollaries are given without proof.
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Corollary 8. Let f be of bounded variation. Then Corollaries 1 and 2 hold for densities, and F is replaced
by f .

Corollary 9. Corollaries 3 to 7 hold for densities, F is replaced by f and f is replaced by f ′.

A.2 Stochastic error for Univariate Probability Distribution Functions

For cdf With p > 1, 0 < q 6 2, ρ = min{p/2, 1}
∥∥∥ Â(n)

j

(
F
)
(·)− E

(
Â

(n)
j

(
F
)
(·)
)∣∣∣Lp(Lq)

∥∥∥
ρ

6 c · n−ρ/2
{∥∥F (1− F )

∥∥min{1,p/2}
p/2

+c2(a, ϕ, ϕ̃)ω1

(
F, 21−ja

)min{1,p/2}
p/2

}
,

(A.10)

Moreover, for 1 6 p <∞ and F (1− F ) ∈ Lp/2, we have that
ω1(F, 21−ja)p/2 = oj(1) as j →∞. If F is continuous, the case p =∞ is included.

For pdf Let f be a density and 1 6 p 6∞, 0 < q 6 2, ρ = min{p/2, 1}
∥∥∥ Â(n)

j

(
f
)
(·)− E

(
Â

(n)
j

(
f
)
(·)
)∣∣∣Lp(Lq)

∥∥∥
ρ

6
(

2j

n

)ρ/2[
max

{
‖f‖1, ‖f‖p/2

}ρ/2

+ c(a) max
{
ω1(f, 21−ja)1, ω

1(f, 21−ja)p/2
}ρ/2

]
.

(A.11)

Moreover
max

{
ω1(f, 21−ja)1, ω

1(f, 21−ja)p/2
}

= oj(1), j →∞,
if 2 6 p <∞ ,
or if p =∞ and f is continuous,

or if 1 < p < 2 and sup
06t6h

∫ +∞

−∞

(∫ 1

0

dα f(x+ αt)
)p/2

< +∞.

A.3 Choosing the optimal estimation risk for pdf

To choose the optimal function j∗(n) in Theorem 1, the dependence of B(j) on j needs to be made explicit.
This can be done by using the results on the decay of the bias. For explicit expressions on the decay of the

bias see Dechevsky and Penev (1997) or above. Denote
∥∥Â(n)

j (f)(x)−f(x)
∥∥ = εn,jp,q and j∗ = j(n) the optimal

resolution level. The first corollaries are obtained with ‖ςϕ,ϕ̃‖∞ 6= 0, but hold also true with smaller values
of the constants if ‖ςϕ,ϕ̃‖∞ = 0. The first proof is given as an example, the other proofs are straightforward
following the example of the first one.

Corollary 10. Let 1 6 p 6∞ and 0 < q <∞, f ∈ Ẇ 1
q ∩ L1 ∩ Lp/2. Then,

j∗ = (log2 n)/3 and (εn,jp,q )ρ = O
(
n−ρ/3

)
.

Proof. ω2(f, 21−ja)p 6 2ω1(f, 21−ja)p and ω1(f, 21−ja)p 6 21−ja‖f ′‖p so the bias term is bounded by c·2−jρ

while the variance grows as
(

2j

n

)ρ/2
. Equalizing 2−jρ = 2jρ/2n−ρ/2 gives 2−3j/2 = n−1/2 which is solved for

j∗ = 1
3 log2 n that gives a convergence rate of 2−j

∗ρ = n−ρ/3.

Corollary 11. Let 1 6 p 6∞ , 0 < q <∞ and 0 < s < 1, f ∈ Ḃsp,∞ ∩ Lmin{1,p/2,p/q} ∩ Lmax{1,p/2}. Then

j∗ = (log2 n)/(1 + 2s) and (εn,jp,q )ρ = O
(
n−

ρs
1+2s

)
.

Corollary 12. Let 1 < r 6 p 6 ∞ , 0 < q < ∞ and 0 < s < 1, f ∈ Ḃsr,∞ ∩ Lmin{1,p/2,p/q} ∩ Lmax{1,p/2}.
Then

j∗ =
log2 n

1 + 2s− (2/r) + (2/p)
and (εn,jp,q )ρ = O

(
n−

ρ[s−(1/r)+(1/p)]
1+2s−(2/r)+(2/p)

)
.
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For the two following corollaries we assume ‖ςϕ,ϕ̃‖∞ = 0.

Corollary 13. Corollary 12 continues to hold with 0 < s < 2.

Corollary 14. Let 1 < r 6 p 6∞ , 0 < q <∞ and f ∈ Ẇ 2
r ∩ Lmin{1,p/2,p/q} ∩ Lmax{1,p/2}. Then

j∗ =
log2 n

5− (2/r) + (2/p)
and (εn,jp,q )ρ = O

(
n−

ρ[2−(1/r)+(1/p)]
5−(2/r)+(2/p)

)
.

B Proofs for Section 4

Lemma 2. We will estimate from above the following quantity:

EJ (F )(x, y) = AJ(F )(x, y) − F (x, y).

In the proof we may at times use the notation x = (x, y), s = (s, t). If the vector notation is used, then xi,
i = 1, 2 stand for the components (x, y).

We will use the intermediate approximation Fµ,h (see Appendix D). We then have from the linearity of
A(F )(x, y) and from Minkowsky’s inequality:

sup
y

∥∥EJ(F )(·, y)
∥∥
p

= sup
y

∥∥AJ (F )(·, y)− F (·, y)
∥∥
p

= sup
y

∥∥AJ(F − Fµ,h)− (F − Fµ,h) +AJ (Fµ,h)− Fµ,h
∥∥
p

6 sup
y

∥∥EJ(F − Fµ,h)
∥∥
p

+ sup
y

∥∥EJ(Fµ,h)
∥∥
p
.

(B.1)

We start by evaluating the first term on the right hand side of Inequality (B.1). In the following, for simplicity
of notation, g(x, y)

.
= F (x, y)−Fµ,h(x, y). Let ϕJ,k and ϕ̃J,k be the 2 -dimensional wavelet scaling functions

built by tensor products, and J = j1 + j2. Then, given that
∑

k∈Z2 ϕj,k = 2J/2, for every function g(x, y)
the following identity holds:

g(x, y) =
∑

k∈Z2

2−J/2ϕj,k(x, y)g(x, y),

which gives:

EJ (g)(x, y) =
∑

k∈Z2

(
〈g, ϕ̃j,k〉 − 2−J/2g(x, y)

)
ϕj,k(x, y). (B.2)

Moreover, since

∫

R2

ϕ̃j,k(s, t)dsdt = 2−J/2 ≡ 〈1, ϕ̃j,k〉, Equation (B.2) can be rewritten as:

EJ (g)(x, y) =

[∑

k∈Z2

∫

R2

dsdt (g(s, t)− g(x, y))ϕ̃j,k(s, t)

]
ϕj,k(x, y).

Integrating with respect to the x variable and then taking the supremum with respect to the y variable gives
the desired quantity:

sup
y

∥∥EJ (g(·, y))
∥∥
p

= sup
y

(∫

R
dx

∣∣∣∣
∑

k∈Z2

∫

R2

dsdt (g(s, t)− g(x, y)) ϕ̃j,k(s, t)ϕj,k(x, y)

∣∣∣∣
p
)1/p

. (B.3)

Since ϕ and ϕ̃ have a compact support, only a finite number of summands in (B.2) are different from zero.
For a given (x, y), the non zero summands will be those whose indices belong to the set I = I1⊗I2 where

Ii
.
=
{
ki | 2jixi − a < ki < 2jixi + a, i = 1, 2.

}
,

that is those displaying ϕj,k’s whose support contains (x, y). The cardinality of each Ii can be easily
computed and does not depend on the level of approximation j:

] Ii 6 νa =

{
[2a] + 1 if 2a /∈ N,
2a if 2a ∈ N, ∀ (x, y) ∈ R2.
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Taking into account the non zero terms only, we have from (B.3):

sup
y

∥∥EJ (g(·, y))
∥∥
p
6 sup

y

[∫

R
dx

(∑

I

∣∣∣∣
∫

R2

dsdt (f(s, t)− f(x, y))ϕ̃j,k(s, t)

∣∣∣∣ϕj,k(x, y)

)p]1/p

. (B.4)

For 1 6 p 6∞, p′ : 1/p+ 1/p′ = 1 and for arbitrary ai, i = 1, · · · , n, the following inequality holds:

(
n∑

i=1

|ai|p
)1/p

6
n∑

i=1

|ai| 6
(

n∑

i=1

|ai|p
)1/p

· n1/p′ .

Applying the above inequality to (B.4) we obtain:

sup
y

∥∥EJ (g(·, y))
∥∥
p
6 sup

y
ν2/p′
a

[∫

R
dx

(∑

I

∣∣∣∣
∫

R2

dsdt (g(s, t)− g(x, y))ϕ̃j,k(s, t)

∣∣∣∣
p

ϕj,k(x, y)p

)]1/p

. (B.5)

Since in (B.5) there are only a finite number of summands, we can swap the integral and the summation
symbols and so:

sup
y

∥∥EJ (g(·, y))
∥∥
p
6 sup

y
ν2/p′
a

[∑

I

∫

R
dx

∣∣∣∣
∫

R2

dsdt (g(s, t)− g(x, y))ϕ̃j,k(s, t)

∣∣∣∣
p

ϕj,k(x, y)p

]1/p

= sup
y
ν2/p′
a


∑

k∈Zd

∫

R
dx

∣∣∣∣
∫

R2

dsdt (g(s, t)− g(x, y))ϕ̃j,k(s, t)

∣∣∣∣
p

ϕj,k(x, y)p




1/p

= sup
y
ν2/p′
a


∑

k∈Zd

∫

Ξk1

dx

∣∣∣∣
∫

Ξk

dsdt (g(s, t)− g(x, y))ϕ̃j,k(s, t)

∣∣∣∣
p

ϕj,k(x, y)p




1/p

,

(B.6)

where Ξki is the support of ϕ̃jiki and Ξk is the support of ϕ̃j,k. In the last identity of (B.6) we used the
fact that for a given index k the integral outside the support Ξk of ϕj,k is zero. We now consider the inner
integral. Using Hölder’s inequality:

∣∣∣∣
∫

Ξk

(g(s, t)− g(x, y))ϕ̃j,k(s, t)dsdt

∣∣∣∣ 6
∫

Ξk

|g(s, t)− g(x, y)| ϕ̃j,k(s, t)dsdt

6
(∫

Ξk

|g(s, t)− g(x, y)|p dsdt
)1/p

·
(∫

Ξk

ϕ̃j,k(s, t)p
′
dsdt

)1/p′

which yields with a change of variable τi
.
= 2j1si − ki:

=

(∫

Ξk

|g(s, t)− g(x, y)|p dsdt
)1/p

· 2J
�

1
2− 1

p′ �
(∫

[−a,a]2
ϕ̃(τ)p

′
dτ

)1/p′

. (B.7)

Combining (B.7) with (B.6), we have that:

sup
y

∥∥EJ (g(·, y))
∥∥
p
6 ν

2
p′
a 2

J
�

1
2− 1

p′ � ∥∥ ϕ̃∥∥
p′
·sup
y

(∑

k∈Z2

∥∥ϕj,k

∥∥
∞

∫

Ξk1

dx

∫

Ξk

|g(s, t)− g(x, y)|p dsdt
)1/p

. (B.8)

We now introduce a change of variable u = (u, v) : s
.
= x + u. Since for a fixed value of the location parame-

ter k, s ranges in the domain defined by Ξk, then by definition ui ranges in [2−ji(k1−a)−xi, 2−ji(k1+a)−xi].
But since (x, y) is also allowed to range in a region Ξk independently from (s, t), it easy to see that ui ranges in
[2−ji(ki−a)−max{xi ∈ Ξki}, 2−ji(ki+a)−min{xi ∈ Ξki}] ≡ [2−ji(ki−a)−2−ji(ki+a), 2−ji(ki+a)−2−ji(ki−
a)] ≡ [−21−jia, 21−jia]. Then u ranges in the hyperrectangle Υ

.
= [−21−j1a, 21−j1a]⊗[−21−j2a, 21−j2a], which

22



is independent of k. Remembering that
∥∥ϕj,k

∥∥
∞ = 2J/2

∥∥ϕ
∥∥
∞, and introducing κ

.
= ν

2/p′
a 2J/p

′∥∥ ϕ̃
∥∥
p′

∥∥ϕ
∥∥
∞,

we rewrite Equation (B.8) as :

sup
y

∥∥EJ (g(·, y))
∥∥
p
6 κ ν

1
p
a sup

y

(∑

k1∈Z

∫

Ξk1

dx

∫

Υ

du |g(x + u)− g(x)|p
)1/p

which gives by Fubini’s Theorem:

= κ ν
1
p
a sup

y∈R

(∫

Υ

du
∑

k1∈Z

∫

Ξk1

dx |g(x + u)− g(x)|p
)1/p

6 κ ν
2
p
a sup

y∈R

(∫

Υ

dudv
∑

k1∈Z

∫ +∞

−∞
dx |g(s+ u, t+ v)− g(s, t) + g(x, y + v)− g(x, y + v)|p

)1/p

and yields in view of the inequality ω1(f, h)p 6 2‖f‖p:

6 κ ν
2
p
a 24−Ja2 sup

y∈R

[
ω1

ex(g, 21−j1)p +
∥∥g(·, y + v)

∥∥
p

+
∥∥g(·, y)

∥∥
p

]

6 κ ν
2
p
a 24−Ja2 sup

y∈R

[
2
∥∥g(·, y)

∥∥
p

+
∥∥g(·, y + v)

∥∥
p

+
∥∥g(·, y)

∥∥
p

]
6 κ ν

2
p
a 24−Ja2 · 4 sup

y

∥∥g(·, y)
∥∥
p
.

Keeping in mind that g(x, y) = F (x, y)−Fµ,h(x, y), with µ = 2 and h = (21−j1 , 21−j2) Property (D.1) of the
Steklov means finally gives for the first term of the approximation (B.1)

sup
y

∥∥EJ (g(·, y))
∥∥
p
6 ν2

a2
4
p+2a

2
p

∥∥ ϕ̃
∥∥
p′

∥∥ϕ
∥∥
∞ sup

y
sup
i∈R2

sup
0<δ<1

∥∥∆2
iδ(21−j∗a)F (·, y)

∥∥
p
, (B.9)

where j∗ solves the equation (21−j∗)2 = (21−j1)2 + (21−j2)2.

We now study the second term of Equation (B.1), that is, the approximation of the Steklov mean Fµ,h.
We assume that Fµ,h has almost everywhere partial and mixed derivatives up to the second order, so we can
write for it a second order Taylor expansion with an integral remainder:

g(s, t) = g(x, y) + (si − xi)g(i)(x, y) + (si − xi)(sj − xj)
∫ 1

0

dθ(1− θ) g(ij)(x + θ(s− x)),

with g = Fµ,h , (x, y), (s, t) ∈ R2, g(i) .
= ∂g

∂xi
, g(ij) .

= ∂2g
∂xi∂xj

, and where the summation is understood over

repeated indices. Then following the same steps that led us to (B.3), we have:

sup
y

∥∥EJ (g(·, y))
∥∥
p

= sup
y

(∫

R
dx

∣∣∣∣
∑

k∈Z2

∫

R2

dsdt
(
g(s, t)− g(x, y)

)
ϕ̃j,k(s, t)ϕj,k(x, y)

∣∣∣∣
p
)1/p

.

We start by evaluating the inner integral. By substituting for g(s, t) its Taylor expansion and successive
application of the triangular inequality, we have:

∣∣∣∣∣
∑

I

∫

R2

dsdt
(
g(s, t)− g(x, y)

)
ϕ̃j,k(s, t)ϕj,k(x, y)

∣∣∣∣∣ =

∣∣∣∣∣
∑

k∈Z2

∫

Ξk

dsdt
(
g(s, t)− g(x, y)

)
ϕ̃j,k(s, t)ϕj,k(x, y)

∣∣∣∣∣

=

∣∣∣∣∣
∑

I

∫

Ξk

dsdt
[
(ti − xi)g(i)(x, y) + (ti − xi)(tj − xj)

∫ 1

0

dθ (1− θ)g(ij)(x + θ(s− x))
]
ϕ̃j,k(s, t)ϕj,k(x, y)

∣∣∣∣∣

6
∣∣∣∣∣g

(i)(x, y)

{∑

I

[
2−ji

∫

Ξk

dsdt (2jisi − ki)ϕ̃j,k(s, t)− 2−ji
∫

Ξk

dsdt (2jixi − ki)ϕ̃j,k(s, t)

]
ϕj,k(x, y)

}∣∣∣∣∣

+

∣∣∣∣∣
∑

I

∫

Ξk

dsdt (si − xi)(sj − xj)ϕ̃j,k(s, t)

∫ 1

0

dθ (1− θ)g(ij)(x + θ(s− x))ϕj,k(x, y)

∣∣∣∣∣ .

(B.10)
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The first term of the right hand side of Inequality (B.10) is obtained by adding and subtracting 2jiki.
Keeping in mind Properties (2.6) and (2.8), further manipulation of this term gives:

∑

I

[∫

Ξk

dsdt (2jisi − ki)ϕ̃j,k(s, t)−
∫

Ξk

dsdt (2jixi − ki)ϕ̃j,k(s, t)

]
ϕj,k(x, y)

=
∑

I



∫

Ξk

2−jid(2jisi)2
−jjd(2jj sj)(2

jisi − ki)2
ji
2 ϕ̃(2jisi − ki)

∏

j 6=i
2
jj
2 ϕ̃(2jjsj − kj)

−
∫

Ξk

2−jid(2jisi)2
−jjd(2jj sj)(2

jixi − ki)2
ji
2 ϕ̃(2jisi − ki)

∏

j 6=i
2
ji
2 ϕ̃(2jjsj − kj)

]
ϕjiki(xi)ϕjjkj (xj)

=

∫ a

−a
dτi τiϕ̃(τi) 2−

J
2

∫ a

−a
d(ξ) ϕ̃(ξ)

∑

I

2
ji
2 ϕjiki(2

jixi − ki)2
jj
2 ϕjjkj (2

jjxj − kj)

− 2−
J
2

∫ a

−a
dξ ϕ̃(ξ)

∑

I

2
j1
2 (2j1xi − ki)ϕ(2jixi − ki)ϕ(2jjxj − kj)

=

∫ a

−a
dτi τi ϕ̃(τi)−

+∞∑

ki=−∞
(ζi − ki)ϕ(ζi − ki) .

=

∫ a

−a
dτi τi ϕ̃(τi)− ρϕ(ζi)

.
= ςi; �ϕ,ϕ(ζi),

(B.11)

where the last two identities have to be read as definitions of ρϕ and ς �ϕ,ϕ(ζ). Let us remark that if in
building the R2 tensor product basis we start from the same ϕ for every direction, then definitions of ρϕ and
ςi; �ϕ,ϕ(ζi) are independent of i. Regarding the second term of the right hand side of Equation (B.10), again
application of Fubini’s theorem and recalling. as observed before, that |si − xi| < 21−jia, gives that:

∣∣∣∣∣
∑

I

∫

Ξk

dsdt (ti − xi)2ϕ̃j,k(s, t)

∫ 1

0

dθ (1− θ)g(ij)(x + θ(s− x))ϕj,k(x, y)

∣∣∣∣∣

6 (21−jia)2

∫ 1

0

dθ (1− θ)
∑

I

∫

Ξk

dsdt
∣∣g(ij)(x + θ(s− x))

∣∣ϕ̃j,k(s, t)ϕj,k(x, y). (B.12)

We can now substitute (B.11) and (B.12) in Equation (B.10), integrate with respect to x, use
Minkowsky’s inequality, take the supremum over y and obtain:

sup
y

∥∥EJ (g(·, y))
∥∥
p
6 sup

y

[∫

R
dx
∣∣∣
∑

i

2−jig(i)(x, y)ςi; �ϕ,ϕ(xi)
∣∣∣
p
]1/p

+ sup
y

(21−jia)2

[∫

R
dx

∣∣∣∣
∫ 1

0

dθ (1− θ)
∑

I

∫

Ξk

dsdt
∣∣g(ij)(x + θ(s− x))

∣∣ϕ̃j,k(s, t)ϕj,k(x, y)

∣∣∣∣
p
]1/p

. (B.13)

Let us consider again the two summands separately. For the first term we can easily see:

sup
y

[∫

R
dx
∣∣∣
∑

i

2−jig(i)(x, y)ςi; �ϕ,ϕ(xi)
∣∣∣
p
]1/p

6
∑

i

∥∥ ςi(2ji ·)
∥∥
∞ sup

y

1

2a
21−jia

∥∥g(i)(·, y)
∥∥
p

6 c1
2a

{∥∥ ςx(2j1 ·)
∥∥
∞ sup

y
ω1

ex

(
F (·, y), 21−j1a

)
p

+
∥∥ ςy(2j2 ·)

∥∥
∞ sup

y
sup

0<δ<1

∥∥∆eyδ(21−j2a)F (·, y)
∥∥
p

}
, (B.14)

where c1 is an absolute constant which comes from property (D.2). For the second term we have that, using
Minkowsky’s generalized inequality:

sup
y

(21−jia)(21−jja)

[∫

R
dx

∣∣∣∣
∫ 1

0

dθ (1− θ)
∑

I

∫

Ξk

dsdt
∣∣g(ij)(x + θ(s− x))

∣∣ϕ̃j,k(s, t)ϕj,k(x, y)

∣∣∣∣
p
]1/p

6 sup
y

(21−jia)(21−jja)

∫ 1

0

dθ (1− θ)
[∫

R
dx
∑

I

∣∣∣∣
∫

Ξk

dsdt
∣∣g(ij)(x + θ(s− x))

∣∣ϕ̃j,k(s, t)ϕj,k(x, y)

∣∣∣∣
p
]1/p
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following the same steps that led us from (B.4) to (B.8), and with κ′
.
= a2ν

2
p′
a ν

1
p
a

∥∥ ϕ̃
∥∥
Lp′

∥∥ϕ
∥∥
∞, and ν

1
p
a

coming from the overlap of the supports of the {ϕj1,k1} in the y direction,

6 (21−ji)(21−jj )κ′2
J
p sup
y∈R

∫ 1

0

dθ (1− θ)
(

+∞∑

k1=−∞

∫

Ξk1

dx

∫

Ξk

dsdt
∣∣g(ij)(x + θ(s− x))

∣∣p
) 1
p

= (21−ji)(21−jj )κ′2
J
p sup
y∈R

∫ 1

0

dθ (1− θ)
(∫

Υ

du

+∞∑

k1=−∞

∫

Ξk1

dx
∣∣g(ij)(x + θu)

∣∣p
) 1
p

6 (21−ji)(21−jj )κ′2
J
p sup
y∈R

∫ 1

0

dθ(1− θ) · 2
2−j1
p 2

2−j2
p a

2
p ν

1
p
a

∥∥g(ij)(·, y)
∥∥
p

= (21−ji)(21−jj ) a2+ 2
p ν2

a 2
4
p−1

∥∥ ϕ̃
∥∥
Lp′

∥∥ϕ
∥∥
∞ sup

y

∥∥g(ij)(·, y)
∥∥
p
.

Remembering that g = Fµ,h, the bound on the last term can be computed again using Properties (D.2), and
depends on the order and direction of the derivatives:

sup
y

(21−ji)(21−jj ) a2
∥∥g(ij)(·, y)

∥∥
p

6 sup
y
c2 ω

2
ex

(
F (·, y)

)
p

+ 2c2 ·
{

sup
y
ω1

ex

(
F (·, y), 21−j1a

)
p

+ sup
y

sup
0<δ<1

∥∥∆eyδ(21−j2a)F (·, y)
∥∥
p

}

+ sup
y
c2 sup

0<δ<1

∥∥∆2
ey δ·(21−j2a)F (·, y)

∥∥
p
.

(B.15)

Using (B.14) and (B.15) we can now rewrite (B.13) in the following form:

sup
y

∥∥EJ (g(·, y))
∥∥
p

6 c1
2a

{∥∥ ςx(2j1 ·)
∥∥
∞ sup

y
ω1

ex

(
F (·, y), 21−j1a

)
p

+
∥∥ ςy(2j2 ·)

∥∥
∞ sup

y
sup

0<δ<1

∥∥∆eyδ(21−j2a)F (·, y)
∥∥
p

}

+ a
2
p ν2

a 2
4
p−1

∥∥ ϕ̃
∥∥
Lp′

∥∥ϕ
∥∥
∞ 2c2 ·

{
sup
y
ω1

ex

(
F (·, y), 21−j1a

)
p

+ sup
y

sup
0<δ<1

∥∥∆eyδ(21−j2a)F (·, y)
∥∥
p

}

+ a
2
p ν2

a 2
4
p−1

∥∥ ϕ̃
∥∥
Lp′

∥∥ϕ
∥∥
∞ c2 ·

{
sup
y
ω2

ex

(
g(·, y)

)
p

+ sup
y

sup
0<δ<1

∥∥∆2
ey δ·(21−j2a)F (·, y)

∥∥
p

}
.

(B.16)

We can now put together (B.9) and (B.16) to obtain a final bound from above of the approximation error:

sup
y

∥∥AJ (F )(·, y)− F (·, y)
∥∥
p

6 c′1
{∥∥ ςx(2j1 ·)

∥∥
∞ sup

y
ω1

ex

(
F (·, y), 21−j1a

)
p

+
∥∥ ςy(2j2 ·)

∥∥
∞ sup

y
sup

0<δ<1

∥∥∆eyδ(21−j2a)F (·, y)
∥∥
p

}

+ c′2
∥∥ ϕ̃
∥∥
Lp′

∥∥ϕ
∥∥
∞ ·

{
sup
y
ω1

ex

(
F (·, y), 21−j1a

)
p

+ sup
y

sup
0<δ<1

∥∥∆eyδ(21−j2a)F (·, y)
∥∥
p

}

+ c′′2 ·
{

sup
y
ω2

ex

(
F (·, y)

)
p

+ sup
y

sup
0<δ<1

∥∥∆2
ey δ·(21−j2a)F (·, y)

∥∥
p

}

+ c′′′2
∥∥ ϕ̃
∥∥
p′

∥∥ϕ
∥∥
∞ sup

y
sup
i∈R2

sup
0<δ<1

∥∥∆2
iδ(21−j∗a)F (·, y)

∥∥
p
;

(B.17)

where the expressions of the constants can easily be made explicit by comparing (B.9), (B.16) and (B.17).
Finally, (B.17) can be further simplified by remarking that simple algebra (i.e. adding and subtracting
F (x+ 2s, y + t) ) leads to the inequality
sup0<δ<1

∥∥∆2
iδ(21−j∗a)F (·, y)

∥∥
p
6 2 · supy sup0<δ<1

∥∥∆eyδ(21−j2a)F (·, y)
∥∥
p
+ supy ω

2
ex

(
F (·, y)

)
p
.

Lemma 3. We have to find an upper bound for the quantity:

∥∥∥Â(T )
J (F )(·, y)− EÂ(T )

J (F )(·, y)
∣∣∣Lp(Lq)

∥∥∥ =
∥∥∥
(
E
∣∣Â(T )

J (F )(·, y)−AJ(F )(·, y)
∣∣q
)1/q∥∥∥

p
. (B.18)
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We will proceed in the following way. We start by expressing the estimator Â
(T )
J (F )(x, y) as:

Â
(T )
J (F )(x, y) =

∑

k∈Z2

̂〈F, ϕ̃j,k〉ϕj,k(x, y)

=
∑

k∈Z2

T∑

t=1

2−
j2
2

(
ϕ̃j1,k1(Xt)

T
− ϕ̃j1,k1(Xt)Φ̃(2j2Yt − k2)

T

)
ϕj,k(x, y)

=
1

T

T∑

t=1

∑

k∈Z2

̂〈F, ϕ̃k〉t ϕj,k(x, y) =
1

T

T∑

t=1

ÂJ,t(F )(x, y).

(B.19)

We then determine the pointwise variance for the stochastic variable:

Zt(x, y)
.
= ÂJ,t(f)(x, y)−AJ (F )(x, y). (B.20)

Let us remark in passing that |Z| 6 2 · 2j1 since both ÂJ(f) and AJ (F ) are smaller than 2j1 , and that
EZ = 0. We can then express the inner expectation of the right hand side of (B.18):

Bq(x, y) =
(
E
∣∣Â(T )

J (F )(x, y) −AJ(F )(x, y)
∣∣q
) 1
q

. (B.21)

Being q 6 2, we can take advantage of the classical convexity inequality for random variables

E
∣∣Â(T )

J (x, y)−AJ(x, y)
∣∣q = E

∣∣∣∣
∑

t

Zt(x, y)

T

∣∣∣∣
q

6 1

T q

[
E
(∑

t

Zt(x, y)
)2
]q/2

=
1

T q

[ T∑

t=1

E
(
Z2
t (x, y)

)
+ 2

T−1∑

p=1

(T − p)E
(
ZT (x, y)ZT−p(x, y)

)]q/2
.

In the last inequalities we exploited the stationarity of the process, so that E(ZtZt−s) is independent of t.
Then we take the Lp norm with respect to x and the supremum with respect to y and obtain:

sup
y

∥∥∥Â(T )
J (F )(·, y)− EÂ(T )

J (F )(·, y)
∣∣∣Lp(Lq)

∥∥∥
ρ

6 sup
y

1

T ρ

{∥∥∥
T∑

t=1

E
(
Z2
t (·, y)

)∥∥∥
ρ/2

p/2
+
∥∥∥ 2T

T−1∑

p=1

(
1− p

T

)
E
(
ZT (·, y)ZT−p(·, y)

)∥∥∥
ρ/2

p/2

}

.
=V0 + V1.

(B.22)

It can be easily seen that the first summand of (B.22), that we refer to as V0, is the only term we would
have obtained in the i.i.d. case. V1 is the additional term we obtain by estimating ÂTJ from dependent data.
We first start by studying the V0 term.

A. Study of V0 term: Let us define the quantity σ2(x, y), that is the variance of Z for a fixed (x, y).
Then:

σ2(x, y) = E[Â
(T )
J (F )(x, y)]2−AJ(F )(x, y)2

=
∑

k∈Z2

∑

l∈Z2

[
E
( ̂〈F, ϕ̃j,k〉 ̂〈F, ϕ̃j,l〉

)
− 〈F, ϕ̃j,k〉〈F, ϕ̃j,l〉

]
ϕj,k(x, y)ϕj,l(x, y)

(B.23)

Unless stated differently, in the steps of the proof that will follow, f(x, y) is the bivariate density of the
process {Xt, Yt}, F (x, y) is the bivariate pdf-cdf, cumulated w.r.t. to the y argument, and f(x) the marginal
distribution of {Xt}, that is, f(x) = limy→∞ FY (x, y). Remembering equation (B.19), we take the empirical
inner product for T = 1, and have that, if S and T are two random variables drawn from a bivariate
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(cumulative) distribution FS,T (S, T ):

∆j;k,l
.
= E

( ̂〈F, ϕ̃j,k〉 ̂〈F, ϕ̃j,l〉
)
− 〈F, ϕ̃j,k〉〈F, ϕ̃j,l〉

= 2−j2E
[(
ϕ̃j1,k1(S)− ϕ̃j1,k1(S)Φ̃(2j2T − k2)

)(
ϕ̃j1,l1(S)− ϕ̃j1,l1(S)Φ̃(2j2T − l2)

)]

−2−j2E
(
ϕ̃j1,k1(S)− ϕ̃j1 ,k1(S)Φ̃(2j2T − k2)

)
E
(
ϕ̃j1,l1(S)− ϕ̃j1,l1(S)Φ̃(2j2T − l2)

)

= 2−j2
{

Cov
(
ϕ̃j1,k1(S), ϕ̃j1,l1(S)

)
+ Cov

(
ϕ̃j1,k1(S), ϕ̃j1,l1(S)Φ̃(2j2T − l2)

)

+ Cov
(
ϕ̃j1,k1(S)Φ̃(2j2T − k2), ϕ̃j1,l1(S)

)
+ Cov

(
ϕ̃j1,k1(S)Φ̃(2j2T − k2), ϕ̃j1,l1(S)Φ̃(2j2T − l2)

)}
. (B.24)

We study separately each summand in (B.24). Cov
(
ϕ̃j1,k1(S), ϕ̃j1,l1(S)

)
is a one dimensional term and has

already been studied in Dechevsky and Penev (1998), who find:

∣∣Cov
(
ϕ̃j1,k1(S), ϕ̃j1 ,l1(S)

)∣∣

6 f(x) +

∣∣∣∣
∫ a

−a
dυ
(
f(2−j1υ + k1)− f(x)

)
ϕ̃(υ)ϕ̃(υ + k1 − l1)

∣∣∣∣+

∣∣∣∣
∫ a

−a
dυ
(
f(2−j1υ + k1)− f(x)

)
ϕ̃(υ)

∣∣∣∣ .
(B.25)

As for the other terms we have:

Cov
(
ϕ̃j1,k1(S), ϕ̃j1,l1(S)Φ̃(2j2T − l2)

)

=

∫

R2

dsdtf(s, t)ϕ̃j1,k1(s)ϕ̃j1,l1(s)Φ̃(2j2 t− l2)

−
∫

R
dsf(s)ϕ̃j1,k1(s)

∫

R2

dsdtf(s, t)ϕ̃j1,l1(s)Φ̃(2j2 t− l2)

=

∫

R
ds

∫ a

−a
d(2−j2τ)f(s, 2−j2(τ + l2))ϕ̃j1 ,k1(s)ϕ̃j1 ,l1(s)Φ̃(τ)

−
∫

R
dsf(s)ϕ̃j1,k1(s)

∫

R
ds

∫ a

−a
d(2−j2τ)f(s, 2−j2(τ + l2))ϕ̃j1 ,l1(s)Φ̃(τ)

which gives after integration by parts:

=

∫

R
dsf(s)ϕ̃j1 ,k1(s)ϕ̃j1 ,l1(s)−

∫

R
ds

∫ a

−a
dτF (s, 2−j2 (τ + l2))ϕ̃j1 ,k1(s)ϕ̃j1 ,l1(s)ϕ̃(τ)

−
∫

R
dsf(s)ϕ̃j1,k1(s)

∫

R
dsf(s)ϕ̃j1 ,l1(s)

+

∫

R
dsf(s)ϕ̃j1,k1(s)

∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + l2))ϕ̃j1 ,l1(s)ϕ̃(τ)

= Cov
(
ϕ̃j1,k1(S), ϕ̃j1 ,l1(S)

)
−
∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + l2))ϕ̃j1,k1(s)ϕ̃j1 ,l1(s)ϕ̃(τ)

+

∫

R
dsf(s)ϕ̃j1,k1(s)

∫

R
ds

∫ a

−a
dτF (s, 2−j2 (τ + l2))ϕ̃j1 ,l1(s)ϕ̃(τ). (B.26)

In a similar way we have that

Cov
(
ϕ̃j1,k1(S)Φ̃(2j2T − k2), ϕ̃j1,l1(S)

)
= Cov

(
ϕ̃j1 ,k1(S), ϕ̃j1,l1(S)

)

−
∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + k2))ϕ̃j1 ,k1(s)ϕ̃j1,l1(s)ϕ̃(τ)

+

∫

R
dsf(s)ϕ̃j1,l1(s)

∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + k2))ϕ̃j1 ,k1(s)ϕ̃(τ). (B.27)
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And finally

Cov
(
ϕ̃j1,k1(S)Φ̃(2j2T − k2), ϕ̃j1,l1(S)Φ̃(2j2T − l2)

)

=

∫

R
ds

∫ a

−a
d(2−j2τ)f(s, 2−j2 (τ + k2))ϕ̃j1 ,k1(s)Φ̃(τ)ϕ̃j1 ,l1(s)Φ̃(τ + k2 − l2)

−
∫

R
ds

∫ a

−a
d(2−j2τ)f(s, 2−j2(τ + k2))ϕ̃j1 ,k1Φ̃(τ) ·

∫

R
ds

∫ a

−a
d(2−j2τ)f(s, 2−j2(τ + l2))ϕ̃j1 ,l1(s)Φ̃(τ). (B.28)

We consider the two terms of (B.28) separately.

E
(
ϕ̃j1,k1(S)Φ̃(2j2T − k2)ϕ̃j1,l1(S)Φ̃(2j2T − l2)

)
=

∫

R
dsf(s)ϕ̃j1 ,k1(s)ϕ̃j1 ,l1(s)

−
∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + k2))ϕ̃j1 ,k1(s)ϕ̃(τ)ϕ̃j1 ,l1(s)Φ̃(τ + k2 − l2)

−
∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + l2))ϕ̃j1,k1(s)Φ̃(τ + l2 − k2)ϕ̃j1,l1(s)ϕ̃(τ); (B.29)

E
(
ϕ̃j1,k1(S)Φ̃(2j2T − k2)

)
E
(
ϕ̃j1,l1(S)Φ̃(2j2T − l2)

)

=

[∫

R
dsf(s)ϕ̃j1 ,k1(s)−

∫

R
ds

∫ a

−a
dτF (s, 2−j2 (τ + k2))ϕ̃j1 ,k1(s)Φ̃(τ)

]

·
[∫

R
dsf(s)ϕ̃j1 ,l1(s)−

∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + l2))ϕ̃j1 ,l1(s)ϕ̃(τ)

]

=

∫

R
dsf(s)ϕ̃j1,k1(s) ·

∫

R
dsf(s)ϕ̃j1,l1(s)

−
∫

R
dsf(s)ϕ̃j1,k1(s) ·

∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + l2))ϕ̃j1 ,l1(s)ϕ̃(τ)

−
∫

R
dsf(s)ϕ̃j1 ,l1(s) ·

∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + k2))ϕ̃j1 ,k1(s)ϕ̃(τ)

+

∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + k2))ϕ̃j1 ,k1(s)ϕ̃(τ) ·

∫

R
ds

∫ a

−a
dτF (s, 2−j2 (τ + l2))ϕ̃j1 ,l1(s)ϕ̃(τ). (B.30)

Putting equations from (B.24) through to (B.30) together gives:

2j2∆j;k,l = 4 · Cov
(
ϕ̃j1,k1(S), ϕ̃j1 ,l1(S)

)
−
∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + l2))ϕ̃j1,k1(s)ϕ̃j1 ,l1(s)ϕ̃(τ)

−
∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + k2))ϕ̃j1 ,k1(s)ϕ̃j1 ,l1(s)ϕ̃(τ)+

+2

∫

R
dsf(s)ϕ̃j1 ,k1(s) ·

∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + l2))ϕ̃j1,l1(s)ϕ̃(τ)

+2

∫

R
dsf(s)ϕ̃j1,l1(s) ·

∫

R
ds

∫ a

−a
dτF (s, 2−j2 (τ + k2))ϕ̃j1,k1(s)ϕ̃(τ)

−
∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + k2))ϕ̃j1 ,k1(s)ϕ̃(τ)ϕ̃j1 ,l1(s)Φ̃(τ + k2 − l2)

−
∫

R
ds

∫ a

−a
dτF (s, 2−j2 (τ + l2))ϕ̃j1 ,k1(s)Φ̃(τ + l2 − k2)ϕ̃j1 ,l1(s)ϕ̃(τ)

−
∫

R
ds

∫ a

−a
dτF (s, 2−j2 (τ + k2))ϕ̃j1,k1(s)ϕ̃(τ) ·

∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + l2))ϕ̃j1 ,l1(s)ϕ̃(τ).
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We then add the following terms:

±2 · 2−
j1
2 f(x)

∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + l2)) ϕ̃j1 ,l1(s) ϕ̃(τ)

±2 · 2−
j1
2 f(x)

∫

R
ds

∫ a

−a
dτF (s, 2−j2 (τ + k2)) ϕ̃j1,k1(s) ϕ̃(τ)

±F (x, y)

∫

R
ds ϕ̃j1,k1(s) ϕ̃j1,l1(s)± 2−

j1
2

∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + l2)) ϕ̃j1 ,l1(s) ϕ̃(τ)

±F (x, y)

∫

R
ds ϕ̃j1,k1(s) ϕ̃j1 ,l1(s)

∫ a

−a
dτ ϕ̃(τ)Φ̃(τ + k2 − l2)

±F (x, y)

∫

R
ds ϕ̃j1,k1(s) ϕ̃j1,l1(s)

∫ a

−a
dτ ϕ̃(τ)Φ̃(τ + l2 − k2),

so that

2j2∆j;k,l = 4 · Cov
(
ϕ̃j1 ,k1(S), ϕ̃j1 ,l1(S)

)

+2

∫

R
ds
(
f(s)− f(x)

)
ϕ̃j1,k1(s)

∫ a

−a
dτF (s, 2−j2 (τ + l2)) ϕ̃j1 ,l1(s) ϕ̃(τ)

+2

∫

R
ds
(
f(s)− f(x)

)
ϕ̃j1,l1(s)

∫ a

−a
dτF (s, 2−j2(τ + k2)) ϕ̃j1 ,k1(s) ϕ̃(τ)

−
∫

R
ds

∫ a

−a
dτ
[
F (s, 2−j2(τ + l2))− F (x, y)

]
ϕ̃j1,k1(s) ϕ̃j1 ,l1(s)ϕ(τ)

−
∫

R
ds

∫ a

−a
dτ
[
F (s, 2−j2(τ + k2))− F (x, y)

]
ϕ̃j1,k1(s) ϕ̃j1,l1(s)ϕ(τ)

−
∫

R
ds

∫ a

−a
dτ
[
F (s, 2−j2(τ + l2))− F (x, y)

]
ϕ̃j1,k1(s) ϕ̃j1,l1(s)ϕ(τ)Φ̃(τ + k2 − l2)

−
∫

R
ds

∫ a

−a
dτ
[
F (s, 2−j2(τ + k2))− F (x, y)

]
ϕ̃j1,k1(s) ϕ̃j1,l1(s)ϕ(τ)Φ̃(τ + l2 − k2)

−
∫

R
ds

∫ a

−a
dτ
[
F (s, 2−j2(τ + k2))− F (x, y)

]
ϕ̃j1,k1(s)ϕ(τ)

∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + l2)) ϕ̃j1 ,l1(s)ϕ(τ)

+2 · 2−
j1
2 f(x)

∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + l2)) ϕ̃j1 ,l1(s) ϕ̃(τ)

+2 · 2−
j1
2 f(x)

∫

R
ds

∫ a

−a
dτF (s, 2−j2 (τ + k2)) ϕ̃j1,k1(s) ϕ̃(τ)

−2F (x, y)

∫

R
ds ϕ̃j1,k1(s) ϕ̃j1 ,l1(s)

−2F (x, y)

∫

R
ds ϕ̃j1,k1(s) ϕ̃j1,l1(s)

∫ a

−a
dτ ϕ̃(τ)

[
Φ̃(τ + k2 − l2) + Φ̃(τ + l2 − k2)

]

−2−
j1
2 F (x, y)

∫

R
ds

∫ a

−a
dτF (s, 2−j2 (τ + l2)) ϕ̃j1 ,l1(s)ϕ(τ).

To bound the latter expression we make use of the following inequalities:

F (x, y) 6 f(x), ∀y;∫

R
ds ϕ̃j1,k1(s) ϕ̃j1 ,l1(s) 6

∫

R
ds ϕ̃j1 ,k1(s)2 6

∫

R
dυ ϕ̃(υ) = 1;

∫

R
dsf(s) ϕ̃j1,k1(s) 6 2

j1
2

∫

R
dsf(s) ϕ̃(2j1s− k1) 6 2

j1
2 ;

which also implies:

∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + k2)) ϕ̃j1 ,k1(s) ϕ̃(τ) 6

∫

R
dsf(s) ϕ̃j1,k1(s)

∫ a

−a
dτϕ̃(τ) 6 2

j1
2 .
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Keeping in mind (B.25) we can then write, after a change of variable:

2j2 |∆j;k,l| 6 4 ·
∫ a

−a
dυ
∣∣f(2−j1υ + k1)− f(x)

∣∣

+4 ·
∫ a

−a
dυ
∣∣f(2−j1υ + k1)− f(x)

∣∣ ϕ̃(υ) ϕ̃(υ)ϕ̃(υ + k1 − l1)

+2 ·
∫ a

−a
d(2−j1υ)

∣∣f(2−j1υ + k1)− f(x)
∣∣ 2

j1
2 ϕ̃(υ) · 2

j1
2 + 2

∫ a

−a
dυ
∣∣f(2−j1υ + l1)− f(x)

∣∣ ϕ̃(υ)

+2

∫ a

−a
dυ

∫ a

−a
dτ
∣∣F (2−j1υ + k1, 2

−j2(τ + k2))− F (x, y)
∣∣ ϕ̃(υ) ϕ̃(υ + k1 − l1)ϕ(τ)

+2

∫ a

−a
dυ

∫ a

−a
dτ
∣∣F (2−j1υ + k1, 2

−j2(τ + l2))− F (x, y)
∣∣ ϕ̃(υ) ϕ̃(υ + k1 − l1)ϕ(τ)

+2

∫ a

−a
dυ

∫ a

−a
dτ
∣∣F (2−j1υ + k1, 2

−j2(τ + k2))− F (x, y)
∣∣ ϕ̃(υ)ϕ(τ) + 4f(x) + 4f(x) + f(x).

The densities figuring in the above expressions are obtained remembering that∫ a
−a dτ ϕ̃(τ)

[
Φ̃(τ + k2 − l2) + Φ̃(τ + l2 − k2)

]
≡ 1 (see Dechevsky and Penev (1998) for the proof) and

considering that, if we write F (x, y) 6 cf(x) with 0 < c 6 1 then

f(x)
∣∣∣2−

j1
2

∫

R
ds

∫ a

−a
dτF (s, 2−j2(τ + l2)) ϕ̃j1,l1(s) ϕ̃(τ) − c

∫

R
ds ϕ̃j1,k1(s) ϕ̃j1 ,l1(s)

∣∣∣ 6 f(x)

since both terms in the absolute value are smaller than 1. We can then express the quantity σ(x, y) introduced
in (B.23) as:

σ2(x, y) =
∑

k∈Z2

∑

l∈Z2

∆j;k,lϕj,k(x, y)ϕj,l(x, y) 6 sup
k,l
|∆j;k,l|

∑

k∈Z2

∑

l∈Z2

ϕj,k(x, y)ϕj,l(x, y)

= sup
k,l
|∆j;k,l| · 2j1 · 2j2 = 2j1∆(x, y);

(B.31)

where ∆(x, y) = 2j2 sup
k,l
|∆j;k,l|. Following the procedure outlined at the beginning of the section it is possible

to bound the term :

sup
y

1

T ρ

∥∥∥
T∑

i=1

E
(
Z2
i

)∥∥∥
ρ/2

p/2
6 sup

y
T−

ρ
2

(∫

R
dx
(
σ2(x, y)

) p
2

) 2
p ·
ρ
2 6 sup

y

(
2j1

T

)ρ/2 ∥∥∆(·, y)
∥∥ρ/2
p/2
. (B.32)

Let us remark that when taking the Lp−norm in (B.32), the terms contained in ∆(x, y) will be controlled by
the modulus of smoothness in the x direction of F (x, y). We recall that the f(x) that enters the definition of
some terms of ∆(x, y) is the limy→∞ F (x, y), so that ω1

ex

(
f, h
)
p
6 supy ω

1
ex

(
F (·, y), h

)
p
. The terms containing

F (x, y)−F (s, t) can be split in two terms by adding ±F (x, t) and we obtain an increment in the x direction
and one in the y direction. The increments in the x direction F (x, t)−F (s, t) are controlled by the modulus
ω1

ex

(
F (·, y), h

)
p
, while the increments in the y direction F (x, y) − F (x, t) can be controlled by ‖f(·, y)‖p

through the inequality, supy sup|t|<h ‖∆ey ,tF (·, y)‖p 6 h supy ‖f(·, y)‖p. Substituting the explicit expression
for ∆(x, y), using Minkowsky’s generalized inequality and the properties of the moduli of smoothness gives:

1

T ρ

∥∥∥
T∑

t=1

E
(
Z2
i

)∥∥∥
ρ/2

p/2
6
(

2j1

T

)ρ/2(
d1

∥∥f(·, y)
∥∥ρ/2
p/2

+ d2(a)ω1
ex

(
f(·, y), 21−j1a

)ρ/2
p/2

)
. (B.33)

To choose the value of ρ, we refer to Appendix E. In (B.33) only p the parameter is involved through the
Lp/2 norm of the quantity ∆(x, y), the choice has to be made in a way that

ρ∗

2
=

1

1 + log2(cp)
=

1

1 + log2(max{1, 22/p−1})

=
1

1 + (max{0, 2/p− 1}) =
1

max{1, 2
p}

= min{p/2, 1}.
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cp is constant in the quasi-triangular inequality, see again Appendix E. Since for every density f ∈ L1, we
can give for (B.33) the more general expression:

sup
y

1

T ρ∗

∥∥∥
T∑

t=1

E
(
Z2(·, y)

)∥∥∥
ρ∗/2

p/2
6 sup

y

(
2j1

T

)ρ∗/2(
d1 max

{∥∥f(·, y)
∥∥

1
,
∥∥f(·, y)

∥∥
p/2

}ρ∗/2

+ d2(a) max
{
ω1

ex

(
f(·, y), 21−j1a

)
1
, ω1

ex

(
f(·, y), 21−j1a

)
p/2

}ρ∗/2)
.

(B.34)

The condition, for 1 < p < 2, that sup
y

sup
06t6h

∫ +∞

−∞
dx
(∫ 1

0

dα f(x+ αt, y)
)p/2
< +∞, ensures that the

modulus ωλ(f, h)→h→0 0 even if λ < 1. The proof is to be found in Dechevsky and Penev (1998).

B. Study of V1 term: We have now to deal with the covariance part V1 of (B.22). To do this we will
initially split the summation in two parts:

sup
y
T−ρ/2

∥∥∥∥
T−1∑

p=1

(
1− p

T

)(
E
∣∣ZT (·, y)ZT−p(·, y)

∣∣
)∥∥∥∥

ρ/2

p/2

6 sup
y

1

T ρ/2

∥∥∥∥
nT∑

p=1

(
1− p

T

)(
E
∣∣ZTZT−p

∣∣
)∥∥∥∥

ρ/2

p/2

+ sup
y

1

T ρ/2

∥∥∥∥
T−1∑

p=nT+1

(
1− p

T

)(
E
∣∣ZTZT−p

∣∣
)∥∥∥∥

ρ/2

p/2

.
=S1 + S2.

(B.35)

Here the explicit dependence Z(x, y) on (x, y) is omitted for readability. We start by tackling part S1 of
(B.35). We recall Assumption 1 (4.3): There exists a constant M such that

∫ +∞

−∞
dF(X0,Y0),(Xs,Ys)|T(X0,Y0),(Xs,Ys)| 6M

∫ +∞

−∞
dF(Xt ,Yt)

∫ +∞

−∞
dF(Xt,Yt)|T(X0,Y0),(Xs,Ys)|

Then:

∣∣ Cov
(
ZT (x, y)ZT−p(x, y)

)∣∣ =

∫
dFZT ,ZT−p

∣∣ZT (x, y)ZT−p(x, y)
∣∣

6M
∫
dFt

∫
dFt
∣∣Zt(x, y)

∣∣∣∣Zt(x, y)
∣∣ = M

(∫
dFt
∣∣Zt(x, y)

∣∣
)2

= M
(
E
∣∣Zt(x, y)

∣∣
)2

.

Now

E
∣∣Zt(x, y)

∣∣

= 2−j2/2E
∣∣∣
∑

k

{
2−j2/2ϕ̃j1k1(Xt)

(
1− Φ̃(2j2Xt−1 − k2)

)

− E
[
ϕ̃j1k1(Xt)

(
1− Φ̃(2j2Xt−1 − k2)

)]}
ϕjk(x, y)

∣∣∣

6 2−
j2
2

∑

k

∫

Ξk

dudvf(u, v)

∣∣∣∣
{
ϕ̃j1k1(u)

(
1− Φ̃(2j2v − k2)

)}

−
∫

Ξk

dsdt f(s, t)
{
ϕ̃j1k1(s)

(
1− Φ̃(2j2 t− k2)

)}∣∣∣∣ϕjk(x, y)

= 2−
j1
2 2−

j2
2

∑

k

∫ a

−a
du′
∫

Ξk2

dvf(2j1(u′ + k1), v)

∣∣∣∣ ϕ̃(u′)
(
1− Φ̃(2j2v − k2)

)

− 2−j1/2
∫

Ξk

dsdtf(s, t) 2j1/2ϕ̃(2js− k1)
(
1− Φ̃(2j2 t− k2)

)∣∣∣∣ϕjk(x, y).
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If we consider the two terms inside the absolute value, it can be readily seen that:

0 < ϕ̃(ξ)
(
1− Φ̃(ζ)

)
< 1, and 0 <

∫

Ξk

dξdζ f(ξ, ζ) ϕ̃(ξ)
(
1− Φ̃(ζ)

)
< 1,

so that their difference too belongs to [0, 1]. We have then that:

M

nT∑

p=1

(
1− p

T

)(
E
∣∣Zt(x, y)

∣∣
)2

6M nT · 2−j1−j2
(∑

k

∫ a

−a
du′
∫

Ξk2

dvf(2j1(u′ + k1), v)ϕjk(x, y)

)2

= M nT · 2−j1−j2
(∑

k

{∫ a

−a
du′
∫

Ξk2

dv
[
f(2j1(u′ + k1), v)− f(x, y)

]
+ f(x, y)

}
ϕjk(x, y)

)2

= MnT ·
(∑

k

{∫ a

−a
du′
∫

Ξk2

dv
[
f(2j1(u′ + k1), v)− f(x, y)

]
+ f(x, y)

}
ϕ(2j1x− k1)ϕ(2j2y − k2)

)2

.

(B.36)

It follows, taking the norm, that:

S1 6M
(
nT
T

)ρ/2
sup
y

{
ω1

ex

(
f(·, y

)
, 21−j1a)ρp + ‖f(·, y

)
‖ρp
}

= O

(
nT
T

)ρ/2
. (B.37)

Now we continue by considering part S2 of (B.35). This term will be studied using the α - mixing property
for the process, taking advantage of Davydov’s inequality for α-mixing processes:

| Cov(X,Y )| 6 2
r

r − 2
(2α)1− 1

r (E|X |r) 1
r (E|Y |r) 1

r ,

with r > 2 and provided that E|X |r,E|Y |r <∞. So, again because of stationarity:

∣∣∣
T∑

p=nT+1

(
1− p

T

)
Cov

(
ZT (x, y)ZT−p(x, y)

)∣∣∣ 6
T∑

p=nT+1

2
r

r − 2

(
2α(p)

)1− 1
r

(
E
∣∣Zt(x, y)

∣∣r
)2/r

. (B.38)

Since r > 2 and since |Zt(x)| < 2j1 uniformly in x we can write:

E|Z |r 6 2j1·(r−2) EZt(x, y)2,

so that the right hand side of (B.38) can be bounded by

Cr · 2 2 r−2
r j1

(
σ2(x, y)

)2/r T∑

p=nT+1

α(p)1− 1
r =Cr · 2 2 r−2

r j12
2
r j1∆(x, y)

2
r

T∑

p=nT+1

α(p)1− 1
r

.
=Cr · 2 2 r−1

r j1∆(x, y)
2
r S′T (nT ).

The S2 term can be bounded in the following way:

S2 6
C̃r

T−ρ/2

(
2 2 r−1

r j1S′T (nT )
)ρ/2

sup
y

∥∥∆(·, y)
∥∥ρ/r
p/r
, (B.39)

with C̃r obtained by collecting all terms not depending on j1 and T . Then we can compare the asymptotic
behavior of V0 and S2.

S2(
2j1/T

)ρ/2 = C̃r
′

(
2 2 r−1

r j1S′T (nT )
)ρ/2

2j1·ρ/2
= C̃r

′
(

2 2 r−1
r j1S′T (nT )

2j1

)ρ/2
=
(

2
r−2
r j1S′T (nT )

)ρ/2
.

We observe that the ratio will tend to zero if S ′T (nT ) = O
(
2−( r−2

r +δ)j1
)

with δ > 0, so, since by (4.4)

S′T (nT ) = O(n−1
T ), we need to impose nT = O

(
2( r−2

r +δ)j1
)
. We remember that in order to have S1/V0 → 0

as T → ∞, nT was constrained by (B.37) to grow in a way that nT /2
j1 −→

T
0, i.e. nT = O

(
2j1(1−θ)), with

θ > 0. Now we notice that, since r > 2, 0 < r−2
r < 1, we can choose a δ such that r−2

r + δ < 1, that is
0 < δ < 2

r < 1 and a θ = 1− r−2
r − δ, that both satisfy the conditions for S1/V0, S2/V0 → 0 simultaneously

as T →∞.
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C Proof for Section 5

Theorem 2. As seen in Equation (5.3), we can write

Q̂(p, ξ)−Q(p, ξ) =
1

f̃Q̂,Q(ξ)

{
F (ξ, Q̂(p, ξ))

f(ξ)
− F̂ (ξ, Q̂(p, ξ))

f̂(ξ)

}

=
1

B(ξ) · f̃Q̂,Q(ξ)

{
F (ξ, Q̂(p, ξ))− F̂ (ξ, Q̂(p, ξ))

}
− A(ξ)

B2(ξ) · f̃Q̂,Q(ξ)

{
f(ξ)− f̂(ξ)

}
,

where we have used the mean value theorem for the function u
v in two variables u = F̂ (ξ, Q̂(p, ξ) and v = f̂(ξ)

with mean values |B(ξ) − f(ξ)| 6 |f(ξ) − f̂(ξ)|, and |A(ξ) − F (ξ, Q̂(p, ξ))| 6 |F (ξ, Q̂(p, ξ)) − F̂ (ξ, Q̂(p, ξ))|.
The above equality is true for pointwise deviations f(ξ)− f̂(ξ), F (ξ, Q̂(p, ξ))− F̂ (ξ, Q̂(p, ξ)). Taking the Lq

expectation on both sides we have

E|Q̂(p, x)−Q(p, x)|q 6 1

f̃Q̂,Q(x)q
E
∣∣∣∣
F (x, Q̂)− F̂ (x, Q̂)

B(x)
− A(x)

B(x)2

(
f(x)− f̂(x)

)∣∣∣∣
q

.

Then we take the norm in a neighborhood J
.
= {x|[ξ − x] < 21−j1a},

∥∥ Q̂(p, ·)−Q(p, x)
∣∣Lp(Lq)

∥∥ρ
J

=
∥∥∥
(
E|Q̂(p, ·)−Q(p, ·)|q

)1/q∥∥∥
ρ

J

6 1

˜fQ̂,Q(ξ)B̃(ξ)
sup
y

∥∥F (·, y)− F̂ (·, y)
∣∣Lp(Lq)

∥∥ρ
J

+
Ã(ξ)

˜fQ̂,Q(ξ)B̃(ξ)
2

∥∥ f(·)− f̂(·)
∣∣Lp(Lq)

∥∥ρ
J
,

where A(ξ) 6 Ã(ξ) in J , f̃Q̂,Q(ξ) > ˜fQ̂,Q(ξ) and B(x) > B̃(ξ) in J .
The two norms in the last inequality will be bounded by expressions identical to the right hand side of

(5.4), but with ωµ(f, 21−j1a)Lp(J ) instead of ωµ(f, 21−j1a)Lp(R). The result of Theorem 2 follows immedi-

ately by remarking that ωµ(f, 21−j1a)Lp(J ) 6 ωµ(f, 21−j1a)Lp(R).

D Steklov Means

For g ∈ L1,loc, µ ∈ N, 0 < h <∞, the Steklov functions (Steklov means) gµ,h of a function in one variable is
defined by:

gµ,h(x) = (−h)−µ
∫ h

0

· · ·
∫ h

0

· · ·
︸ ︷︷ ︸

µ

[
µ−1∑

ν=0

(−1)ν−1

(
µ

ν

)
g

(
x+

µ− ν
µ

µ∑

λ=1

θλ

)]
dθ1 · · · dθµ.

Steklov functions gµ,h are related to g, and to the moduli of smoothness ωµ(g, t)p by:

∥∥ g − gµ,h
∥∥
p
6 ωµ(g, h)p;

∥∥ g(ν)
µ,h

∥∥
p
6 cµ,νh−νων(g, h)p, ν = 1, 2, · · ·µ;

where cµ,ν are positive constants. There exist explicit estimates from above for this constants. For more
details see, for instance, Petrushev and Popov (1987).
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For functions of two variables we can define an analogous function

gµ,h(x, y) = (−hxhy)−µ
∫ hx

0

· · ·
∫ hx

0︸ ︷︷ ︸
µ

∫ hy

0

· · ·
∫ hy

0︸ ︷︷ ︸
µ

dθx1 · · · dθxµdθy1 · · · dθyµ

[
µ−1∑

ν=0

(−1)ν−1

(
µ

ν

)
g

(
x+

µ− ν
µ

µ∑

λ=1

θxλ, y +
µ− ν
µ

µ∑

λ=1

θyλ

)]

with the properties:

‖g − gµ,h‖p 6 sup
i∈R2

ωµi (g, h)p; (D.1)

∥∥∥∥
∂νgµ,h
∂xνi

∥∥∥∥
p

6 cµ,νh−νωνei(g, h)p, ν = 1, 2, · · ·µ; (D.2)

E Properties of the space Lp(Lq)

In Section 3 we introduced the space Lp(Lq). Recall that the triangular inequality holds with
∥∥ g + h

∥∥
A
6

cA(
∥∥ g
∥∥
A

+
∥∥h
∥∥
A

), cA > 1. For 1 6 p, q 6 ∞ Lp(Lq) is a Banach space, while for 0 < p < 1 and/ or

0 < q < 1 the constant is: cA = cpcq = max{1, 2(1/p)−1} · max{1, 2(1/q)−1}. If A is a quasi normed space,
then Aρ, defined as

{
g ∈ A,

∥∥ g
∥∥
Aρ

=
∥∥ g
∥∥ρ
A

}
is a 1-quasi normed space, i.e. cA = 1, with ρ = 1/[1+log2(cA)].

Now, Lp(Lq)
ρ is a Banach space for ρ such that 1

ρ = max
{

1, 1
p ,

1
q ,

1
p + 1

q −1
}

. Finally we note that for p = q,

the norm coincides with the usual Lp−risk, i.e. E‖ · ‖p.

F Extension of Lemma 3 for i.i.d. case

Lemma 4. Let ϕ, ϕ̃ be as in (2.3) - (2.8). Let {(Xt, Yt)}t=0,...,T be realizations of an i.i.d. process. Let
p > 1, 2 < q < ∞ and ρ = min{1, p} = 1. Assume, for fixed y, that FY (x, y) ∈ Lmin{1,p/q} ∩ Lmax{1,p/2}.
Let j2 > log2 T . Then:

sup
y

∥∥ Â(T )
J (F (·, y))(·) − E

(
Â

(T )
J

(
F (·, y)

)
(·)
) ∣∣Lp(Lq)

∥∥ 6

c(p, q)

(
2j1

T

)1/2{
max

{
sup
y
‖F (·, y)‖min{1,p/q}, sup

y
‖F (·, y)‖max{1,p/2}

}1/2

+ c(a) max
{

sup
y
ω1(F (·, y), 21−j1a)min{1,p/q},

sup
y
ω1(F (·, y), 21−j1a)max{1,p/2}

}1/2

+

(
2j1

T

)[ 1
q− 1

2

]
[
max

{
sup
y
‖F (·, y)‖min{1,p/q}, sup

y
‖F (·, y)‖max{1,p/2}}1/q

+ c(a) max
{

sup
y
ω1(F (·, y), 21−j1a)min{1,p/q},

sup
y
ω1(F (·, y), 21−j1a)max{1,p/2}

}1/q
]}
.

Moreover

max
{

sup
y
ω1(F (·, y), 21−j1a)min{1,p/q}, sup

y
ω1(F (·, y), 21−j1a)max{1,p/2}

}
= o(1), j1 →∞,

if q 6 p <∞ ,
or if p =∞ and F is continuous also in the x argument,

or if 1 < p < q and sup
y

sup
06t6h

∫ +∞

−∞
dx
(∫ 1

0

dαF (x + αt, y)
)p/q
< +∞.

The proof of this result can be found in Cosma (2004) which is available on request.
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