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Summary

A mixed model is a flexible tool for joint modelling purposes, especially

when the gathered data are unbalanced. However, computational problems

due to the dimension of the joint covariance matrix of the random effects

arise as soon as the number of outcomes and/or the number of used random

effects per outcome increases. We propose a pairwise approach in which all

possible bivariate models are fitted, and where inference follows from pseudo-

likelihood arguments. The approach is applicable for linear, generalised linear

and nonlinear mixed models, or for combinations of these. This paper evalu-

ates the performance of the pairwise approach for joint linear mixed models

using a set of simulation studies.
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1. Introduction

Most models proposed in the literature for the analysis of longitudinal data,

restrict attention to the analysis of one single outcome variable, measured

repeatedly over time (analysis of univariate longitudinal data). Multivariate

longitudinal data arise when, instead of a single outcome, a set of different

outcomes on the same unit is measured repeatedly over time. As an exam-

ple of multivariate longitudinal data, consider the situation where different

indices of physical and mental health are measured repeatedly over time. In

many situations joint modelling of the multivariate longitudinal profiles is

needed or has additional advantages over the separate analyses of the differ-

ent outcomes (Fieuws and Verbeke, 2004).

A flexible approach is to model the different outcomes jointly by using

random effects models. In a joint-modelling approach using mixed models,

random-effects are assumed for each outcome process, and by imposing a joint

multivariate distribution on the random effects, the different processes are

associated. This approach has many advantages and is applicable in a wide

variety of situations. First, the data can be highly unbalanced. For example,

it is not necessary that all outcomes are measured at the same timepoints.

Moreover, the approach is applicable in situations where linear, nonlinear

or generalised linear mixed models are used to describe the evolution of

the individual outcome processes. Also, models can be constructed joining

different types of mixed models. For example, a generalised linear mixed

model for a discrete outcome combined with a nonlinear mixed model for

a continuous outcome. Examples of joint model using the random-effects

approach can be found in Buyse et al. 2000, Burzykowski et al. 2001), Thum
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(1997), Gueorguieva (2001a), Chakraborty et al. (2003), MacCallum et al.

(1997), Thiébaut et al. (2002) and Shah et al. (1997). All these examples

refer to situations where the number of different outcomes is low, leading to

random vectors of a relatively low dimension. The focus of this paper is to

propose a method which allows this random-effects approach for much higher

dimensions and to evaluate this method using simulation studies.

This paper is organised as follows. Section 2 introduces the joint mod-

elling approach using mixed models and describes the dimensionality prob-

lem. Section 3 details the pairwise fitting approach as a solution to this

problem, Section 4 presents the results of a set of simulation studies and

Section 5 contains a discussion.

2. Joint Modelling : Random-Effects Approach

2.1 Univariate Mixed Models

Let m be the number of different outcomes to be modelled jointly. It

will be assumed that each of the m longitudinally measured outcomes can

be modelled using a mixed model. More specifically, for one outcome, let

yij denote the jth measurement available for the ith subject, i = 1, . . . , N ,

j = 1, . . . , ni, and let yi denote the vector of all measurements for the ith sub-

ject, i.e., yi
′ = (yi1, . . . , yini

). Our general model assumes that yi (possibly

appropriately transformed) satisfies

yi|bi ∼ Fi(ψ, bi), (1)

i.e., conditional on bi, yi follows a pre-specified distribution Fi, possibly de-

pending on covariates, and parameterized through a vector ψ of unknown

parameters, common to all subjects. Further, bi is a q-dimensional normal

vector of subject-specific parameters with mean zero and covariance matrix
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D. Often conditional independence is assumed, implying that the compo-

nents yij in yi are independent, conditionally on bi. The distribution function

Fi in (1) then becomes a product over the ni independent elements in yi. In

general, unless a fully Bayesian approach is followed, inference is based on

the marginal distribution of yi with density

fi(yi) =

∫
fi(yi|bi)g(bi)dbi, (2)

in which fi(yi|bi) and g(bi) denote the conditional density of yi given bi, and

the density of bi, respectively. Estimation and inference of the parameters

in fi(yi) is based on maximum likelihood principles, assuming independence

across subjects. Special cases are linear and nonlinear mixed models for con-

tinuous data, and generalised linear mixed models for discrete data. Linear

mixed models assume that the ni-dimensional vector yi satisfies

yi|bi ∼ N(Xiβ + Zibi, Σi), (3)

where Xi and Zi are (ni × k) and (ni × q) dimensional matrices of known

covariates, β is a k-dimensional vector of regression parameters, called fixed

effects, and Σi is a (ni × ni) covariance matrix which depends on i only

through its dimension ni, i.e. the set of unknown parameters in Σi will

not depend upon i. The conditional independence assumption then reduces

to Σi = σ2Ini
. The latter restriction is not a prerequisite for joint mixed

models, e.g. a serial correlation structure could be allowed. Marginally, yi

follows a normal distribution with mean Xiβ and covariance matrix Vi =

ZiDZ ′
i + Σi. Non-linear mixed models can be considered as an extension

of model (3) in the sense that they replace the linear predictor Xiβ + Zibi

by h(Xi, Zi,β, bi) for some known ‘link’ function h. The generalized linear
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mixed model assumes that conditionally on random effects bi, the elements

yij of yi are independent, with density function of the form

fi(yij|bi) = exp [(yijηij − a(ηij))/φ + c(yij, φ)] ,

with mean E(yij|bi) = a′(ηij) = µij(bi) and variance Var(yij|bi) = φa′′(ηij),

and with h(µi(bi)) = Xiβ + Zibi for a known link function h. For gener-

alized linear and the nonlinear mixed models, the integral in (2) cannot be

calculated analytically such that numerical approximations are required.

2.2 Joint Mixed Model

The joint model assumes a mixed model for each outcome, and these uni-

variate models are combined through specification of a joint multivariate dis-

tribution for all random effects. Obviously, the joint model can be considered

as a new mixed model of the form (1), but with a random-effects vector bi of

a higher dimension. Let Θ∗ the vector containing all parameters (fixed effects

parameters as well as covariance parameters), then li(Y 1i,Y 2i, . . . , Ymi|Θ∗)

refers to the loglikelihood contribution of subject i to the full joint mixed

model. Strictly speaking, standard software for linear, non-linear or gener-

alised linear mixed models can be used to obtain parameter estimates for

this joint mixed model. Examples based on SAS can be found in Thiébaut et

al. (2002b). However, computational problems will arise as the dimension of

the random-effects vector bi in the joint model increases, even in the case of

linar mixed models where the marginal density in (2) of yi can be calculated

analytically. The approach presented in Section 3 solves this by fitting joint

models to all pairs of outcomes separately.
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3. Pairwise Modelling Approach

To resolve the computational complexity of high-dimensional joint random

effect models, the dimensionality of the problem needs to be reduced. This

is obtained by fitting in a first step all pairwise bivariate models separately,

instead of maximising the likelihood of the full joint model presented in the

previous section. Assuming the full joint model is correct, all possible pair-

wise models are correct. In a maximum likelihood framework, each pairwise

model yields estimates, with classical optimal asymptotic proporties, for a

part in Θ∗. For some elements in Θ∗ multiple ML estimates will be obtained.

Therefore, in a second step, these estimates will be combined to obtain one

single estimate for each parameter in Θ∗ of the full joint model.

3.1 Fitting Pairwise Models

Instead of maximising the loglikelihood of the joint mixed model, loglike-

lihoods of the following form will be maximised separately

N∑

i=1

lrsi(Y ri,Y si|Θr,s), (4)

r = 1, . . . , m− 1, s = r + 1, . . . , m. The total number of subjects is indicated

by N . Θr,s represents the vector of all parameters in the bivariate joint mixed

model corresponding to the specific pair (r, s). To simplify the notation in the

remainder, expression (4) can be rewritten as
∑N

i=1 lpi(Θp) with p = 1, . . . , P

and P = m(m−1)/2 representing the total number of possible pairs. Finally,

let Θ then be the stacked vector combining all pair-specific parameter vectors

Θp. Estimates for the elements in Θ are obtained by maximising each of the

P likelihoods separately.
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It is important to note that the parameter vectors Θ and Θ∗ are not

equivalent. Indeed, some parameters in Θ∗ will have a single counterpart in

Θ, e.g. the covariance between random effects from two different outcomes.

Other elements in Θ∗ will have multiple counterparts in Θ, e.g. the covari-

ance between random effects from the same outcome. In the latter case a

single estimate is obtained by averaging all corresponding pair-specific ML

estimates in Θ̂. By definition, this linear combination of ML estimates shares

the same nice asymptotic proporties of its constituting elements. Calculation

of the precision of this average is adressed in the next subsection.

3.2 Inference for Θ

Standard errors of the so-obtained estimates clearly cannot be obtained

from averaging standard errors or variances. Indeed, the variability amongst

the pair-specific estimates needs to be taken into account. Furthermore, two

pair-specific estimates corresponding to two pairwise models with a com-

mon outcome are based on overlapping information and hence correlated.

This correlation should also be accounted for in the sampling variability of

the combined estimates in Θ̂
∗
. Borrowing ideas from the pseudo-likelihood

framework, first a covariance matrix for the elements in Θ̂ will be constructed.

The idea behind pseudo-likelihood estimation (Besag, 1975) is to replace the

joint likelihood by a suitable product of marginal or conditional densities,

where this product is easier to evaluate than the original likelihood. Ex-

amples of pseudo-likelihood estimation can be found in Arnold and Strauss

(1991), Geys et al. (1997) and Renard et al. (2004). Although in the pair-

wise approach a set of likelihoods is maximised separately, the approach fits

within the pseudo-likelihood framework. Indeed, fitting all possible pair-
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wise models is equivalent to maximising a pseudo-likelihood function of the

following form

pl(Θ) = l(Y 1,Y 2|Θ1,2) + l(Y 1,Y 3|Θ1,3) + . . . + l(Y m−1,Y m|Θm−1,m)

=
∑P

p=1 lp(Θp).
(5)

Note however that, in the classical examples of pseudo-likelihood esti-

mation, the same parameter is present in the different parts of the pseudo-

likelihood function whereas in (5) the set of parameters in Θp is considered

pair-specific (subscript p at this stage, only at a later stage the estimates

will be combined). This separate parametrisation is needed to be able to

maximise the different parts in expression (5) separately. Since the pairwise

approach fits within the pseudo-likelihood framework, an asymptotic mul-

tivariate normal distribution for Θ̂ can be derived. Asymptotic normality

of the pseudo-likelihood estimator in the single parameter case and in the

vector valued parameter case is shown in Arnold and Strauss (1991), and in

Geys (1999), respectively. The asymptotic multivariate normal distribution

for Θ̂ is given by

√
N(Θ̂ − Θ) ∼ MV N(0, J−1KJ−1) (6)

where J is a block-diagonal matrix with diagonal blocks Jpp, and where

K is a symmetric matrix containing blocks Kpq, given by

Jpp =
1

N

N∑

i=1

E

(
∂2lpi

∂θp∂θ′
p

)
, Kpq =

1

N

N∑

i=1

E

(
∂lpi

∂θp

∂lqi

∂θ′
q

)
, p, q = 1, . . . , P

Estimates are obtained by dropping the expectations and replacing the un-

known parameters by their estimates.
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3.3 Combining Information: Inference for Θ∗

In a final step, estimates for the parameters in Θ∗ can be calculated, as

suggested before, by taking averages over all pairs. This is obtained by Θ̂∗ =

AΘ̂ with Θ̂∗ following a multivariate normal distribution with mean Θ∗

and covariance matrix AΣ(Θ̂)A′. A is a matrix containing the appropriate

coefficients to calculate the averages and Σ(Θ̂) equals the covariance matrix

for Θ̂ obtained by expression (6).

4. Simulation Study

Four simulation studies were conducted to evaluate the performance of the es-

timators from the pairwise approach. In a first study, the performance of the

pairwise approach will be evaluated in a setting where the full joint model is

trivariate. The aim of this study is (1) to confirm the expected unbiasedness

of the estimates (based on theoretical arguments), (2) to verify whether the

pairwise approach yields valid standard errors (meaning that the standard

errors reflect the sampling variability), (3) to verify whether the standard

errors are robust agains model misspecification and (4) to study the possibil-

ity of efficiency loss in the pairwise approach. In a second simulation study

the parameter recovery has been verified in a higher dimensional setting. A

third and fourth simulation study have been performed to study into detail

the efficiency loss observed in study 1. The latter two studies are based on

an artificial dataset, whereas the first two simulation studies are based on a

real dataset containing longitudinal pure-tone hearing tresholds.

4.1 Pure-Tone Hearing Thresholds

In a hearing test, hearing threshold sound pressure levels (dB) are de-

termined at different frequencies to evaluate the hearing performance of a
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subject. A hearing threshold is the lowest signal intensity a subject can de-

tect at a specific frequency. In this study, hearing thresholds measured at

eleven different frequencies (125Hz, 250Hz, 500Hz, 750Hz, 1000Hz, 1500Hz,

2000Hz, 3000Hz, 4000Hz, 6000Hz and 8000Hz), obtained on 603 male par-

ticipants from the Baltimore Longitudinal Study of Aging (BLSA, Shock et

al. 1984), are considered. Hearing thresholds are measured at the left as well

as at the right ear, leading to 22 outcomes measured repeatedly over time.

The number of visits per subject varies from 1 to 15 (a median follow-up

time of 6.9 years). Visits are unequally spaced. The age at first visit of the

participants ranges from 17.2 to 87 years (with a median age at first visit of

50.2 years). Analyses of the hearing data collected in the BLSA study can

be found in Brant and Fozard (1990), Morrell and Brant (1991) and Pearson

et al. (1995). Ear- and frequency specific profiles (for all 22 outcomes) for

one randomly chosen subject are shown in Figure 1.

[Figure 1 about here.]

4.2 Study 1

In the first study, three outcomes were selected (500 Hz, 1000 Hz and 2000

Hz, all taken at the right ear) from the example on the hearing thresholds.

Verbeke and Molenberghs (2000) proposed the following linear mixed model

to analyse the evolution of the hearing threshold for a single frequency. Let

Yi(t) denote the hearing threshold at some frequency for a subject i taken at
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time t, the model is specified as

Yi(t) = (β1 + β2Agei + β3Age2
i + ai)

+(β4 + β5Agei + bi)t

+β6V isit1(t) + εi(t) (7)

in which t is time expressed in years from entry in the study and Agei equals

the age of subject i at the time of entry in the study. Since there is evidence

for the presence of a learning effect from the first to the subsequent visits, a

time-varying covariate V isit1 has been added. This covariate is defined to be

one at the first measurement and zero for all other visits. Finally, the ai are

random intercepts, the bi are the random slopes for time, and the εi represent

the usual error components, independent of the random effects. The vector

(β1, β2, β3, β4, β5, β6)
′ of fixed effects describes the average evolution of the

hearing threshold and the vector (ai, bi)
′ of random effects describes how the

profile of the ith subject deviates from the average profile. The classical

normality assumptions apply for all random terms in this model.

Considering the 3 outcomes, let Y1i(t), Y2i(t), Y3i(t) denote the hearing

thresholds of the 3 frequencies for a subject i taken at time t. Each of

the 3 responses is described using the linear mixed-effects model (7). More

specifically,





Y1i(t) = µ1(t) + a1i + b1it + ε1i(t)

Y2i(t) = µ2(t) + a2i + b2it + ε2i(t)

Y3i(t) = µ3(t) + a3i + b3it + ε3i(t)
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where µ1(t), µ2(t), µ3(t) refer to the average evolutions:





µ1(t) = β11 + β21Agei + β31Age2
i + (β41 + β51Agei)t + β61V isit1(t)

µ2(t) = β12 + β22Agei + β32Age2
i + (β42 + β52Agei)t + β62V isit1(t)

µ3(t) = β13 + β23Agei + β33Age2
i + (β43 + β53Agei)t + β63V isit1(t)

with the second subscript for each β parameter referring to outcomes 1, 2 or

3. The 3 outcome trajectories are tied together through a joint distribution

for the random effects

(
a1i, a2i, a3i, b1i, b2i, b3i

)′ ∼ N (0,D)

where D is the 6 × 6 covariance matrix of the random effects. The error

components,

(
ε1i(t), ε2i(t), ε3i(t)

)′ ∼ N (0, R) for all t,

are assumed independent of the random effects. Note that the error compo-

nents are assumed independent across timepoints.

Two different settings of the above joint linear mixed model are con-

sidered. In a first setting (scenario A), all fixed and random effects were

considered to be outcome-specific, and unstructured 6 × 6 and 3 × 3 covari-

ance matrices were used for the random effects and the error components

respectively. In a second settting (Scenario B), the model where the data are

drawn from is simplified by considering the interaction between the linear

evolution and age at first entry, as well as the random linear evolution to be

common to the three outcomes. This implies that the following restrictions
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apply under scenario B:




β51 = β52 = β53

bi1 = bi2 = bi3

Both models will be denoted as full trivariate mixed models in the remain-

der. In both settings, 1000 data sets were simulated from the full trivariate

model with parameters obtained from the hearing data. Each time, the full

trivariate model was fitted, and the pairwise approach was applied as well.

In scenario A, two versions of the model were used: The correct model and

an incorrect model. The latter model does not contain random slopes and

the error components are assumed to be uncorrelated. In the full trivariate

approach, model-based as well as robust standard errors are calculated. The

latter are the asymptotically consistent ’sandwich’ estimators described in

Liang and Zeger (1986) and in Diggle, Heagerty, Liang and Zeger (1994).

4.2.1 Bias Tables 1 and 2 present results obtained under scenario A,

and tables 3 and 4 show results obtained under scenario B. Comparison of

the parameter-specific biases obtained with the pairwise and the trivariate

approach clearly indicates that the pairwise approach yields unbiased es-

timates, irrespective of whether parameters are shared or not by a set of

outcomes. Note that this result was expected from theoretical arguments

presented in section 3.1.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]
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[Table 4 about here.]

Additionally, to express the degree of agreement between the results from

the pairwise and the trivariate approach, intra-class correlations have been

calculated for each parameter. In a perfectly balanced dataset with all fixed

and random effects parameters outcome-specific, it can be expected from the-

ory on balanced growth curve models (Lange and Laird, 1989; Reinsel, 1982)

that there will be a perfect agreement between estimates obtained under the

trivariate model and estimates obtained under the pairwise models. How-

ever, this perfect agreement does not hold anymore if there are parameters

common to a set of outcomes and/or if the dataset is unbalanced. In scenario

A, the ICC’s vary from 0.981 to 0.999 for the 27 covariance parameters and

from 0.993 to 0.999 for the 18 fixed effects parameters. In scenario B, the

ICC’s vary from 0.974 to 0.998 for the 16 covariance parameters and from

0.977 to 0.999 for the 16 fixed effects parameters.

4.2.2 Valid Standard Errors Tables 1 and 3 contain also information

on the sampling variability (σ̂β) of the 1000 estimates of each fixed effect.

Comparing this sampling variability with the mean of the standard errors

(se ) clearly indicates that the pairwise method yields standard errors which

reflect the true sampling variability.

4.2.3 Robustness Table 5 presents the results for the fixed effects ob-

tained under the incorrect model of scenario A (the model which does not

contain random slopes and assumes that the error components are uncorre-

lated). The results of the incorrect model allow to assess the robustness (to
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model misspecification) of the standard errors obtained under the pairwise

approach. Columns 2 and 3 give an indication of the sampling variability

of the 1000 estimates under the pairwise and the trivariate approach respec-

tively. Column 4 gives the mean of the standard errors obtained under the

pairwise approach. Columns 5 and 6 give the mean of the model-based and

the empirically corrected standard errors obtained under the trivariate ap-

proach respectively. The ratio’s presented in columns 7, 8 and 9 indicate if

the standard errors obtained under the pairwise approach, the model-based

standard errors of the trivariate approach, and the empirically corrected stan-

dard errors of the trivariate approach, reflect the true sampling variability.

As could be expected (Diggle, Heagerty, Liang and Zeger, 2002), this ratio

fluctuates for all parameters around 1 (column 9) if empirically corrected

standard errors are used. This is not the case for the model-based standard

errors. Indeed, these standard errors are no longer valid. This is especially

true for the parameters involving the evolution over time, where the ratio’s

range from 0.66 to 0.77. Contrary to this, the standard errors of the pairwise

approach are valid. Column 7 indicates that for all parameters the ratio is

close to 1, ranging from 0.969 to 1.016.

[Table 5 about here.]

4.2.4 Efficiency The last column in Tables 1, 2, 3 and 4 gives for each

parameter the relative efficiency, expressed as the ratio of the mean squared

errors of the estimates obtained with the trivariate and the pairwise ap-

proach. An RE lower than 1 thus indicates presence of efficiency loss. When

applying the pairwise approach on a joint mixed model where all parameters
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are outcome-specific (scenario A), there is no clear indication of efficiency

loss. However, when some parameters are common to the three outcomes

(scenario B), some efficiency loss is clearly present. Figure 2 presents a his-

togram of the relative efficiencies of all parameters, comparing scenario A

and scenario B. In scenario B, of the 32 parameters, 19 have a relative effi-

ciency higher than 0.99. The lowest observed relative efficiency equals 0.931.

A possible explanation is that maximisation in the pairwise approach is less

restricted than in the full trivariate model. E.g., for the interaction between

the slope and age at entry (β5), the constraint in the trivariate model is

β51 = β52 = β53, whereas in the pairwise approach the less stringent con-

straints β51 = β52, β51 = β53 and β52 = β53 apply respectively in each of

the three pairwise models. Obviously, the less restricted the parameter space

over which the maximisation takes place, the more variability will be ob-

served. However, the efficiency loss for β5 under scenario B seems rather

low (RE=0.989), whereas other parameters, not subject to restrictions, show

more efficiency loss. The third and fourth simulation study will explore the

efficiency loss further.

[Figure 2 about here.]

4.3 Study 2

A second simulation study has been used to study in detail the parameter

recovery in a higher-dimensional situation. To this purpose, 11 outcomes

were selected (all hearing tresholds taken at the right ear) from the example

on the hearing thresholds. Again, two scenario’s were considered. In scenario

A, all fixed and random effects were considered to be outcome-specific, and

unstructured 22×22 and 11×11 covariance matrices were used for the random
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effects and the error components respectively. In scenario B the model where

the data are drawn from is simplified by considering the linear evolution, the

interaction between the linear evolution and age at entry, and the random

linear evolution to be common to respectively (1) outcomes 125, 250, 500 and

750 Hz, (2) outcomes 1000, 1500, 2000 and 3000 Hz and (3) outcomes 4000,

6000 and 8000 Hz. In both scenario’s, 250 datasets were simulated from a

full multivariate model (parameters were obtained by applying the pairwise

approach on the real data), and the pairwise approach has been applied.

Note that in this study no information is available on efficiency since the full

multivariate models in scenario A and B, with respectively 22 and 14 random

effects, can not be fitted directly.

To explore the parameter recovery, for each parameter the bias (the differ-

ence between the mean of the 250 samples and the truth) has been expressed

as a proportion of the standard deviation of the 250 samples. In scenario A,

this ratio varied from -0.147 to 0.138 (with mean 0.001) for all 66 fixed effects

parameters, and from -0.157 to 0.117 (with mean 0.011) for all 253+66 = 319

covariance parameters. In scenario B, this ratio varied from -0.125 to 0.108

(with mean 0.01) for all 50 fixed effects parameters, and from -0.141 to 0.128

(with mean -0.018) for all 105+66 = 171 covariance parameters. A histogram

of these ratio’s can be found in figure 3. As expected, the pairwise approach

clearly yields unbiased estimates in a high-dimensional setting, irrespective

some parameters are shared or not shared by a set of outcomes.

[Figure 3 about here.]
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4.4 Study 3

The first simulation study indicated that if some parameters are common

to a set of outcomes, efficiency loss can be expected when using the pairwise

approach. As a possible explanation, we referred to differences between the

pairwise and the trivariate approach in the restrictions put on the parameter

space. To verify this hypothesis in a very simple setting, the following simu-

lation has been performed. This simulation is not based on the hearing data,

but on an artificial dataset, which is a balanced one. This to ensure that the

results are purely attributable to the presence of common parameters and

not to the unbalanced structure of the data. 100 subjects are equally divided

over a control and a treatment group. The following model has been used to

sample from:

Yijk = αk + bik + βkTi + εijk (8)

where Yijk denotes the jth response of subject i on outcome k, with i =

1, . . . , 100, j = 1, . . . , 5 and k = 1, . . . , 3. T is a binary indicator taking value

1 for the subjects in the treatment group. The following set of restrictions

applies:





α1 = α2 = α3

β1 = β2 = β3

bi1 = bi2 = bi3

The parameters common to the three outcomes will be denoted with α,

β and bi. The random intercepts bi follow a zero-mean normal distribution

with variance δ2. The only outcome-specific parameters are the variances

of the error components, which are uncorrelated between outcomes and de-

noted with respectively σ2
1, σ2

2 and σ2
3 . 500 datasets are sampled and for
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each dataset model (8) is fitted using the full trivariate approach as well as

the pairwise approach. For all parameters the relative efficiency has been

calculated as:

RE = var(θ̂triv)

var(θ̂pair)

where var(θ̂triv) and var(θ̂pair) denote the sampling variability of the 500

estimates observed under the full trivariate and the pairwise approach re-

spectively.

Table 6 compares the sampling variabily for the estimates obtained un-

der the pairwise and the trivariate approach. Also, the observed sampling

variability in each pair is given. As can be seen, the pair-specific sampling

variability of each parameter is slightly higher than the sampling variability

under the trivariate approach. However, due to the lack of perfect correlation

between the estimates obtained in different pairs, the sampling variability of

the mean will be reduced compared to the sampling variability of the pair-

specific estimates. For the fixed effects parameters and the variability of the

random intercept, the sampling variability of the mean of the pair-specific

estimates is comparable to the sampling variability under the trivariate ap-

proach. Hence, no efficiency loss is present for these parameters, although

they are common to the three outcomes. Only for the outcome-specific vari-

ances of the error components, a small efficiency loss seems present. This

study clearly suggest that the pairwise approach does not automatically suf-

fers from efficiency loss for parameters which are shared by a set of outcomes.

[Table 6 about here.]
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4.5 Study 4

A fourth simulation study has been set up to explore further situations

where efficiency loss can occur. A similar model as in study 3 has been used.

However, nine instead of three different outcomes are involved. The model

used to sample from is:

Yijk = αk + bik + βkTi + εijk (9)

where Yijk denotes the jth response of subject i on outcome k, with

i = 1, . . . , 100, j = 1, . . . , 5 and k = 1, . . . , 9. A common fixed and random

intercept are considered for successive trios of outcomes, such that α1 =

α2 = α3, α4 = α5 = α6, α7 = α8 = α9, bi1 = bi2 = bi3, bi4 = bi5 = bi6

and bi7 = bi8 = bi9. The outcome-common fixed intercepts will be denoted

with α123, α456 and α678. The compound symmetric covariance matrix of

the 3 random effects, having equal variance, is denoted by D. R denotes

the covariance matrix of the error components εijk which are uncorrelated,

also having equal variance. T is a binary indicator taking value 1 for the

50 subjects in the treatment group. 500 datasets are sampled and for each

dataset model (9) is fitted using the full multivariate approach as well as

the pairwise approach. Seven versions of this model are fitted, differing in

the restrictions put on the βk in the model. In the seven scenario’s, the β’s

are assumed to be common to respectively the first three outcomes, the first

four outcomes, the first five outcomes, the first six outcomes, the first seven
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outcomes, the first eight outcomes, or to all nine outcomes:





Scenario 1 : β1 = β2 = β3

Scenario 2 : β1 = β2 = β3 = β4

Scenario 3 : β1 = β2 = β3 = β4 = β5

Scenario 4 : β1 = β2 = β3 = β4 = β5 = β6

Scenario 5 : β1 = β2 = β3 = β4 = β5 = β6 = β7

Scenario 6 : β1 = β2 = β3 = β4 = β5 = β6 = β7 = β8

Scenario 7 : β1 = β2 = β3 = β4 = β5 = β6 = β7 = β8 = β9

[Figure 4 about here.]

Figure 4 gives the relative efficiencies for the fixed intercept shared by trios

of outcomes and for the outcome-common treatment effect. A substantial

increase in efficiency loss is observed for the outcome-common intercepts

α123 and α456 under the second scenario. In this scenario, the restriction

β1 = β2 = β3 = β4 applies, involving the trio of outcomes 1, 2, 3 as well as

the trio of outcomes 4, 5, 6. The same phenomenon is present in scenario 5

where the restriction on the treatment effect involves the last trio of outcomes

(7, 8, 9), yielding a similar increase in efficiency loss as has been observed

for the two other trios in scenario 2. Also for the common treatment effect

a reduction in efficiency is observed under scenario 2 and scenario 5, the

situation where the restriction on the treatment effect involves a new trio of

outcomes.

[Figure 5 about here.]
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Figure 5 gives the relative efficiencies for the outcome-specific treatment

effects. Irrespective the scenario, there is always a mild efficiency loss for the

outcome-specific effect (relative efficiencies fluctuating around 0.9). However,

additional decreases in efficiency for the pairwise approach are observed in

scenarios 2, 3, 5 and 6.

To help understanding the pattern of efficiency losses for the fixed effects

parameters, Table 7 distinguishes the scenarios by the answers on the follow-

ing two questions: (1) Do all outcomes of a trio share the β-parameter? (2)

Is the β-parameter specific for all outcomes of a trio?. Only in scenario’s 1,

4 and 7 the answer is yes on one of both questions for all trios. These are

the scenario’s where the smallest amount of efficiency loss is observed.

[Table 7 about here.]

Figure 6 presents the results for all variance components. For none of the

variance components, the scenario has an influence on the observed efficiency

loss. A plausible explanation is that the scenarios only varied with respect

to restrictions put on the fixed effects part of the model. Except for the

covariances of the random effects, some efficiency loss is present for most

variance components.

[Figure 6 about here.]

5. Discussion

This paper evaluates a joint-modelling approach designed to model high-

dimensional multivariate longitudinal data. The approach is based on fitting

bivariate mixed models for all pairs of outcomes. As long as each bivariate

mixed model can be fitted, estimates can be obtained for the full multivariate
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mixed model. Obviously, this approach is advantageous whenever fitting the

full multivariate mixed model is not possible or too time-consuming. Differ-

ent simulation studies were used to assess the performance of the pairwise

approach. The simulation studies indicated that the pairwise approach yields

unbiased estimates with robust standard errors reflecting the true sampling

variability. It was shown that also in a high-dimensional settings the pairwise

approach recovered all parameters correctly. Efficiency loss can be present

when some parameters are shared by a set of outcomes. However, the pres-

ence of shared parameters is a necessary, but not a sufficient condition to

observe efficiency loss for all parameters. There is also no indication that the

efficiency loss will increase as the number of outcomes sharing a parameter

increases.
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Figure 1. Ear- and frequency specific profiles of hearing thresholds of 1 ran-
domly selected subject. Dotted and solid lines represent the frequency specific
profiles at the left ear and right ear respectively. Two profiles are marked
with filled circles. These represent the hearing thresholds at both ears for
frequency 250 Hz.

27



Figure 2. Histogram of the relative efficiencies for the 45 parameters in
Scenario A, and for the 32 parameters in scenario B.
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Figure 3. Evaluation of parameter recovery in a high-dimensional setting:
histogram of the bias for the 66 fixed effects under scenario A (upper left
panel), the 50 fixed effects under scenario B (lower left panel), the 319 co-
variance parameters under scenario A (upper right panel) and the 171 co-
variance parameters under scenario B (lower right panel). The biases are
expressed as a proportion of the standard deviation of the estimates.
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Figure 4. Relative efficiencies of fixed effects parameters as a function of the
seven different scenario’s. The left panel shows the results for the outcome-
common intercepts α123, α456 and α678 and the figure at the right the results
for the common treatment effect
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Figure 5. Relative efficiencies of outcome-specific fixed effects parameters as
a function of the seven different scenario’s. The numbers in the figure denote
the results for the outcome-specific treatment effect βk, with k = 4, . . . , 7.
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Figure 6. Relative efficiencies of covariance parameters as a function of the
seven different scenario’s. The left panel shows the results for the elements in
D, the covariance matrix of the random effects, with the solid lines and dotted
lines representing the results for the variances and covariances of the random
intercepts respectively. The right panel shows the results for the variances of
the error components.
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Table 1
Scenario A. Results for fixed effects βjk’s, with j = 1, . . . , 6 (cfr. expression

7), k = 1, . . . , 3, the latter referring to respectively 500 Hz, 1000 Hz and
2000 Hz. True values are given, the bias under the pairwise (BiasP ) and

the trivariate approach (BiasT ), the standard deviation of the 1000
estimates (σ̂β) the mean of the standard errors obtained under the pairwise
approach (se), the root mean squared error under the pairwise (RMSEP )
and the trivariate approach (RMSET ) and the relative efficiency (RE) of

the pairwise approach.
(∗) parameters multiplied with 10, (+) parameters multiplied with 1000

truth BiasP BiasT σ̂β se RMSEP RMSET RE

β11 7.092 -0.051 -0.055 2.442 2.389 2.442 2.441 0.999
β12 2.135 -0.032 -0.034 2.805 2.873 2.803 2.798 0.996
β13 3.772 0.027 0.025 3.712 3.679 3.710 3.704 0.996
β21

(∗) -2.827 0.022 0.024 1.040 1.007 1.039 1.039 1.000
β22

(∗) -1.296 0.036 0.036 1.187 1.215 1.187 1.185 0.996
β23

(∗) -2.203 0.019 0.020 1.557 1.556 1.556 1.554 0.997
β33

(+) 4.570 -0.023 -0.025 0.998 0.963 1.000 1.000 1.000
β32

(+) 3.696 -0.047 -0.047 1.139 1.162 1.140 1.140 1.000
β33

(+) 6.029 -0.032 -0.033 1.488 1.489 1.483 1.483 1.000
β41

(∗) -2.948 0.022 0.024 0.801 0.785 0.801 0.795 0.986
β42

(∗) -5.907 -0.020 -0.020 0.848 0.842 0.847 0.846 0.998
β43

(∗) -9.965 -0.066 -0.065 1.081 1.099 1.082 1.083 1.002
β51

(+) 13.750 -0.007 -0.012 1.634 1.598 1.633 1.623 0.987
β52

(+) 19.370 0.060 0.061 1.687 1.707 1.673 1.673 1.000
β53

(+) 29.050 0.126 0.124 2.167 2.210 2.168 2.168 1.000
β61 1.387 0.010 0.010 0.306 0.306 0.306 0.306 1.002
β62 -0.735 0.001 0.001 0.291 0.297 0.291 0.290 0.997
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Table 2
Scenario A. Results for covariance parameters with d11, d21, . . . , d66 the

elements of the covariance matrix of the random effects D and
r11, r21, . . . , r33 the elements of the covariance matrix of the error

components R. True values are given, the bias under the pairwise (BiasP )
and the trivariate approach (BiasT ), the root mean squared error under the
pairwise (RMSEP ) and the trivariate approach (RMSET ) and the relative

efficiency (RE) of the pairwise approach.

truth BiasP BiasT RMSEP RMSET RE

d11 42.166 -0.051 -0.047 3.137 3.132 0.997
d21 0.401 0.013 0.012 0.175 0.175 0.997
d22 0.063 -0.002 -0.002 0.015 0.015 0.996
d31 42.627 -0.061 -0.060 3.328 3.327 0.999
d32 0.683 0.011 0.011 0.211 0.211 1.001
d33 68.629 -0.021 -0.024 4.683 4.677 0.998
d41 0.341 0.008 0.008 0.199 0.198 0.996
d42 0.051 -0.001 -0.001 0.013 0.013 0.986
d43 0.447 0.013 0.013 0.245 0.245 0.994
d44 0.108 -0.001 -0.001 0.019 0.019 0.997
d51 39.073 -0.101 -0.104 3.888 3.871 0.991
d52 0.537 0.006 0.002 0.279 0.274 0.967
d53 63.407 -0.035 -0.037 5.066 5.074 1.003
d54 0.837 0.000 0.001 0.302 0.302 0.998
d55 114.820 -0.124 -0.132 7.480 7.472 0.998
d61 0.234 0.004 0.003 0.260 0.260 1.003
d62 0.035 -0.001 -0.001 0.017 0.016 0.991
d63 0.248 0.010 0.010 0.309 0.309 1.001
d64 0.082 -0.001 -0.001 0.021 0.021 0.999
d65 0.511 0.001 0.002 0.392 0.392 1.003
d66 0.225 -0.001 -0.001 0.033 0.033 1.002
r11 26.586 0.033 0.031 0.820 0.819 0.998
r21 11.672 0.026 0.025 0.614 0.612 0.994
r22 24.187 0.012 0.012 0.746 0.746 1.000
r31 10.745 0.012 0.014 0.717 0.714 0.992
r32 17.710 0.007 0.008 0.736 0.735 0.997
r33 34.316 -0.034 -0.032 1.057 1.054 0.993
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Table 3
Scenario B. Results for fixed effects βjk’s, with j = 1, . . . , 6 (cfr. expression

7), k = 1, . . . , 3, the latter referring to respectively 500 Hz, 1000 Hz and
2000 Hz. Note that β5 has no additional subscript since this parameter is
common to the three frequencies. True values are given, the bias under the

pairwise (BiasP ) and the trivariate approach (BiasT ), the standard
deviation of the 1000 estimates (σ̂β) the mean of the standard errors

obtained under the pairwise approach (se), the root mean squared error
under the pairwise (RMSEP ) and the trivariate approach (RMSET ) and

the relative efficiency (RE) of the pairwise approach.
(∗) parameters multiplied with 10, (+) parameters multiplied with 1000

truth BiasP BiasT σ̂β se RMSEP RMSET RE

β11 8.437 -0.068 -0.072 2.370 2.416 2.370 2.367 0.998
β12 1.851 -0.062 -0.050 2.816 2.872 2.815 2.807 0.994
β13 0.726 -0.048 -0.038 3.661 3.708 3.659 3.659 1.000
β22

(∗) -3.258 0.023 0.025 1.008 1.022 1.008 1.007 0.998
β22

(∗) -1.194 0.018 0.014 1.197 1.216 1.197 1.194 0.995
β23

(∗) -1.265 0.011 0.006 1.545 1.571 1.544 1.544 1.000
β33

(+) 4.830 -0.021 -0.022 0.971 0.979 0.971 0.970 0.998
β32

(+) 3.630 -0.015 -0.011 1.152 1.164 1.151 1.149 0.996
β33

(+) 5.480 -0.003 0.001 1.477 1.505 1.476 1.476 0.999
β41

(∗) -4.950 0.016 0.020 0.680 0.729 0.679 0.681 1.003
β42

(∗) -5.361 0.033 0.029 0.715 0.727 0.715 0.690 0.931
β43

(∗) -4.873 0.030 0.029 0.726 0.744 0.726 0.717 0.976
β5

(+) 18.12 -0.029 -0.029 1.383 1.438 1.383 1.375 0.989
β61 1.483 0.004 0.004 0.314 0.309 0.314 0.313 0.996
β62 -0.768 0.008 0.007 0.312 0.298 0.312 0.311 0.995
β63 -1.936 0.015 0.015 0.377 0.372 0.377 0.378 1.001
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Table 4
Scenario B. Results for covariance parameters with d11, d21, . . . , d44 the

elements of the covariance matrix of the random effects D and
r11, r21, . . . , r33 the elements of the covariance matrix of the error

components R. True values are given, the bias under the pairwise (BiasP )
and the trivariate approach (BiasT ), the root mean squared error under the
pairwise (RMSEP ) and the trivariate approach (RMSET ) and the relative

efficiency (RE) of the pairwise approach.

truth BiasP BiasT RMSEP RMSET RE

d11 44.333 -0.051 -0.050 3.159 3.143 0.990
d21 43.074 -0.115 -0.110 3.316 3.306 0.994
d22 67.865 -0.159 -0.148 4.495 4.465 0.987
d31 36.543 -0.094 -0.113 3.771 3.730 0.978
d32 62.046 -0.228 -0.192 4.841 4.769 0.971
d33 115.93 -0.358 -0.345 7.201 7.177 0.993
d41 0.250 0.009 0.009 0.167 0.165 0.977
d42 0.591 0.010 0.008 0.198 0.194 0.956
d43 0.737 0.009 0.008 0.256 0.252 0.966
d44 0.065 0.000 0.000 0.012 0.012 0.978
r11 26.792 -0.002 -0.001 0.803 0.801 0.994
r21 11.235 0.025 0.024 0.612 0.606 0.982
r22 25.041 0.017 0.015 0.784 0.782 0.995
r31 9.638 0.008 0.010 0.734 0.721 0.964
r32 17.856 0.004 0.000 0.780 0.770 0.975
r33 38.846 0.044 0.041 1.126 1.126 1.000
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Table 5
Robustness of Standard Errors (Scenario A, Incorrect Model). Results for
fixed effects βjk’s, with j = 1, . . . , 6 (cfr. expression 7), k = 1, . . . , 3, the

latter referring to respectively 500 Hz, 1000 Hz and 2000 Hz.
Given are the standard deviation of the 1000 estimates of the pairwise
(σ̂β(P )) and the trivariate (σ̂β(T )) approach, the mean of the standard

errors obtained under the pairwise approach (se(P )), mean of the
model-based standard errors ((se(T )) and mean of the empirically corrected
standard errors (se(Te))of the trivariate approach, and the respective ratio’s
of the mean and the standard error of the 1000 estimates (ratioP , ratioT ,

ratioTe).
(∗) parameters multiplied with 10, (+) parameters multiplied with 1000

σ̂β(P ) σ̂β(T ) se(P ) se(T ) se(Te) ratioP ratioT ratioTe

β11 2.459 2.459 2.421 2.493 2.421 0.984 1.014 0.985
β12 2.874 2.880 2.920 3.010 2.923 1.016 1.045 1.015
β13 3.746 3.746 3.746 3.865 3.748 1.000 1.032 1.001
β22

(∗) 1.046 1.046 1.022 1.051 1.021 0.977 1.005 0.977
β22

(∗) 1.220 1.222 1.236 1.272 1.237 1.013 1.040 1.012
β23

(∗) 1.578 1.578 1.585 1.633 1.586 1.004 1.035 1.005
β33

(+) 1.004 1.003 0.977 1.003 0.976 0.973 1.000 0.973
β32

(+) 1.172 1.174 1.183 1.215 1.184 1.009 1.035 1.009
β33

(+) 1.512 1.512 1.518 1.561 1.519 1.004 1.033 1.005
β41

(∗) 0.842 0.836 0.817 0.644 0.813 0.970 0.770 0.972
β42

(∗) 0.910 0.912 0.895 0.628 0.898 0.984 0.689 0.985
β43

(∗) 1.188 1.192 1.198 0.791 1.202 1.009 0.663 1.009
β51

(+) 1.719 1.709 1.665 1.318 1.657 0.969 0.771 0.970
β52

(+) 1.823 1.829 1.824 1.290 1.830 1.001 0.705 1.001
β53

(+) 2.440 2.449 2.429 1.616 2.437 0.995 0.660 0.995
β61 0.312 0.312 0.310 0.308 0.310 0.992 0.987 0.993
β62 0.303 0.305 0.304 0.302 0.306 1.004 0.989 1.003
β63 0.370 0.371 0.373 0.376 0.374 1.007 1.013 1.008
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Table 6
Study 3: Sampling variability of parameter estimates obtained under the

trivariate approach and the pairwise approach. For the pairwise approach,
the sampling variability of pair-specific estimates is given (pair 1, pair 2,
pair 3), as well as the sampling variability of the mean over the pairs.

Relative efficiency of the pairwise approach is denoted with RE

Pairwise Approach Trivariate RE
Pair 1 Pair 2 Pair 3 Mean

α 0.346 0.340 0.333 0.334 0.334 1.000
β 0.678 0.669 0.660 0.658 0.658 1.000
δ2 5.185 5.306 5.301 5.063 5.069 1.001
σ2

1 0.406 0.390 - 0.389 0.387 0.995
σ2

2 0.375 - 0.375 0.368 0.358 0.973
σ2

3 - 0.390 0.387 0.380 0.376 0.990
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Table 7
Study 4: Characterisation of the seven scenarios. ’C’ indicates that the

treatment effect is common to all outcomes of a trio and ’S’ indicates that
the treatment effect is specific for all outcomes of a trio. Empty cells refer

to situations where none of both possibilities apply.

Scenario Trio 1 Trio 2 Trio 3
1 C S S
2 C S
3 C S
4 C C S
5 C C
6 C C
7 C C C
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