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Abstract

Florens, Richard and Rolin (2003) proposed a specification test of a
parametric hypothesis against a nonparametric one, in the framework
of a Bayesian encompassing test. Building on that work we elaborate
the procedure under a condition of partial observability. The general
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out some difficulties when implementing the proposed procedure.
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1 Introduction

This paper focuses on testing a parametric model E0, parametrized by θ,
against another (possibly nonparametric) alternative model E1, parametrized
by ψ, when the actually observed data is a (possibly known) function of
latent variables on which are considered both models. More precisely, we
have structural models generating latent variables: ξ = (ξ1, . . . , ξn); ξi ∈
R
K , along with two complete Bayesian specifications, i.e. a “null” Bayesian

experiment E0 and an “alternative” Bayesian experiment E1:

E0 :

{

ξ | θ ∼ P 0
ξ|θ

θ ∼M0
θ

Q0 = M0
θ ⊗ P 0

ξ|θ (1)

E1 :

{

ξ | ψ ∼ P 1
ξ|ψ

ψ ∼M1
ψ

Q1 = M1
ψ ⊗ P 1

ξ|ψ (2)

where P 0
ξ|θ and M0

θ (resp. P 1
ξ|ψ and M1

ψ) are the sampling transition and the

prior probability in E0 (resp. in E1).
Some words about notations may be in order. On the one hand we deal

with probability measures and transition probabilities (implicitly assuming
the existence of regular versions of conditional probabilities) rather than with
densities because we shall deal with undominated families of distributions
(because of some degeneracies and because of dealing with nonparametric
problems). On the second hand, probability measures and transitions are
denoted by capital letters with upper and lower indices. Upper indices mark
different measures (on a same space) whereas lower indices denote random
variables (often under identification with the σ-field generated by these vari-
ables); when lower indices are not present, we refer to an implicitly defined
complete joint distribution. Often we combine a probability measure and a
transition of probability by a Markovian product denoted ⊗; more explicitly,
when Q0

θ,ξ is defined by M0
θ ⊗ P 0

ξ|θ, we mean that for any measurable set A
on the θ-space and B on the ξ-space the probability on the rectangle A×B

is defined as:

Q0
θ,ξ(A×B) =

∫

θ∈A

P 0
ξ|θ(B) dM0

θ , (3)

and the probability measure Q0
θ,ξ is obtained as the unique extension of (3)

to the σ-field generated by the rectangles, based on the θ-space and on the
ξ-space.

In the context of a specification test, E0 is parametric, i.e. θ ∈ Θ is a
Euclidean parameter whereas E1 is nonparametric, i.e. ψ ∈ Ψ is a functional
parameter. For the sake of expositions, we shall assume that E0 is identified

2



(i.e. that θ is a minimal sufficient parametrization of the sampling transition
in E0). Later we shall discuss (Theorem 2.1) the identification of E1. Suppose,
for a moment, that ψ is identified in E1. In order to make the comparison
meaningful, there is a proper injection from Θ into Ψ, that is, for all euclidean
parameter θ ∈ Θ there is a corresponding unique (because of identification)
functional parameter ψ = h(θ) ∈ Ψ, but the function h is not surjective,
more specifically, the range h(Θ) is a “thin” subset of Ψ.

Besides the structural experiments (1) and (2), there is an observability
process that formalizes the fact that ξ is not completely observable. When the
observability process is deterministic, two cases should be distinguished: ei-
ther the observability is completely known and we write X = g(ξ) where X is
observable and g is a known function; for instance X = (min(ξ1, ξ2),1{ξ1≤ξ2})
in the case of censored data, or the observability process depends on an un-
known parameter α and we write X = g(ξ, α); for instance X = disc(ξ, α)
where disc(ξ, α) stands for a discretization of the variable ξ according to the
threshold array α, as used in the treatment of ordinal variables, for details in
the specification of a discretization model, see Almeida and Mouchart (2003).
In this paper, we only consider the first case.

The test is built on the encompassing principle; in the Bayesian frame-
work, the generalities of this procedure are exposed in Florens et al. (1990,
section 3.5.2) and Florens and Mouchart (1993) and consists in extending the
Bayesian experiment E0 to E∗

0 , in order to include, under appropriate con-
ditions, the parameter of the alternative Bayesian experiment E1. The test
is completed by comparing the posterior distribution of ψ in E1 and in E∗

0 .
Heuristically, the null hypothesis is not to be rejected if the two posterior dis-
tributions are not too different. The quantification of that difference is made
using a distance or discrepancy between probability measures defined in the
parametric space; for practical reasons, in nonparametric context, only finite
dimensional functionals of the parameter will be compared (for a further
justification, see Florens et al. (2003)).

The extended model E∗
0 is built as follows:

E∗
0 : (θ, ψ, ξ) ∼ Q0,∗ = M0

θ ⊗Mψ|θ ⊗ P 0
ξ|θ = P 0

ξ ⊗M0
θ|ξ ⊗Mψ|θ

= Q0 ⊗Mψ|θ,
(4)

where the transition Mψ|θ, called a Bayesian Pseudo True Value (B.P.T.V),
endows ψ with an interpretation in E∗

0 under the sufficiency condition

ξ ⊥⊥ ψ | θ;Q0,∗; (5)

this condition means that the sampling process in the extended experiment
E∗

0 is the same as in the null experiment E0 and, therefore, that θ is a sufficient
parametrization in E∗

0 .
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The order of exposition is as follows. The next section introduces the
basic model along with some further notation and summarizes the main
findings of Florens et al. (2003). Section 3 exposes the main contribution of
the paper, namely the general procedure when the observability process is
known. Section 4 illustrates the general procedure and the main problems to
be faced for the case of the sign observation, and more generally for the case
of a binary reduction of a vector of latent variables. The appendix presents
the formal proofs of the theorems stated in the paper.

2 The Total Observability case

Let us shortly review the problem treated in Florens et al. (2003) viewed as a
particular case where X = ξ, which is the case of total observability and the
alternative model is the non-parametric alternative; thus the encompassing
test in this case become a specification test. These authors use the Dirichlet
process in the alternative model (M1

ψ = Di(n0F0)) and the B.P.T.V. is spec-
ified as the sampling expectation (under E0 ) of the posterior distribution of
ψ in E1, namely:

Mψ|θ =

∫

M1
ψ|ξdP

0
ξ|θ ( = E0[M1

ψ|ξ | θ] ). (6)

Then, in E∗
0 , ψ and (ψ | ξ) are distributed according to mixtures of Dirichlet

process:

ψ ∼ M
0,∗
ψ =

∫

M1
ψ|ξ dP

0
ξ ( = E0[M1

ψ|ξ] ), (7)

ψ | ξ ∼ M
0,∗
ψ|ξ =

∫

M1
ψ|ξ̃

dP 0
ξ̃|ξ

( = E0[M1
ψ|ξ̃

| ξ] ), (8)

where ξ̃ = {ξ̃i : 1 ≤ i ≤ n} is a sample from P 0
ξ̃|ξ

generated as follows:

• θ is generated from M0
θ|ξ.

• {ξ̃i : 1 ≤ i ≤ n} an i.i.d. sample generated from P 0
ξ|θ.

A first identification issue needs to be considered in the alternative model.
Suppose that ψ were not minimal sufficient and suppose one may exhibit a
minimal sufficient parameter ψ∗, i.e.:

ξ ⊥⊥ ψ | ψ∗;Q1. (9)
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Theorem 2.1. Using the B.P.T.V. defined in (6), (9) implies

ψ ⊥⊥ θ | ψ∗;Q0,∗.

The proof is in the Appendix. Heuristically, the B.P.T.V. would interpret
only ψ∗ within model E∗

0 and it would not be natural to interpret, in E∗
0 , the

unidentified aspect of ψ. From now, we assume that ψ is identified in Q1,
i.e. that ψ is a minimal sufficient parametrization of P 1

ξ|ψ.

When comparing M1
ψ|ξ and M

0,∗
ψ|ξ, Florens et al. (2003) notice that the

usual discrepancy functions, such as the Kullback-Leibler divergence or the
Hellinger distance, raise considerable operational difficulties and opt for a
direct simulation of finite dimensional functionals defined on the posterior
distribution of ξ, actually the first two moments, making use of the discrete
representation of the trajectories of the Dirichlet process as developed in
Rolin (1992) and Sethuraman (1994).

More specifically, the simulation of the trajectories of ψ conditionally on
ξ = (ξ1, . . . , ξn), an n-size sample, is based on the following representations:
(i) In E1 from (2), the posterior distibution is:

ψ | ξ ∼ M1
ψ|ξ = Di(n∗F∗), (10)

where n∗ = n0 +n and F∗ =
n0F0 + nFn

n0 + n
, Fn being the empirical distribution

function. Therefore, any ψξ1, a realization of (ψ | ξ), may be represented as:

ψ
ξ
1 = (1 − γ)

∑

1≤k<∞

αkδ{ηk} + γ
∑

1≤i≤n

βiδ{ξi}, (11)

where δ{a} denotes the Dirac mass measure at the point a and the other
elements are subject to the following conditions:

γ ⊥⊥ {αk : 1 ≤ k <∞} ⊥⊥ {ηk : 1 ≤ k <∞} ⊥⊥ {βi : 1 ≤ i ≤ n},

and distributed according to:

γ ∼ Beta(n, n0),

ηk : 1 ≤ k <∞, are i.i.d. F0,

αk = vk
∏

1≤l≤k−1

(1 − vl), 1 ≤ k <∞, (12)

where vk : 1 ≤ k <∞ are i.i.d. Beta(1, n0),

βk : 1 ≤ k < n are uniformly distributed on Sn−1,
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where Sn−1 is the simplex of dimension n− 1.
(ii) Similarly, any ψξ0, realization of (ψ | ξ) in the model E∗

0 , may be repre-
sented as:

ψ
ξ
0 = (1 − γ)

∑

1≤k<∞

αkδ{ηk} + γ
∑

1≤i≤n

βiδ{ξ̃i} (13)

where γ, {αk : 1 ≤ k < ∞}, {ηk : 1 ≤ k < ∞} and {βi : 1 ≤ i ≤ n} are
defined as in (12) and {ξ̃i : 1 ≤ i ≤ n} is generated as in (8).

In order to compare the two random probability distributions M1
ψ|ξ and

M
0,∗
ψ|ξ, finite dimensional characteristics (λ = ℓ(ψ) ∈ Rs) of finite approxima-

tions of the trajectories are used (equations (11) and (13)). More explicitly,
Florens et al. (2003) propose the following procedure. For a given sam-
ple ξ = (ξ1, . . . , ξn), two trajectories of ψ are simulated N times, i.e. ψ

ξ
0,i

(resp. ψ
ξ
1,i) i = 1, . . . , N by means of (13) (resp. (11)) where each trajec-

tories of ψ is truncated at K points (i.e. in the simulations of (11) and
(13): 1 ≤ k ≤ K instead of 1 ≤ k < ∞). For each ψ

ξ
0,i (resp. ψ

ξ
1,i),

finite dimensional characteristics λξ0,i = ℓ(ψξ0,i) (resp. λξ0,i = ℓ(ψξ0,i)) are com-
puted. As the discrepancy function d(ξ) suggested in Florens et al. (2003)
is based on densities, the density of (λ | ξ) under Q0,∗ (resp. Q1) is obtained
by a kernel smoothing on the λ

ξ
0,i’s (resp. λ

ξ
1,i’s) and so f̂0(λ | ξ) (resp.

f̂1(λ | ξ)) is obtained. These authors proposed a Monte Carlo approximation

of d(ξ) =

∫

log

(

f̂1(λ | ξ)

f̂0(λ | ξ)

)

f̂0(λ | ξ)dλ, namely:

d̂(ξ) =
1

N

∑

1≤i≤N

log
f̂1(λ

ξ
0,i | ξ)

f̂0(λ
ξ
0,i | ξ)

(14)

It remains to calibrate d̂(ξ) w.r.t. P 0
ξ , the predictive measure in the null

model using Monte Carlo methods. Therefore:

̂p− value (ξ) =
1

R

∑

1≤r≤R

1{d̂(ξ(r))≥d̂(ξ)}
(15)

where R is the number of the replicated samples ξ(r)’s generated from P 0
ξ .

3 Known observability process

Extension of the models

A first case of partial observability is faced when the observational mechanism
is completely known, that is the observation is a known function of the latent
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variable, namely:
X = g(ξ), g is known. (16)

We first extend E∗
0 and E1 so as to incorporate X. The fact that X is a

deterministic function of ξ implies that:

X ⊥⊥ (θ, ψ) | ξ;Q0,∗ and X ⊥⊥ ψ | ξ;Q1, (17)

P 0
X|ξ = P 1

X|ξ

def
= PX|ξ = δ{X=g(ξ)}, (18)

Q0,∗ and Q1 now denote the probability measures defining respectively the
Bayesian experiments E∗

0 and E1 extended in order to incorporate X. The
sufficiency condition (5) implies

ξ ⊥⊥ ψ | X, θ;Q0,∗. (19)

Thus, the probability structure of the two extended experiments E1 and E∗
0

can be described as follows:

Q0,∗ = M0
θ ⊗Mψ|θ ⊗ P 0

ξ|θ ⊗ PX|ξ

= P 0
X ⊗M

0,∗
ψ|X ⊗M

0,∗
θ|ψ,X ⊗ P

0,∗
ξ|X,θ

Q1 = M1
ψ ⊗ P 1

ξ|ψ ⊗ PX|ξ

= P 1
X ⊗M1

ψ|X ⊗ P 1
ξ|ψ,X .

Identification issues

The partial observability typically loses some identification (unless X were a
sufficient statistics, see Oulhaj and Mouchart (2003)). More specifically, in E∗

0

we may decompose P 0,∗
ξ|θ into P 0,∗

X|θ and P 0,∗
ξ|θ,X ; the minimal sufficient parameter

of P 0,∗
X|θ may be (strictly) smaller than the minimal sufficient parameter of

P
0,∗
ξ|θ . Thus, the partial observability carries us to consider the reduction of

models by sufficiency into the models involving minimal sufficient parameters
only. Let us denote θX and ψX , the minimal sufficient parameters for the
process generating X, respectively in E0 and E1, viz.

(a) θ ⊥⊥ X | θX ;Q0, (b) ψ ⊥⊥ X | ψX ;Q1. (20)

Next theorem shows that for the B.P.T.V., the sufficiency condition (5)
implies the same condition involving identified parameters only.

Theorem 3.1. Under (20a), we have, in E∗
0 , that for any specification of the

B.P.T.V. satisfying (5):

X ⊥⊥ (ψ, θ) | θX ;Q0,∗ (21)
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The proof is in Appendix. Thus, once a specification of the B.P.T.V. at the
level of latent variables ξ satisfies the condition (5), the same condition is
automatically satisfied the level of manifest variables X; indeed condition
(21) is actually equivalent to X ⊥⊥ ψ | θ;Q0,∗ along with the definition of θX
in condition (20a).

In the context of a specifiation test, the minimal sufficiency of ψX in the
alternative model (P 1

ξ|ψ = ψ) is trivially obtained by noticing that

ξ | ψ;Q1 ∼ ψ =⇒ X | ψ;Q1 ∼ ψ ◦ g−1

therefore ψX = ψ ◦ g−1. When the prior specification of ψ in the alternative
model is a Dirichlet process, ψ ∼ Di(n0F0), then

in Q1: ψX ∼ Di(n0F0X
) with F0X

= F0 ◦ g
−1. (22)

The properties of the Dirichlet process imply that the support of the prior
specification Di(n0(F0 ◦ g

−1)) is dense (for the weak topology) in the space
of probability measures dominated by F0 ◦ g−1, i.e. for all ε > 0, for all
probability measure F dominated by F0 ◦ g

−1, and for each non null event
B (F0X

(B) > 0), the probability of the event {ψ : |ψ(B) − F (B)| < ε}
is not zero. This feature is often used to comfort the use of a Dirichlet
prior specification, see e.g. Ferguson (1973), in spite of the fact that the
trajectories are almost surely discrete.

Thus, the specification of the alternative model is reduced, in this case,
to the specification of n0, the weight of the prior information, and to the
specification of F0X

, the center of the Dirichlet process, where particular
attention must be given to the sets of null F0X

-measure .

Two alternative strategies

Let us now consider two alternative strategies for dealing with partially ob-
servable variables. A first strategy is to specify two models on (ξ, θ) and
(ξ, ψ), to define a B.P.T.V. Mψ|θ and so obtain two extended models char-

acterized by Q
0,∗
ξ,X,ψ,θ and Q1

ξ,X,ψ from which we construct a test statistic in

the form of d∗(M0,∗
ψX |X ,M

1
ψX |X). Using the same arguments as above, M0,∗

ψX |X

and M1
ψX |X are evaluated from Q

0,∗
ξ,X,ψ,θ and Q1

ξ,X,ψ by integrating out ξ. This
strategy implicitly uses a B.P.T.V. MψX |θX

of the following form:

MψX |θX
=

∫

MψX |θ dM
0
θ|θX

( = E0[MψX |θ | θX ]) (23)
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where MψX |θ is a marginal distribution from some Mψ|θ. When the B.P.T.V.
Mψ|θ has the form (6), the B.P.T.V MψX |θX

may also be written as:

MψX |θX
=

∫

M1
ψX |ξdP

0
ξ|θX

( = E0[M1
ψX |ξ | θX ]). (24)

As a second strategy, notice that Q1
ξ,ψ implies a unique Q1

X,ψX
and that

Q0
ξ,θ implies a unique Q0

X,θX
. Thus, after integrating out ξ, one may extend

Q0
X,θX

into Q0,∗
X,θX ,ψX

by introducing a B.P.T.V. as in (6), namely:

M
(a)
ψX |θX

=

∫

M1
ψX |XdP

0
X|θX

( = E0[M1
ψX |X | θX ]). (25)

For given sampling probabilities P 0
ξ|θ and P 1

ξ|ψ and given observability process

X = g(ξ), the answer to the question whether, or not, we have:

MψX |θX
= M

(a)
ψX |θX

(26)

depends on the prior specification M0
θ and M1

ψ and on the B.P.T.V Mψ|θ

when it is not built as in (6). Condition (26) will be called a condition of
embeddability. Next theorem gives a sufficient condition on the B.P.T.V. in
order to ensure that condition of embeddability

Theorem 3.2. Let Q0,∗
X,ψ,θ = Q0,∗ be constructed from a prior specification

M0
θX

and B.P.T.V. such that:

ψ ⊥⊥ θ | ψX ;Q0,∗ (27)

ψ ⊥⊥ θ | θX ;Q0,∗, (28)

then Mψ|θ has necessarily the form:

Mψ|θ = MψX |θX
⊗Mψ|ψX

. (29)

and
(X, θX) ⊥⊥ ψ | ψX ;Q0,∗ (30)

Furthermore, the condition of embeddability (26) is satisfied for whatever
prior specification of M0

θ and M1
ψ satisfying the conditions (27) and (28).

See the proof in the Appendix. The conditions in the Theorem 3.2 say
that in the extended model E∗

0 , the complete parameters from both models
are independent conditionally on the identified parameters of either model;
next section gives an example where these conditions are satisfied.
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These conditions also permit to write the posterior distribution of (ψ, θ)
as follows:

M
0,∗
ψ,θ|X = M

0,∗
ψX ,θX |X ⊗M0

θ|θX
⊗Mψ|ψX

. (31)

The second conclusion (30) of the theorem implies the sufficiency, in the
extended model, of the parameter identified in the alternative model (ψX).

Under the conditions of this theorem, the posterior distributions of
(ψ | X) in both models are given by:

M
0,∗
ψ|X = M

0,∗
ψX |X ⊗Mψ|ψX

, (32)

M1
ψ|X = M1

ψX |X ⊗M1
ψ|ψX

. (33)

As (ψ | ψX) is not revised by X, we can suppose, as a coherence condition,
that its distribution is the same in both models (Mψ|ψX

= M1
ψ|ψX

). Using

the specification of the B.P.T.V. (25) and the conditions of the Theorem 3.2,
the encompassing test statistic will therefore be based on the comparison
between M0,∗

ψX |X and M1
ψX |X only.

The main conclusion of this section is that if the observation process is
completely known, the test is constructed at the level of manifest variables,
then, under suitable conditions, the loss of information due to the partial
observability is taken into account through the reduction to the identified
parameters, independently of the encompassing procedure. In other words,
this seemingly natural conclusion nevertheless requires specific conditions in
order to ensure the coherence between the structural models, in terms of the
latent variables, and the statistical models, in terms of the manifest variables.

Similarly to section 2, the test would be based on a finite dimensional
functional λ defined on the posterior distribution of (ψX | X). Therefore,
the encompassing test statistics takes the form:

d(X) = d∗(M0,∗
λ|X ,M

1
λ|X) (34)

and is calibrated against P 0
X , the predictive distribution of the manifest vari-

able under E0.

4 The sign observation

The Model

Let us now illustrate, by means of the simplest example, namely the observa-
tion of the sign of a latent variable, the main ideas underlying the procedure
sketched in the previous section. Moreover, considering particular specifica-
tions sheds also some lights on potential difficulties.
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Let us consider the following situation:

E0 :

{

ξ | (µ, σ2) ∼ N(µ, σ2)

(µ, σ2) ∼ M0
µ,σ2

E1 :

{

ξ | ψ ∼ ψ

ψ ∼ Di(n0F0)
(35)

Here, E0 and E1 are two Bayesian experiments at the level of real valued but
unobservable variables and we are interested in comparing the “null” model
under normality hypothesis (E0) against a nonparametric alternative (E1).

The partial observability aspect is captured by observing only the sign of
the latent variable, viz :

X = 1{ξ≥0} (36)

The statistical model is obtained by marginalization on the observed vari-
able X.

E0 :

{

X | (µ, σ2) ∼ Be(N(µ
σ
))

(µ, σ2) ∼ M0
µ,σ2

E1 :

{

X | ψ ∼ Be(ψ([0,∞[))

ψ ∼ Di(n0F0)
(37)

where Be(·) denotes the Bernoulli distribution and N now stands for the
distribution function of the standardized normal distribution. Therefore the
minimal sufficient parameters, θX and ψX , are

θX = t(µ, σ) = N
(µ

σ

)

ψX = ψ([0,∞[)

Using the characteristics of the Dirichlet process, the statistical models
reduced on the identified parameters can be written as:

E0 :

{

X | θX ∼ Be(θX)

θX ∼M0
θX

= Mµ,σ2 ◦ t−1
E1 :

{

X | ψX ∼ Be(ψX)

ψX ∼ Beta(n0f0, n0(1 − f0))
(38)

where f0 = F0([0,∞[) and Beta(a, b) is the beta distribution with density:

pβ(u | a, b) =
Γ(a)Γ(b)

Γ(a+ b)
ua−1(1 − u)b−11[0,1](u). (39)

(Then, E[U ] =
a

a+ b
and V ar[U ] =

ab

(a+ b)2(a+ b+ 1)
).

In this case, the sampling probabilities are the same under E0 and under
E1; when E1 is reduced to the manifest variable X, ψX is not any more a
functional parameter and the sampling model is a saturated one. This will
be so as soon as the range space of X = g(ξ) has finite cardinality.
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Degenerate B.P.T.V.

As the sampling process is the same under E0 and E1, a seemingly natural
form of the B.P.T.V might be:

MψX |θX
= δ{θX}, (40)

rather than a specification satisfying (6). In such a case, from (40), we obtain

M
0,∗
ψX |X =

∫

δ{θX}dM
0
θX |X = M0

θX |X . (41)

Moreover, as ψX and θX represent a same parameter of a unique sampling
process (in E0 and E1) they may be identified and denoted by π and equa-
tion (41) says that M0,∗

ψX |X may be actually written as M0
π|X . Thus the test

statistics may be written as:

d∗(M0,∗
ψX |X ,M

1
ψX |X) = d∗(M0

π|X ,M
1
π|X). (42)

In particular:
M0

π = M1
π =⇒ M0

π|X = M1
π|X . (43)

Thus, if coherence is invoked to force the prior distribution on π to be iden-
tical in E0 and in E1, test statistics (34) is almost surely equal to zero and
the procedure simply breaks down.

Both the null and the alternative models are consistent in the sense of the
weak convergence to a Dirac mass for the posterior distribution, see Ghosh
and Ramamoorthy (2002). Thus when the coherence condition (43) is not
fulfilled, the total variation distance between posterior distributions in both
models converges nevertheless almost surely to zero when the sample size
tends to infinity (see Theorem 1.3.1 Ghosh and Ramamoorthi (2002)) and
again the procedure breaks down at least asymptotically.

Non degenerate B.P.T.V.

a) Construction of a non-degenerate B.P.T.V.

The degenerate specification (40) may be justified when the interpretation
of a parameter only depends on the sampling process of a variable (here, X)
identifying that parameter (here, ψX and θX). When the consequence (41),
or (43), does not seem palatable, one may argue that the interpretation of
a parameter should depend “on the world where it is embedded”, i.e. that
E0 and E1 actually represent two different structural visions of the world, at
the level of the latent variables, and that (40) does by no means represent

12



any necessity. Thus let us now examine the situation with a non degenerate
B.P.T.V.

The specification of the alternative model in (38) implies that the poste-
rior distribution M1

ψX |X is a beta distribution, more specifically:

M1
ψX |X = Beta(n0f0 +X,n0(1 − f0) + 1 −X)

= X Beta(n0f0 + 1, n0(1 − f0))

+ (1 −X) Beta(n0f0, n0(1 − f0) + 1).

(44)

Motivated by the results of section 2, the specification of the B.P.T.V. in-
volves the identified parameters only. Interpreting the B.P.T.V. as the bridge
between the two approaches, encapsulated in E0 and E1, the specification (6)
is natural and may now be written as:

MψX |θX
=

∫

M1
ψX |XdP

0
X|θX

= θX Beta(n0f0 + 1, n0(1 − f0))

+ (1 − θX) Beta(n0f0, n0(1 − f0) + 1)

(45)

Then in the extended model E∗
0 , the prior measure of ψX and the posterior

distribution of ψX | X are mixtures of beta distributions given by:

M
0,∗
ψX

= E0[θX ] Beta(n0f0 + 1, n0(1 − f0))

+ (1 − E0[θX ]) Beta(n0f0, n0(1 − f0) + 1) (46)

M
0,∗
ψX |X = a(X) Beta(n0f0 + 1, n0(1 − f0))

+ (1 − a(X)) Beta(n0f0, n0(1 − f0) + 1). (47)

with

a(X) = E0[θX | X] =

∫

θ1+X
X (1 − θX)1−XdM0

θX

∫

θXX (1 − θX)1−XdM0
θX

(48)

As ψX is finite-dimensional, the encompassing test statistics boils down to
evaluate some discrepancy function between (47) and (44), i.e. an integral on
[0, 1] of a non-negative function. For instance, if the posterior distribution in
the null model can be approximated by a beta distribution and the posterior
expectation can be approximated by :

E0[θX | X] ≈
a0 +X

a0 + b0 + 1
(49)
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then the L1 distance, denoted d1, may be approximated as follows:

d1(M
0,∗
ψX |X ,M

1
ψX |X) = |a(X) −X|

∫ 1

0

|u− (1 − f0)|pβ(u | n0f0, n0(1 − f0))du

≈
b0X + a0(1 −X)

a0 + b0 + 1
E1[|ψX − (1 − f0)|].

(50)

Details are given in the Appendix.

b) Convergence

One question arises here: what happens when the sample size tends to infin-
ity? The intuition suggests that the two models would not be discriminated
because of a same sampling model and, if the sample size increases, the im-
portance of the prior judgment must be decreasing. The following theorem
comforts that intuition. For that purpose, let us write dW for a metric which
metrizes the weak convergence - for instance: Lévi (Huber,1981, Th.3.3) or
Prohorov (Huber, 1981, Th.3.8) - and consider a test statistic (34) in the
form:

d(Xn
1 ) = dW (M0,∗

ψX |Xn

1
,M1

ψX |Xn

1
). (51)

Then we obtain the following theorem:

Theorem 4.1. Under the condition of embeddability, given in Theorem 3.2,
a test statistic (34) in the form (51), tends to zero almost surely relative to
the predictive measure of the null model, viz.

P 0
X∞

1
[d(Xn

1 ) −→ 0] = 1 (52)

The proof is in the appendix
Some numerical computations may be helpful to visualize that conver-

gence and are summarized in the table 1. The distance considered was the
Kantorovich-Wasserstein one, the definition of which is:

dW (µ, ν) :=

∫ ∞

−∞

|µ(] −∞, y]) − ν(] −∞, y]) | dy (53)

This distance, valued in [0, 1], is also known to metrize the weak convergence
in the space of probability measures on the real line with a fixed bounded
support (see the mathematical Appendix of Bickel and Freedman (1981) for
details). In this example, the prior in the null model is a normal distribution
with unit mean and unit variance and for the alternative model, n0 = 1,
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and f0 = F0([0,∞[) = 0.5. For finite sample sizes, namely 5, 10, 20, 50 and
100, and finite sample space, namely {0, 1}n it is possible to enumerate all
possible values of X1, . . . , Xn and their exact predictive probabilities (i.e P 0)
and therefore their expectations and variances.

n 5 10 20 50 100
max d(Xn

1 ) 0.1844 0.1143 0.0653 0.0408 0.0290
E[d(Xn

1 )] 0.0820 0.0597 0.0426 0.0270 0.0190
σ[d(Xn

1 )] 0.0314 0.0202 0.0147 0.0103 0.0078

Table 1: Characteristics of the Distribution of the Statistics Test, µ0 =
1, n0 = 1, f0 = 0.5

.

Table 1 summarizes those numerical results and illustrates the actual
speed of convergence, to zero with respect to the predictive distribution P 0,
of the encompassing test statistics.

Binary choice model

A very similar analysis can be done for the Binary Choice Model. Let η =
(η1, η2) be two latent variables representing, in some context, latent utilities.
If we define ξ = η2 − η1, the partial observability process, as used e.g. in
discrete choice models, is given by:

X = g(η1, η2) = 1{η1<η2} = 1{ξ≥0} (54)

Considering two models as above and using the same notations for the
minimal sufficient parameters, we have:

E0 :

{

X | θX ∼ Be(θX)

θX ∼ M0
θX

= M0
θ ◦ t

−1
E1 :

{

X | ψX ∼ Be(ψX)

ψX ∼ Beta(n0f0, n0(1 − f0))

(55)
where θ represents the parameter characterizing the joint distribution of
(η1, η2) and θX = t(θ) = P 0

ξ|θ(η1 < η2) and ψX = P 1
ξ|ψ(η1 < η2) = ψ(η1 < η2).

We therefore obtain the same structure as in the sign observation model.

5 Concluding Remarks

This paper treats two issues pervading the problems of statistical modelling,
particularly in social sciences and biostatistics. One issue is that the dis-
tributional assumptions are often not based on a contextual argument and
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are rather justified by an approximation one; in such circumstances a basic
concern is to evaluate whether a parametric approximation of a “true” distri-
bution is fairly reliable. This is the issue of a specification test. Another issue
is that, in a structural approach to model building, latent variables provide
a natural support for a model firstly based on contextual knowledge and the
observability problem comes into the picture at a second stage when a sta-
tistical model, bearing on manifest (or observable) variables only, is deduced
from the structural model. As a matter of fact, the discretization model of a
latent variable as a model for analyzing ordinal data (see e.g. Almeida and
Mouchart (2003)) has been instrumental in stimulating the authors’ interest
for this approach. Thus the object of this paper has been to integrate the
two issues of specification testing and of partial observability.

The contribution of this paper is twofold. Firstly, when elaborating the
general framework we have singled out identification issues and alternative
strategies for a complete specification of the model. Next we have elaborated
the detail of the procedure until we obtain an operational solution. The
generality of the proposed general procedure has been controlled by working
out completely the particular case of the sign observation. This particular
case has drawn our attention on several aspects that come up when applying
the procedure, in particular an identification problem put to an extreme,
the meaning of a parameter bound, or not, to a particular model (implying
alternative strategies for specifying the Bayesian Pseudo True Value) and the
problem of the asymptotic distinguishability in that particular case.

Appendix: Formal Complements

In general, unargued implications come from basic properties of conditional
independence, most often, through a direct application of Theorem 2.2.10 in
Florens et al.(1990).
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5.1 Proof of Theorem 2.1

(6) ⇔ Mψ|θ =

∫

M1
ψ|ξdP

0
ξ|θ

=

∫

[

M1
ψ∗|ξ ⊗M1

ψ|ψ∗,ξ

]

dPξ|θ

(9) ⇒ =

∫

[

M1
ψ∗|ξ ⊗M1

ψ|ψ∗

]

dPξ|θ

=

[
∫

M1
ψ∗|ξdPξ|θ

]

⊗M1
ψ|ψ∗

(6) ⇒ = Mψ∗|θ ⊗M1
ψ|ψ∗

5.2 Proof of Theorem 3.1

Remember that all ensuing conditional independence hold in Q0,∗.

(5) and (16) ⇒ X ⊥⊥ ψ | θ (56)

(20a) and (56)⇒ X ⊥⊥ (θ, ψ) | θX (57)

5.3 Proof of theorem 3.2

(28) ⇒ Mψ|θ =Mψ|θX
(58)

= MψX |θX
⊗Mψ|ψX ,θX

(59)

(27) ⇒ = MψX |θX
⊗Mψ|ψX , (60)

(5) ⇒ X ⊥⊥ ψ | θ (61)

(61) and (28) ⇒ (θ,X) ⊥⊥ ψ | θX (62)

(62) ⇒ X ⊥⊥ ψ | θX (63)

Then, (30) follows from (63) and (27)
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5.4 Proof of equation (50)

The L1 distance between the two posterior distributions (44) and (47) may
be written as:

d1(M
0,∗
ψX |X ,M

1
ψX |X) = |a(X) −X|

·

∫ 1

0

|pβ(u | n0f0 + 1, n0(1 − f0)) − pβ(u | n0f0, n0(1 − f0) + 1)|du
(64)

By the beta density definition, this equation is equivalent to:

d1(M
0,∗
ψX |X ,M

1
ψX |X) = |a(X) −X|

·

∫ 1

0

∣

∣

∣

∣

Γ(n0f0 + 1)Γ(n0(1 − f0))

Γ(n0 + 1)
un0f0(1 − u)n0(1−f0)−1

−
Γ(n0f0)Γ(n0(1 − f0) + 1)

Γ(n0 + 1)
un0f0−1(1 − u)n0(1−f0)

∣

∣

∣

∣

du (65)

which can be simplified to

= |a(X) −X|

·

∫ 1

0

|f0u− (1 − f0)(1 − u)| pβ(u | n0f0, n0(1 − f0))du (66)

= |a(X) −X|

·

∫ 1

0

|u− (1 − f0)| pβ(u | n0f0, n0(1 − f0))du (67)

= |a(X) −X| E1[|ψX − 1 − f0|] (68)

Using the approximation of the posterior expectation (49), (68) may be writ-
ten as (50).
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5.5 Proof of theorem 4.1

5.5.1 Main Argument

From (44), the posterior expectation and variance for the alternative models
are:

E1[ψX | Xn
1 ] =

n0

n0 + n
f0 +

1

n0 + n
X (69)

V ar1[ψX | Xn
1 ] =

(n0f0 + nX)(n0(1 − f0) + n(1 −X))

(n0 + n)2(n0 + n+ 1)
(70)

Then, with respect to the null model:

P 0[E1[ψX | Xn
1 ] −→ θX | θX ] = 1 (71)

P 0[V ar1[ψX | Xn
1 ] −→ 0 | θX ] = 1 (72)

Therefore P 0[M1
ψX |Xn

1

w
−→ δ{θX} | θX ] = 1 (73)

Similarly in the extended model (47), we show below that

E0,∗[ψX | Xn
1 ] =

n0

n0 + n
f0 +

n

n0 + n
E0[θX | Xn

1 ] (74)

V ar0,∗[ψX | Xn
1 ] ≤

n0f0 + 2nE0[θX | Xn
1 ] − nE0[θ2

X | Xn
1 ]

(n0 + n)2

+
n2

(n0 + n)2
V ar0[θX | Xn

1 ] (75)

which implies:

P 0[E0,∗[ψX | Xn
1 ] −→ θX | θX ] = 1 (76)

P 0[V ar0,∗[ψX | Xn
1 ] −→ 0 | θX ] = 1 (77)

Therefore P 0[M0,∗
ψX |Xn

1

w
−→ δ{θX} | θX ] = 1 (78)

If dW is a distance which metrizes the weak convergence, (73) and (78) implies

P 0[dW (M0,∗
ψ|Xn

1
,M1

ψ|Xn

1
) −→ 0 | θX ] = 1 (79)

which implies:

P 0[dW (M0,∗
ψ|Xn

1
,M1

ψ|Xn

1
) −→ 0] = 1 (80)
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5.5.2 Proof of the equation (74)

We start with a usual identity:

E0,∗[ψX | Xn
1 ] = E0,∗[E0,∗[ψX | Xn

1 , θX ] | Xn
1 ]

= E0[E0,∗[ψX | θX ] | Xn
1 ] from (21) (81)

Now, from (25) and Theorem 3.2,

E0,∗[ψX | θX ] =

∫

E1[ψX | Xn
1 ]dP 0

Xn

1 |θX
(82)

=

∫

n0f0 + nX

n+ n0

dP 0
Xn

1 |θX
from (69) (83)

=
n0f0 + nE0[X | θX ]

n+ n0

(84)

=
n0f0 + nθX

n+ n0

(85)

Then (81) becomes:

E0,∗[ψX | Xn
1 ] = E0,∗[

n0f0 + nθX

n+ n0

| Xn
1 ] (86)

=
n0f0 + nE0[θX | Xn

1 ]

n+ n0

(87)

5.5.3 Proof of the equation (75)

Again, we start with a usual identity:

V ar0,∗[ψX | Xn
1 ] = E0,∗[V ar0,∗[ψX | Xn

1 , θX ] | Xn
1 ]

+ V ar0,∗[E0,∗[ψX | Xn
1 , θX ] | Xn

1 ] (88)

= E0,∗[V ar0,∗[ψX | θX ] | Xn
1 ]

+ V ar0,∗[E0,∗[ψX | θX ] | Xn
1 ] (89)

where (89) is obtained from (21). Note that:

V ar0,∗[ψX | θX ] = E0,∗[ψ2
X | θX ] − [E0,∗[ψX | θX ]]2 (90)
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Using the same argument as for (82)

E0,∗[ψ2
X | θX ] =

∫

E1[ψ2
X | Xn

1 ]dP 0
Xn

1 |θX
(91)

=

∫

(n0f0 + nX)(n0f0 + nX + 1)

(n+ n0)(n+ n0 + 1)
dP 0

Xn

1 |θX
from (69) (92)

=

∫

n0f0(n0f0 + 1) + (2n0f0 + 1)nX + (nX)2

(n+ n0)(n+ n0 + 1)
dP 0

Xn

1 |θX
(93)

=
n0f0(n0f0 + 1) + 2n(n0f0 + 1)θX + n(n− 1)θ2

X

(n+ n0)(n+ n0 + 1)
(94)

From the general property of a variance, we successively derive:

V ar0,∗[ψX | θX ] ≤
n0 + n+ 1

n0 + n
E0,∗[ψ2

X | θX ] − [E0,∗[ψX | θX ]]2 (95)

=
n0f0(n0f0 + 1) + 2n(n0f0 + 1)θX + n(n− 1)θ2

X

(n+ n0)2

−
(n0f0 + nθX)2

(n0 + n)2
(96)

=
n0f0 + 2nθX − nθ2

X

(n0 + n)2
(97)

Therefore:

E0,∗[V ar0,∗[ψX | θX ] | Xn
1 ] ≤

n0f0 + 2nE0[θX | Xn
1 ] − nE0[θ2

X | Xn
1 ]

(n0 + n)2
(98)

Now

V ar0,∗[E0,∗[ψX | θX ] | Xn
1 ] = V ar0,∗

[

n0f0 + nθX

n0 + n
| Xn

1

]

(99)

=
n2

(n0 + n)2
V ar0[θX | Xn

1 ] (100)

Thus:

V ar0,∗[ψX | Xn
1 ] ≤

n0f0 + 2nE0[θX | Xn
1 ] − nE0[θ2

X | Xn
1 ]

(n0 + n)2

+
n2

(n0 + n)2
V ar0[θX | Xn

1 ] (101)

Clearly, the first term tends to zero as n tends to infinity and also the second
term because the posterior variance of θX tends to zero by Doob’s Theorem
(see Doob (1949) and also Ghosh and Ramamoorthy (2003, Theorem 1.3.2)).
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