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Abstract

Suppose the random vector (X,Y ) satisfies the regression model Y = m(X) +

σ(X)ε, where m(·) = E(Y |·) belongs to some parametric class {mθ(·) : θ ∈ Θ} of

regression functions, σ2(·) = Var(Y |·) is unknown, and ε is independent of X. The

response Y is subject to random right censoring, and the covariate X is completely

observed. A new estimation procedure for the true, unknown parameter vector θ0

is proposed, that extends the classical least squares procedure for nonlinear regres-

sion to the case where the response is subject to censoring. The consistency and

asymptotic normality of the proposed estimator are established. The estimator is

compared via simulations with an estimator proposed by Stute in 1999, and both

methods are also applied to a fatigue life data set of strain-controlled materials.

KEY WORDS: Bandwidth selection; Bootstrap; Fatigue life data; Kernel method;

Least squares estimation; Nonparametric regression; Right censoring; Survival analysis.
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1 Introduction

Consider the heteroscedastic regression model

Y = mθ0(X) + σ(X)ε, (1.1)

where σ2(·) = Var(Y |·), mθ0(·) = E(Y |·) is the regression curve, known upto a parameter

vector θ ∈ Θ with true unknown value θ0, Θ is a compact subset of IRd, and the error

term ε is independent of the (one-dimensional) covariate X. Suppose that Y is subject

to random right censoring, i.e. instead of observing Y , we only observe (Z,∆), where

Z = min(Y, C), ∆ = I(Y ≤ C) and the random variable C represents the censoring time,

which is independent of Y , conditionally on X. Let (Yi, Ci, Xi, Zi,∆i) (i = 1, . . . , n) be n

independent copies of (Y, C,X, Z,∆).

We are interested in the estimation of the parameter vector θ0 by means of an extension

to censored data of the classical least squares procedure for nonlinear regression. When

the regression curve is polynomial, this estimation problem has been studied extensively

in the literature, see e.g. Heuchenne and Van Keilegom (2004) for a literature overview.

When the regression curve belongs however to some parametric, but nonlinear family of

regression functions, much less research has been devoted to this problem. Stute (1999)

proposed the following estimation procedure, which is an extension of his earlier paper

(Stute (1993)) on linear regression : minimize

n∑

i=1

Win{Z(i) −mθ(X(i))}2 (1.2)

with respect to θ, where

Win =
∆(i)

n− i+ 1

i−1∏

j=1

(
n− j

n− j + 1

)∆(j)

is the jump size of the bivariate empirical distribution function F̂ (x, y) proposed by Stute

(1993) :

F̂ (x, y) =
n∑

i=1

WinI(X(i) ≤ x, Z(i) ≤ y),

Z(1), . . . , Z(n) are the order statistics of Z1, . . . , Zn, and X(i) and ∆(i) are the corresponding

covariate and censoring indicator (note that for simplicity we have considered untied

observations). The method is very easy to implement in practice and, unlike many of the

estimation procedures for polynomial regression, it is not based on a, sometimes delicate,

tuning or bandwidth parameter. A major drawback of this estimation procedure however,

is that it assumes that (1) Y and C are independent (unconditionally on X) and that
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(2) P (Y ≤ C|X, Y ) = P (Y ≤ C|Y ), which is satisfied when e.g. C is independent of X.

Both assumptions are often violated in practice.

In this paper we propose a new estimation method for θ0, which does not require the

above two assumptions. The idea of the method is as follows :

1. Estimate the true unknown survival time of a censored observation (Xi, Zi,∆i = 0)

by a nonparametric estimator of E(Yi|Xi, Yi > Zi).

2. Estimate θ0 by minimizing the least squares criterium for completely observed data,

applied to the ‘synthetic’ data obtained in step (1).

For polynomial regression models a similar estimation procedure has been studied in

Heuchenne and Van Keilegom (2004). The estimation in step (1) is done by using kernel

smoothing with an adaptively chosen bandwidth parameter. The details of the proposed

method are given in the next section.

The paper is organized as follows. In the next section, the estimation procedure is

described in detail. Section 3 summarizes the main asymptotic results, including the

asymptotic normality of the estimator. In Section 4 we present the results of a simulation

study, in which the new procedure is compared with the method of Stute (1999). Section

5 is devoted to the analysis of data from a study on the relationship between fatigue life

of metal and applied stress. The Appendix contains the proofs of the main results of

Section 3.

2 Notations and description of the method

As outlined in the introduction, the idea of the proposed method consists of first esti-

mating the unknown survival times of the censored observations, and second to apply

a standard nonlinear least squares procedure on the so-obtained artificial data points.

Define

Y ∗i = Yi∆i + E[Yi|Yi > Ci, Xi](1−∆i)

and note that E(Yi|Xi) = E(Y ∗i |Xi) = mθ0(Xi). Hence, we can work in the sequel with

the variable Y ∗i instead of with Yi. In order to estimate Y ∗i for a censored observation, we

first need to introduce a number of notations.

Let m0(·) be any location function and σ0(·) be any scale function, meaning that

m0(x) = T (F (·|x)) and σ0(x) = S(F (·|x)) for some functionals T and S that satisfy

T (FaY+b(·|x)) = aT (FY (·|x)) + b and S(FaY+b(·|x)) = aS(FY (·|x)), for all a ≥ 0 and

b ∈ IR (here FaY+b(·|x) denotes the conditional distribution of aY + b given X = x). Let

ε0 = (Y −m0(X))/σ0(X). Then, it can be easily seen that if model (1.1) holds (i.e. ε is

independent of X), then ε0 is also independent of X.
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Define F (y|x) = P (Y ≤ y|x), G(y|x) = P (C ≤ y|x), H(y|x) = P (Z ≤ y|x), Hδ(y|x) =

P (Z ≤ y,∆ = δ|x), FX(x) = P (X ≤ x), F 0
ε (y) = P (ε0 ≤ y), S0

ε (y) = 1− F 0
ε (y), and for

E0 = (Z −m0(X))/σ0(X) we denote H0
ε (y) = P (E0 ≤ y), H0

εδ(y) = P (E0 ≤ y,∆ = δ),

H0
ε (y|x) = P (E0 ≤ y|x) and H0

εδ(y|x) = P (E0 ≤ y,∆ = δ|x) (δ = 0, 1). The probability

density functions of the distributions defined above will be denoted with lower case letters,

and RX denotes the support of the variable X.

It is easily seen that

Y ∗i = Yi∆i + [m0(Xi) +
σ0(Xi)

1− F 0
ε (E0

i )

∫ ∞

E0
i

y dF 0
ε (y)](1−∆i)

for any location function m0(·) and scale function σ0(·). The idea is now to choose m0

and σ0 in such a way that they can be estimated consistently. As is well known, the right

tail of the distribution F (y|·) cannot be estimated in a consistent way due to the presence

of right censoring. Therefore, we work with the following choices of m0 and σ0 :

m0(x) =

1∫

0

F−1(s|x)J(s) ds, σ02(x) =

1∫

0

F−1(s|x)2J(s) ds−m02(x), (2.1)

where F−1(s|x) = inf{y;F (y|x) ≥ s} is the quantile function of Y given x and J(s) is a

given score function satisfying
∫ 1

0 J(s) ds = 1. When J(s) is chosen appropriately (namely

put to zero in the right tail, there where the quantile function cannot be estimated in a

consistent way due to the right censoring), m0(x) and σ0(x) can be estimated consistently.

Now, replace the distribution F (y|x) in (2.1) by the Beran (1981) estimator, defined by

(in the case of no ties) :

F̂ (y|x) = 1−
∏

Zi≤y,∆i=1

{
1− Wi(x, an)

∑n
j=1 I(Zj ≥ Zi)Wj(x, an)

}
, (2.2)

where

Wi(x, an) =
K
(
x−Xi
an

)

∑n
j=1K

(
x−Xj
an

) ,

K is a kernel function and {an} a bandwidth sequence, and define

m̂0(x) =

1∫

0

F̂−1(s|x)J(s) ds, σ̂02(x) =

1∫

0

F̂−1(s|x)2J(s) ds− m̂02(x) (2.3)

as estimators for m0(x) and σ02(x). Next, let

F̂ 0
ε (y) = 1−

∏

Ê0
(i)
≤y,∆(i)=1

(
1− 1

n− i+ 1

)
, (2.4)
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denote the Kaplan-Meier (1958)-type estimator of F 0
ε (in the case of no ties), where

Ê0
i = (Zi − m̂0(Xi))/σ̂

0(Xi), Ê
0
(i) is the i-th order statistic of Ê0

1 , . . . , Ê
0
n and ∆(i) is

the corresponding censoring indicator. This estimator has been studied in detail by Van

Keilegom and Akritas (1999). This leads to the following estimator of Y ∗i :

Ŷ ∗T i = Yi∆i +
{
m̂0(Xi) +

σ̂0(Xi)

1− F̂ 0
ε (Ê0T

i )

∫ Ŝi

Ê0T
i

y dF̂ 0
ε (y)

}
(1−∆i), (2.5)

where Ŝi = (TXi − m̂0(Xi))/σ̂
0(Xi), Ê

0T
i = Ê0

i ∧ Ŝi, and for any x, Tx ≤ Tσ0(x) +m0(x),

where T < τH0
ε

and τF = inf{y : F (y) = 1} for any distribution F . Note that due to the

right censoring, we have to truncate the integral in the definition of Ŷ ∗T i (however, when

τF 0
ε
≤ τG0

ε
, the bound Ŝi can be chosen arbitrarily close to τF 0

ε
for n sufficiently large).

Finally, the new data points (2.5) are introduced into the least squares problem

min
θ∈Θ

n∑

i=1

[Ŷ ∗T i −mθ(Xi)]
2. (2.6)

In order to focus on the primary issues, we assume the existence of a well-defined min-

imizer of (2.6). The solution of this problem can be obtained using an (iterative) pro-

cedure for nonlinear minimization problems, like e.g. a Newton-Raphson procedure. De-

note a minimizer of (2.6) by θ̂Tn = (θ̂Tn1, . . . , θ̂
T
nd). As it is clear from the definition of

Ŷ ∗T i, θ̂
T
n1, . . . , θ̂

T
nd are actually estimating the unique θT0 = (θT01, . . . , θ

T
0d) which minimizes

E[{E(Y ∗T |X)−mθ(X)}2] (see hypothesis (A10) in the Appendix), where

Y ∗T = Y∆ +
{
m0(X) +

σ0(X)

1− F 0
ε (E0T )

∫ SX

E0T
y dF 0

ε (y)
}

(1−∆),

SX = (TX − m0(X))/σ0(X) and E0T = (Z ∧ TX − m0(X))/σ0(X) = E0 ∧ SX . As

before, these coefficients θT01, . . . , θ
T
0d can be made arbitrarily close to θ01, . . . , θ0d, provided

τF 0
ε
≤ τG0

ε
.

3 Asymptotic results

We start by showing the convergence in probability of θ̂Tn and of the least squares criterion

function. This will allow us to develop an asymptotic representation for θ̂Tnj − θT0j (j =

1, . . . , d), which in turn will give rise to the asymptotic normality of these estimators. The

assumptions and notations used in the results below, as well as the proof of the two first

results, are given in the Appendix.

Theorem 3.1 Assume (A1) (i)-(iii), (A2) (i), (ii), (A3) (i), (ii), (A4) (i), (A6), (A10)

and mθ(x) is continuous in (x, θ). Let Sn(θ) = 1
n

∑n
i=1[Ŷ ∗T i −mθ(Xi)]

2. Then,

θ̂Tn − θT0 = oP (1),

5



and

Sn(θ̂Tn ) = E[σ02(X)V ar(ε0∗
T |X)] + E[{E(Y ∗T |X)−mθT0

(X)}2] + oP (1),

where

ε0∗
T = ε0∆ +

1

1− F 0
ε (E0T )

∫ SX

E0T
udF 0

ε (u)(1−∆).

Theorem 3.2 Assume (A1)-(A10). Then,

θ̂Tn − θT0 = Ω−1n−1
n∑

i=1

ρ(Xi, Zi,∆i) +




oP (n−1/2)
...

oP (n−1/2)


 ,

where Ω = (Ωjk) (j, k = 1, . . . , d),

Ωjk = E

[
∂mθT0

(X)

∂θj

∂mθT0
(X)

∂θk
− {Y ∗T −mθT0

(X)}
∂2mθT0

(X)

∂θj∂θk

]
,

ρ = (ρ1, . . . , ρd)
′,

ρj(Xi, Zi,∆i) =
∫

RX

∂mθT0
(x)

∂θj
σ(x)

∫ {
ϕ{Xi, Zi,∆i, e

0T
x (z)}

[1− F 0
ε {e0T

x (z)}]2
∫ Sx

e0Tx (z)
u dF 0

ε (u)

+
1

1− F 0
ε {e0T

x (z)}
∫ Sx

e0Tx (z)
u dϕ(Xi, Zi,∆i, u)

}
dH0(z|x) dFX(x)

+fX(Xi)
∫
Bj(z, Zi,∆i|Xi) dH0(z|Xi) +

∂mθT0
(Xi)

∂θj
(Y ∗T i −mθT0

(Xi))

(j = 1, . . . , d; i = 1, . . . , n).

Theorem 3.3 Under the assumptions of Theorem 3.2, n1/2(θ̂Tn − θT0 )
d→ N(0,Σ), where

Σ = Ω−1E[ρ(X,Z,∆)ρ′(X,Z,∆)]Ω−1.

The proof of this result follows readily from Theorem 3.2.

Remark 3.4 Note that when model (1.1) is polynomial, the representation in Theorem

3.2 reduces to the one obtained by Heuchenne and Van Keilegom (2004). Note that when

the model is polynomial, E(Y ∗T i|Xi) = mθT0
(Xi).
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4 Practical implementation and simulations

4.1 Practical implementation

The estimator θ̂Tn depends on a number of parameters, namely on the bandwidth an, the

score function J , and the cut off point T . All of them can be chosen in a data driven

way. First, for the score function J , we recommend the choice J(s) = b−1I(0 ≤ s ≤
b) (0 ≤ s ≤ 1), where b = min1≤i≤n F̂ (+∞|Xi). In this way, the region where the Beran

estimators F̂ (·|X1), . . . , F̂ (·|Xn) are inconsistent is not used, and on the other hand, we

exploit to a maximum the ‘consistent’ region.

A number of adaptive procedures can be used to select the bandwidth an, depending

on the criterion function one has in mind. If the goal would be to optimize the estimation

of m0 and σ0, one could use e.g. a bootstrap approach that selects the bandwidth that

minimizes the estimated MSE of their estimators. On the other hand, it seems more

appropriate here to choose the bandwidth in function of the end goal, namely in order to

optimize the estimation of θ. We therefore prefer to choose the bandwidth by minimizing

the least squares criterium function

n∑

i=1

{Ŷ ∗T i(an)−mθ̂Tn (an)(Xi)}2 (4.1)

over a grid of an-values. Note that we have added the argument an to Ŷ ∗T i and θ̂Tn (i =

1, . . . , n) in order to emphasize the dependence on an of these quantities. We illustrate

this procedure to select the bandwidth in the next subsection.

Finally, Ŝi (i = 1, . . . , n) can be chosen larger (or equal) than the last order statistic

Ê0
(n) of the estimated residuals. In this way, all the Kaplan-Meier jumps of the integral

(2.5) are considered.

As an alternative to the normal approximation obtained in the previous section, a

bootstrap procedure can be used to approximate the distribution of θ̂Tn . The procedure

proposed by Li and Datta (2001) can be used for this. It extends Efron’s (1981) procedure

developed for censored data to the nonparametric regression context. If in addition one

wants to take advantage of the validity of model (1.1), a more elaborate procedure can

be used, in which the survival times are drawn under model (1.1) (instead of from a

nonparametric estimator of their conditional distribution).

4.2 Simulations

We compare now the finite sample behavior of Stute’s (1999) estimator with the newly

proposed estimator. We are primarily interested in the behavior of the bias and variance
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of the two estimators. The simulations are carried out for samples of size n = 100 and

the results are obtained by using 250 simulations.

In the first setting, we generate i.i.d. data from the normal homoscedastic regression

model

Y =
θ0

11
sin(θ1X

2) + σε (4.2)

where θ0 = θ1 = 11, σ2 = 0.5 or 1, X has a uniform distribution on the unit interval

and the error term ε is a standard normal random variable. The censoring variable C

satisfies C = (α0/11) sin(α1X
2) + σε∗, for certain choices of α0 and α1 and where ε∗ has

a standard normal distribution. We further assume that ε and ε∗ are independent of X,

and that ε is independent of ε∗. It is easy to see that, under this model,

P (∆ = 0|X = x) = 1− Φ
((α0/11) sin(α1x

2)− (θ0/11) sin(θ1x
2)√

2σ

)
.

We compare here the new method for homoscedastic errors, with Stute’s method. Note

that the conditions of the latter method, which are outlined in Section 1 (i.e. Y and C

are independent and P (Y ≤ C|X, Y ) = P (Y ≤ C|Y )) are not satisfied for this model.

We work with a biquadratic kernel function K(x) = (15/16)(1 − x2)2I(|x| ≤ 1). In

order to improve the behavior near the boundaries of the covariate space, we work with

the boundary corrected kernels proposed by Müller and Wang (1994). Since these kernels

can become negative, it may happen that the Beran estimator decreases at certain time

points. In these cases, the estimator is redefined as being constant until it starts increasing

again.

For the two methods, the Levenberg-Marquardt algorithm (Levenberg (1944) and

Marquardt (1963)) is used to solve equations (1.2) and (2.6) (for a fixed value of the

bandwidth parameter).

The bandwidth an is selected by minimizing expression (4.1) over a grid of 20 possible

bandwidths between 0 and 1. For small values of an, the window [x−an, x+an] at a point

x might not contain any Xi (i = 1, . . . , n) for which the corresponding Yi is uncensored

(and in that case estimation of F (·|x) is impossible). We enlarge the window in that

case such that it contains at least one uncensored data point in its interior. It might also

happen that the bandwidth an at a point x is larger than the distance from x to both the

left and right endpoint of the interval. In such cases, the bandwidth is redefined as the

maximum of these two distances.

Table 1 summarizes the simulation results for different values of α0, α1 and σ. For

fixed value of σ, the values of α0 and α1 are chosen in such a way that some variation in

the censoring probability curves is obtained (different proportions of censoring, different

degrees of smoothness of the censoring probability curve,...). The proportion of censoring
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(in % and denoted CP in the tables) is computed as the average of P (∆ = 0|x) for an

equispaced grid of values of x.

α0 α1 θ̂0 θ̂1

σ2 CP Bias Var MSE Bias Var MSE

24 1.6 -0.56 4.340 4.652 -0.06 0.209 0.212

1 34.37 -0.36 2.808 2.940 0.034 0.116 0.117

11 11 1.271 3.669 5.285 0.160 0.240 0.266

1 50 -0.58 3.046 3.377 0.043 0.169 0.171

11 12 1.258 3.909 5.493 0.350 0.284 0.406

1 51.12 -0.61 3.175 3.544 0.023 0.198 0.199

24 1.6 -0.49 2.043 2.285 -0.04 0.081 0.083

0.5 32.73 -0.16 1.660 1.686 0.021 0.052 0.052

11 11 0.701 1.799 2.290 0.136 0.120 0.138

0.5 50 -0.44 1.641 1.836 0.027 0.088 0.089

11 12 0.637 2.078 2.484 0.300 0.152 0.242

0.5 51.52 -0.46 1.581 1.794 -0.01 0.113 0.113

Table 1: Results for the Stute estimator (first line) and the new estimator (second line)

for model (4.2).

In the second setting, we generate i.i.d. data from the normal homoscedastic regression

model

Y =
5

4
exp(θ0X + θ1X

2) + σε (4.3)

where θ0 = 0.8 and θ1 = 1. The other quantities in model (4.3) are chosen as in (4.2).

The censoring variable C satisfies C = α0 exp(α1X + α2X
2) + σε∗, with the same char-

acteristics as in the first setting. Table 2 summarizes the simulation results for different

values of α0, α1, α2 and σ chosen as for Table 1. Again we compare the new method

for homoscedastic errors with Stute’s estimator, whose assumptions on the survival and

censoring variables are not satisfied here.

In the third setting we consider a normal heteroscedastic regression model

Y = θ0X + sin(θ1X) + γXε, (4.4)

with θ0 = 1, θ1 = 10, X has a uniform distribution on [0, 1], ε has a standard normal

distribution, and γ equals 1, 2, 3 or 4. The censoring variable is given by C = α0X +

sin(α1X) + γε∗, where ε∗ has a standard normal distribution. We further assume that ε

9



α0 α1 α2 θ̂0 θ̂1

σ2 CP Bias Var MSE Bias Var MSE

1.25 1.1 1 -0.52 0.081 0.349 0.549 0.104 0.406

1 33.98 0.002 0.077 0.077 -0.01 0.098 0.098

1.25 0.8 1 -0.71 0.142 0.646 0.711 0.173 0.678

1 50 0.026 0.088 0.088 -0.05 0.111 0.113

1.25 0.2 1.65 -0.91 0.173 0.995 0.912 0.208 1.040

1 55.22 0.033 0.108 0.109 -0.05 0.132 0.135

1.25 1.05 1 -0.36 0.038 0.164 0.376 0.049 0.190

0.5 32.27 0.011 0.039 0.039 -0.02 0.049 0.050

1.25 0.8 1 -0.53 0.064 0.345 0.524 0.081 0.355

0.5 50 0.030 0.045 0.046 -0.04 0.057 0.059

1.25 0.25 1.65 -0.66 0.077 0.516 0.672 0.094 0.546

0.5 53.62 0.046 0.056 0.058 -0.06 0.069 0.072

Table 2: Results for the Stute estimator (first line) and the new estimator (second line)

for model (4.3).

and ε∗ are independent of X, and that ε is independent of ε∗. The assumptions of Stute’s

method outlined in the introduction are again not satisfied here, and moreover the model

is heteroscedastic, whereas Stute works under a homoscedastic model. The assumptions

of the new method are satisfied. Since the model is heteroscedastic, we estimate here the

scale function σ(·). Table 3 summarizes the simulation results for increasing values of

γ, approximately constant proportion of censoring and approximately the same shape of

censoring probability curve.

Tables 1 till 3 show that the new method outperforms Stute’s estimator when the

restrictive conditions of Stute’s procedure are not satisfied. This is especially reflected in

the bias, which is in most cases quite large in comparison with the new method.

Let us now consider a homoscedastic model, in which C and X are independent :

Y =
5

4
exp(θ0X + θ0X

2) + σε (4.5)

where θ0 = 0.8, θ1 = 1, and X, ε and σ are as in model (4.2). The censoring variable C

satisfies C = α0 +ρε∗ for some α0 and ρ, where ε∗ is the same as before. This model equals

model (4.3) except that the censoring variable is independent of X here. It is easily seen

that Stute’s assumptions are satisfied in that case. The results in Table 4 now indicate

that Stute’s estimator behaves better than the new one, which is not surprising, since the

assumptions made by Stute (which are satisfied here) are stronger than our assumptions.
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α0 α1 θ̂0 θ̂1

γ CP Bias Var MSE Bias Var MSE

1.2 11 -0.12 0.044 0.059 0.279 0.090 0.168

1 49.54 -0.05 0.037 0.039 0.038 0.066 0.068

1.2 12 -0.17 0.171 0.200 0.278 1.091 1.168

2 50.84 -0.17 0.124 0.154 0.022 0.694 0.694

1.2 13.7 -0.15 0.416 0.438 -0.72 4.166 4.678

3 50.33 -0.27 0.286 0.358 -0.16 1.560 1.589

1.2 14.3 -0.16 0.669 0.695 -1.14 5.227 6.518

4 49.99 -0.31 0.478 0.572 -0.42 3.025 3.205

Table 3: Results for the Stute estimator (first line) and the new estimator (second line)

for model (4.4).

α0 ρ θ̂1 θ̂2

σ2 CP Bias Var MSE Bias Var MSE

7.5 10 0.003 0.098 0.098 -0.01 0.131 0.131

1 33.04 0.086 0.095 0.103 -0.12 0.130 0.144

2.7 15 -0.01 0.139 0.139 -0.00 0.186 0.186

1 50.87 0.162 0.137 0.164 -0.22 0.192 0.240

7 17 0.009 0.055 0.055 -0.02 0.073 0.073

0.5 40.82 0.087 0.056 0.063 -0.12 0.077 0.091

0 13 0.012 0.084 0.085 -0.02 0.118 0.119

0.5 59.12 0.173 0.081 0.111 -0.24 0.119 0.175

Table 4: Results for the Stute estimator (first line) and the new estimator (second line)

for model (4.3).
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Table 5 shows the relative performance of the new estimator and the one of Stute for

small samples. Let n = 30 and consider the model

Y = θ0 exp(θ1X + θ2X
2) + (γX + 0.1)ε, (4.6)

where θ0 = 1.25, θ1 = 0.8 θ2 = 1, and γ = 1, 2, 3 or 4. The other quantities of (4.6) are

chosen as in (4.2) and the censoring variable C satisfies C = α0 exp(α1X + α2X
2) + γε∗

for some α0, α1, α2 and ε∗ chosen as in the other models. Table 5 shows that also for small

samples the new method performs well.

α0 α1 α2 θ̂0 θ̂1 θ̂2

σ2 γ CP Bias Var MSE Bias Var MSE Bias Var MSE

1.25 1.1 1 0.544 0.231 0.526 -1.51 1.233 3.513 1.244 0.923 2.471

1 1 32.77 0.232 0.148 0.202 -0.49 1.307 1.544 0.359 1.043 1.172

1.25 1.4 0.9 0.516 0.351 0.617 -1.62 2.560 5.175 1.400 2.137 4.096

1 2 33 0.242 0.270 0.328 -0.47 2.665 2.882 0.340 2.227 2.343

1.25 1.6 0.9 0.457 0.690 0.899 -1.49 6.397 8.628 1.384 5.343 7.259

1 3 33.06 0.266 0.450 0.521 -0.39 5.736 5.887 0.268 4.860 4.932

1.25 1.8 0.9 0.427 1.013 1.196 -1.47 8.124 10.28 1.489 7.377 9.593

1 4 32.65 0.276 0.749 0.825 -0.18 11.20 11.23 0.118 9.176 9.190

Table 5: Results for the Stute estimator (first line) and the new estimator (second line)

for model (4.6) and n = 30.

Finally, other simulations (not reported here) show that models different from the

ones considered here, lead to similar simulation results : whenever the restrictive condi-

tions of Stute’s method are satisfied, his method outperforms the new one, whereas the

new method behaves considerable better than Stute’s estimator in situations where these

conditions are not satisfied.

5 Data analysis

The relationship between fatigue life of metal, ceramic and composite materials and ap-

plied stress is an important input to design-for-reliability processes. This is motivated by

the need to develop and present quantitative fatigue-life information used in the design

of jet engines. For example, according to the air speed that enters an aircraft engine, the

fan, the compressor and the turbine rotate at different speeds and therefore are submitted

to different stresses.

12



We present, in this section, a set of low-cycle fatigue life data for a strain-controlled test on

26 cylindrical specimens of a nickel-base superalloy. The data were originally described

and analyzed in Nelson (1984), and can also be found in Meeker and Escobar (1998).

Figure 1 shows the log of the number of cycles before failure against the pseudostress

(Young’s modulus times strain). Four censored data are observed; a data point is censored

if failure occurs in the radius, weld or threads (censoring coming from impurities or

vacuums) or if no failure occurs at all. Therefore, it may be reasonable to think that

censoring depends on pseudostress. So, the assumptions of Stute’s (1999) procedure (i.e.

Y independent of C and P (Y ≤ C|X, Y ) = P (Y ≤ C|Y )) are possibly not satisfied.

Moreover, the data seem to follow a heteroscedastic model.

A model often used in the literature (see Pascual and Meeker (1997)) is given by

log Y = β0 + β1 log(X − γ) + σ(X)ε (X > γ), (5.1)

where ε is independent of X and E[ε] = 0. Unlike Pascual and Meeker (1997), we do not
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Figure 1: Nonlinear regression for the fatigue data. The solid, respectively, dashed

line represents the estimated regression curve for the new method, respectively, Stute’s

method. Uncensored data points are given by ×, and censored observations by 4. The

new data points obtained from the new method are represented by ∗.
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impose any parametric form for σ(·). This has obviously the advantage of being more

robust and flexible, although Pascual and Meeker’s parametric model for σ(·) will be more

efficient in some particular situations.

Note that our method does not require the estimation of the variance function σ2(·)
(since we work with σ02(·) in the estimation procedure). It would however be possible to

estimate σ2(·) by using the following idea, in analogy with the idea developed in Heuchenne

and Van Keilegom (2005) for the nonparametric estimation of the mean function : create

artificial data points Y ∗ and (Y 2)∗ such that E(Y ∗|X) = E(Y |X) and E[(Y 2)∗|X] =

E(Y 2|X) (Y ∗ is as defined in Section 2, (Y 2)∗ can be defined similarly), and estimate the

variance based on these new synthetic data. This estimator of σ2(·) can then also be used

to validate the parametric form of σ2(·) used in Pascual and Meeker (1997).

The parameter γ in model (5.1) can be interpreted as a fatigue limit parameter i.e.

specimens tested below this fatigue limit level of stress will never fail. Therefore, this

parameter is constrained to be positive. The data set is then analyzed by means of Stute’s

procedure and the new method. For the computation of the variance, an asymptotic

formula is used for Stute’s method while for the new method we make use of a bootstrap

approximation (see Subsection 4.1 for more details). Finally, confidence intervals are

constructed for each parameter.

The results obtained by Stute’s method are β̂0s = 11.0474, β̂1s = −2.1315, γ̂s =

65.2730 with estimated variances 13.6611; 0.6587; 120.5972 respectively, while the new

method provides β̂0n = 9.2432, β̂1n = −1.7221, γ̂n = 71.1797 with estimated vari-

ances 9.3389; 0.4100; 116.4890 respectively. Confidence intervals for Stute’s method

are β0 ∈ [3.8031, 18.2917], β1 ∈ [−3.7222, −0.5408], and γ ∈ [43.7489, 86.7971]. For

the new method, confidence intervals based on the normal approximation are β0 ∈
[3.6009; 15.5802], β1 ∈ [−3.0564; −0.5463] and γ ∈ [48.9448; 91.2534], and intervals

obtained with the bootstrap percentile method are β0 ∈ [6.7985; 19.0904], β1 ∈ [−3.7492;

−1.1587] and γ ∈ [33.4215; 77.9497]. Graphs of the estimated curves are given in Figure 1.

Appendix : Proofs of main results

The following notations are needed in the statement of the asymptotic results given in

Section 3.

ξε(z, δ, y) = (1− F 0
ε (y))



−

y∧z∫

−∞

dH0
ε1(s)

(1−H0
ε (s))2

+
I(z ≤ y, δ = 1)

1−H0
ε (z)



 ,

ξ(z, δ, y|x) = (1− F (y|x))



−

y∧z∫

−∞

dH1(s|x)

(1−H(s|x))2
+
I(z ≤ y, δ = 1)

1−H(z|x)



 ,
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η(z, δ|x) =

+∞∫

−∞
ξ(z, δ, v|x)J(F (v|x)) dv σ0(x)−1,

ζ(z, δ|x) =

+∞∫

−∞
ξ(z, δ, v|x)J(F (v|x))

v −m0(x)

σ0(x)
dv σ0(x)−1,

γ1(y|x) =

y∫

−∞

h0
ε(s|x)

(1−H0
ε (s))2

dH0
ε1(s) +

y∫

−∞

d h0
ε1(s|x)

1−H0
ε (s)

,

γ2(y|x) =

y∫

−∞

sh0
ε(s|x)

(1−H0
ε (s))2

dH0
ε1(s) +

y∫

−∞

d (sh0
ε1(s|x))

1−H0
ε (s)

,

ϕ(x, z, δ, y) = ξε

(
z −m0(x)

σ0(x)
, δ, y

)
− S0

ε (y)η(z, δ|x)γ1(y|x)− S0
ε (y)ζ(z, δ|x)γ2(y|x),

αi(v) =

∫ Si
v u dF 0

ε (u)

1− F 0
ε (v)

,

Bk(z, Zj,∆j|Xi)

=
∂mθT0

(Xi)

∂θk
f−1
X (Xi)σ

0(Xi)

{[
α′i(e

0T
i (z))− 1 +

Sif
0
ε (Si)

1− F 0
ε (e0T

i (z))

]
η(Zj,∆j|Xi)

+

[
e0T
i (z)α′i(e

0T
i (z))− αi(e0T

i (z)) +
S2
i f

0
ε (Si)

1− F 0
ε (e0T

i (z))

]
ζ(Zj,∆j|Xi)

}
,

k = 1, . . . , d, i, j = 1, . . . , n, where Si = SXi, e
0T
i (z) = e0T

Xi
(z) and for any x ∈ RX ,

Sx = (Tx −m0(x))/σ0(x) and e0T
x (z) = (z ∧ Tx −m0(x))/σ0(x).

Let T̃x be any value less than the upper bound of the support of H(·|x) such that

infx∈RX (1−H(T̃x|x)) > 0. For a (sub)distribution function L(y|x) we will use the nota-

tions l(y|x) = L′(y|x) = (∂/∂y)L(y|x), L̇(y|x) = (∂/∂x)L(y|x) and similar notations will

be used for higher order derivatives.

The assumptions needed for the results of Section 3 are listed below.

(A1)(i) na4
n → 0 and na3+2δ

n (log a−1
n )−1 →∞ for some δ < 1/2.

(ii) RX is a compact interval.

(iii) K is a density with compact support,
∫
uK(u)du = 0 and K is twice continuously

differentiable.

(iv) Ω is non-singular.

(A2)(i) There exist 0 ≤ s0 ≤ s1 ≤ 1 such that s1 ≤ infx F (T̃x|x), s0 ≤ inf{s ∈
[0, 1]; J(s) 6= 0}, s1 ≥ sup{s ∈ [0, 1]; J(s) 6= 0} and infx∈RX infs0≤s≤s1 f(F−1(s|x)|x) > 0.

(ii) J is twice continuously differentiable,
∫ 1
0 J(s)ds = 1 and J(s) ≥ 0 for all 0 ≤ s ≤ 1.

(iii) The function x→ Tx (x ∈ RX) is twice continuously differentiable.
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(A3)(i) FX is three times continuously differentiable and infx∈RX fX(x) > 0.

(ii) m0 and σ0 are twice continuously differentiable and infx∈RX σ
0(x) > 0.

(iii) E[ε02] <∞ and E[E04] <∞.

(A4)(i) η(z, δ|x) and ζ(z, δ|x) are twice continuously differentiable with respect to x and

their first and second derivatives (with respect to x) are bounded, uniformly in x ∈ RX ,

z < T̃x and δ.

(ii) The first derivatives of η(z, δ|x) and ζ(z, δ|x) with respect to z are of bounded varia-

tion and the variation norms are uniformly bounded over all x.

(A5) The function y → P (m0(X) + eσ0(X) ≤ y) (y ∈ IR) is differentiable for all e ∈ IR
and the derivative is uniformly bounded over all e ∈ IR.

(A6) For L(y|x) = H(y|x), H1(y|x), H0
ε (y|x) or H0

ε1(y|x) :L′(y|x) is continuous in (x, y)

and supx,y |y2L′(y|x)| <∞, the same holds for all other partial derivatives of L(y|x) with

respect to x and y up to order three, and supx,y |y3L′′′(y|x)| <∞.

(A7)(i) supx,z
∫ |B′k(t, z, δ|x)|hδ(t) dt <∞ (k = 1, . . . , d; δ = 0, 1).

(ii) supz
∫

supx |B′′k(t, z, δ|x)|hδ(t) dt < ∞ (k = 1, . . . , d; δ = 0, 1), where B
′(′)
k (t, z, δ|x)

equals the first (second) derivative of Bk(t, z, δ|x) with respect to x when t 6= Tx and

equals 0 otherwise.

(A8) For the density fX|Z,∆(x|z, δ) of X given (Z,∆), supx,z |fX|Z,∆(x|z, δ)| < ∞,

supx,z |ḟX|Z,∆(x|z, δ)| <∞, supx,z |f̈X|Z,∆(x|z, δ)| <∞ (δ = 0, 1).

(A9) Θ is compact and θT0 is an interior point of Θ. All partial derivatives of mθ(x) with

respect to the components of θ up to order three exist and are continuous in (x, θ) for all

x and θ. Moreover, the matrix Ω defined in Theorem 3.2 is non-singular.

(A10) The function E[{E(Y ∗T |X)−mθ(X)}2] has a unique minimum in θ = θT0 .

Proof of Theorem 3.1. We prove the consistency of θ̂Tn by verifying the conditions

of Theorem 5.7 in van der Vaart (1998, p. 45). From the definition of θ̂Tn and condition

(A10), it follows that it suffices to show that

sup
θ
|Sn(θ)− S0(θ)| →P 0, (A.1)

where S0(θ) = E[σ02(X)V ar(ε0∗
T |X)] + E[{E(Y ∗T |X)−mθ(X)}2]. The second statement

of Theorem 3.1 then follows immediately from (A.1) together with the consistency of θ̂Tn .
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To prove (A.1) we write

Sn(θ) =
1

n

n∑

i=1

(Ŷ ∗T i − Y ∗T i)2 +
1

n

n∑

i=1

(Y ∗T i −mθ(Xi))
2 +

2

n

n∑

i=1

(Ŷ ∗T i − Y ∗T i)(Y ∗T i −mθ(Xi))

= Sn1 + Sn2(θ) + Sn3(θ).

In order to treat Sn1 and Sn3(θ), we first consider the difference

Ŷ ∗T i − Y ∗T i =

{
[m̂0(Xi)−m0(Xi)] +

σ̂0(Xi)

1− F̂ 0
ε (Ê0T

i )

∫ Ŝi

Ê0T
i

u dF̂ 0
ε (u)

− σ0(Xi)

1− F 0
ε (E0T

i )

∫ Si

E0T
i

u dF 0
ε (u)

}
(1−∆i)

= {A1i + A2i + A3i} (1−∆i).

Using Proposition 4.5 of Van Keilegom and Akritas (1999) (hereafter abbreviated by

VKA), A1i = O((nan)−1/2(log a−1
n )1/2) a.s. uniformly in i. Next, write

A2i + A3i

=
σ̂0(Xi)− σ0(Xi)

1− F̂ 0
ε (Ê0T

i )

∫ Ŝi

Ê0T
i

u dF̂ 0
ε (u) + σ0(Xi)

F̂ 0
ε (Ê0T

i )− F 0
ε (E0T

i )

(1− F̂ 0
ε (Ê0T

i ))(1− F 0
ε (E0T

i ))

∫ Ŝi

Ê0T
i

u dF̂ 0
ε (u)

+
σ0(Xi)

1− F 0
ε (E0T

i )

∫ E0T
i

Ê0T
i

u dF̂ 0
ε (u) +

σ0(Xi)

1− F 0
ε (E0T

i )

∫ Si

E0T
i

u d(F̂ 0
ε (u)− F 0

ε (u))

+
σ0(Xi)

1− F 0
ε (E0T

i )

∫ Ŝi

Si
u dF̂ 0

ε (u)

=
5∑

j=1

Bji.

We will now prove the convergence to zero of each of these five terms. First, by using

integration by parts, we can write

∫ E0T
i

Ê0T
i

u dF̂ 0
ε (u) = E0T

i [F̂ 0
ε (E0T

i )− F 0
ε (E0T

i )] + [E0T
i F 0

ε (E0T
i )− Ê0T

i F 0
ε (E0T

i )]

+Ê0T
i [F 0

ε (E0T
i )− F̂ 0

ε (Ê0T
i )]−

∫ E0T
i

Ê0T
i

F̂ 0
ε (u)du. (A.2)

By Corollary 3.2 in VKA (1999), the first term of (A.2) is |E0T
i |OP (n−1/2), while from

Proposition 4.5 in VKA (1999), it follows that the second and fourth term are

|E0T
i |O((nan)−1/2(log a−1

n )1/2) a.s. The third term is |E0T
i |OP ((nan)−1/2(log a−1

n )1/2) us-

ing Proposition 4.5 of VKA (1999) and the fact that

sup
x,z

∣∣∣F̂ 0
ε

{z ∧ Tx − m̂0(x)

σ̂0(x)

}
− F 0

ε

{z ∧ Tx −m0(x)

σ0(x)

}∣∣∣ = OP ((nan)−1/2(log a−1
n )1/2).
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This can be obtained as follows.

F̂ 0
ε

{z ∧ Tx − m̂0(x)

σ̂0(x)

}
− F 0

ε

{z ∧ Tx −m0(x)

σ0(x)

}

= F̂ 0
ε

{z ∧ Tx − m̂0(x)

σ̂0(x)

}
− F 0

ε

{z ∧ Tx − m̂0(x)

σ̂0(x)

}

+F 0
ε

{z ∧ Tx − m̂0(x)

σ̂0(x)

}
− F 0

ε

{z ∧ Tx −m0(x)

σ0(x)

}

= α1
n(z, x) + α2

n(z, x).

Using Corollary 3.2 of VKA (1999), supx,z |α1
n(z, x)| is OP (n−1/2). For α2

n(z, x), we use

two first order Taylor developments :

α2
n(z, x) = −m̂

0(x)−m0(x)

σ̂0(x)
f 0
ε (Ax)−

σ̂0(x)− σ0(x)

σ̂0(x)

z ∧ Tx −m0(x)

σ0(x)
f 0
ε (Bx),

for some Ax (Bx) between z∧Tx−m0(x)
σ̂0(x)

and z∧Tx−m̂0(x)
σ̂0(x)

( z∧Tx−m
0(x)

σ0(x)
and z∧Tx−m0(x)

σ̂0(x)
). Us-

ing Proposition 4.5 of VKA (1999) and the fact that supe |ef 0
ε (e)| < +∞, α2

n(z, x) =

O((nan)−1/2(log a−1
n )1/2) a.s. Hence, B3i = |E0T

i |OP ((nan)−1/2(log a−1
n )1/2). In a simi-

lar way it can be shown that B5i = OP ((nan)−1/2(log a−1
n )1/2). Using Lemma A.1 of

Heuchenne and Van Keilegom (2004), it follows that
∫ Si
E0T
i
udF̂ 0

ε (u) = OP (1). Hence, com-

bining this with the rates obtained for B3i and B5i we get that
∫ Ŝi
Ê0T
i

udF̂ 0
ε (u) = |E0T

i |OP (1).

Therefore, using Proposition 4.5 in VKA (1999) and the uniform consistency of F̂ 0
ε (Ê0T

i ),

B1i and B2i are |E0T
i |OP ((nan)−1/2(log a−1

n )1/2). Finally,

B4i =
σ0(Xi)

1− F 0
ε (E0T

i )

{
Si[F̂

0
ε (Si)− F 0

ε (Si)]− E0T
i [F̂ 0

ε (E0T
i )− F 0

ε (E0T
i )]

−
∫ Si

E0T
i

(F̂ 0
ε (u)− F 0

ε (u)) du

}

= |E0T
i |OP (n−1/2),

such that

Ŷ ∗T i − Y ∗T i = |E0T
i |OP ((nan)−1/2(log a−1

n )1/2). (A.3)

Therefore, |Sn1| = OP ((nan)−1 log a−1
n ). In the same way, using (A.3) and the continuity

of mθ(x) on RX × Θ, supθ |Sn3(θ)| = OP ((nan)−1/2(log a−1
n )1/2). For Sn2(θ), write

Sn2(θ) =
1

n

n∑

i=1

{Y ∗T i − E(Y ∗T i|Xi)}2 +
1

n

n∑

i=1

{E(Y ∗T i|Xi)−mθ(Xi)}2

+
2

n

n∑

i=1

{Y ∗T i − E(Y ∗T i|Xi)}{E(Y ∗T i|Xi)−mθ(Xi)} = Sn21 + Sn22(θ) + Sn23(θ).
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Since E[ε02] <∞, it is easily seen that

Sn21 = E[σ02(X){ε∗0T − E(ε∗0T |X)}2] + o(1) a.s.

For Sn22(θ) and Sn23(θ) we use Theorem 2 of Jennrich (1969). The function g in this

theorem is given by gθ(x) = {E(Y ∗T |x)−mθ(x)}2 for Sn22(θ) and

gθ(z, δ, x) =


zδ + (1− δ)



m

0(x) +
σ0(x)

1− F 0
ε ( z∧Tx−m

0(x)
σ0(x)

)

∫ Tx−m0(x)

σ0(x)

z∧Tx−m0(x)

σ0(x)

udF 0
ε (u)



− E(Y ∗T |x)




×{E(Y ∗T |x)−mθ(x)}

for Sn23(θ). Since E|ε0| <∞, |gθ(x)| ≤ C1 and|gθ(z, δ, x)| ≤ h(z, δ) = C2zδ+C3 for some

C1, C2, C3 > 0, and for all (z, δ, x) and θ, where h is integrable with respect to the joint

distribution of (z, δ, x). From this,

sup
θ∈Θ
|Sn(θ)− E[σ02(X)V ar(ε∗0T |X)]− E[{E(Y ∗T |X)−mθ(X)}2]| = oP (1). (A.4)

This finishes the proof.

Proof of Theorem 3.2. For some θ1n between θ̂Tn and θT0

θ̂Tn − θT0 = −
{
∂2Sn(θ1n)

∂θ∂θ′

}−1
∂Sn(θT0 )

∂θ
= −R−1

1 R2.

We have

R2 = − 2

n

n∑

i=1

(Ŷ ∗Ti − Y ∗Ti)
∂mθT0

(Xi)

∂θ
− 2

n

n∑

i=1

{Y ∗Ti −mθT0
(Xi)}

∂mθT0
(Xi)

∂θ
= R21 +R22,

such that R22 is a sum of i.i.d. random variables with zero mean (by definition of θT0 ).

For each component j of R21, we use a technique similar to Theorem 1 of Heuchenne and

Van Keilegom (2004) to obtain an asymptotic representation. So we obtain

R21j = − 2

n

n∑

i=1

∫

RX

∂mθT0
(x)

∂θj
σ(x)

∫ +∞

−∞

{
ϕ(Xi, Zi,∆i, e

0T
x (z))

{1− F 0
ε (e0T

x (z))}2

∫ Sx

e0Tx (z)
u dF 0

ε (u)

+
1

1− F 0
ε (e0T

x (z))

∫ Sx

e0Tx (z)
u dϕ(Xi, Zi,∆i, u)

}
dH0(z|x)dFX(x)

+fX(Xi)
∫ ∞

−∞
Bj(z, Zi,∆i|Xi) dH0(z|Xi) + oP (n−1/2), (A.5)

(j = 1, . . . , d; i = 1, . . . , n). For R1, we write

R1 = − 2

n

{
n∑

i=1

(Ŷ ∗Ti − Y ∗Ti)
∂2mθ1n(Xi)

∂θ∂θ′
+

n∑

i=1

(Y ∗Ti −mθ1n(Xi))
∂2mθ1n(Xi)

∂θ∂θ′

−
n∑

i=1

(∂mθ1n(Xi)

∂θ

)(∂mθ1n(Xi)

∂θ′

)}
= R11 +R12 +R13.
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Using assumption (A9), the fact that |Ŷ ∗Ti − Y ∗Ti| = |E0T
i |OP ((nan)−1/2(log a−1

n )1/2) (see

the proof of Theorem 3.1), we have that R11 = oP (1). Again using condition (A9),

R1 =
2

n

n∑

i=1

∂mθT0
(Xi)

∂θ

(∂mθT0
(Xi)

∂θ

)′ − 2

n

n∑

i=1

{Y ∗Ti −mθT0
(Xi)}

∂2mθT0
(Xi)

∂θ∂θ′
+ oP (1)

= 2E
[∂mθT0

(X)

∂θ

(∂mθT0
(X)

∂θ

)′ − {Y ∗T −mθT0
(X)}

∂2mθT0
(X)

∂θ∂θ′

]
+ oP (1)

= 2Ω + oP (1).

The result now follows.
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