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Abstract

This paper deals with the Intersection Property, or Basu’s First Theorem, which is valid under
a condition of no common information, also known as measurable separability. After formalizing
this notion, the paper reviews general properties and give operational characterizations in two topical
cases: the finite one and the multivariate normal one. The paper concludes discussing the relevance
of these characterizations for different fields as graphical models, zero entries in contingency tables,
causal analysis and estimability in Markov processes.
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bility, structural zeros.
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1 Introduction

Conditional independence is presently accepted as a fundamental concept not only in the theory of sta-
tistical inference (see,e.g., Dawid, 1979a; Florenset al., 1990; or Nogaleset al., 2000), but also in
statistical modelling, particularly in structural modelling (see,e.g., Novick, 1979; Speed and Kiiveri,
1986; Lauritzen and Wermuth, 1989; Pearl, 1995; and Mouchart and San Martı́n, 2003).

The use of graphical models to represent dependence relations among random variables, and therefore
to represent conditional independence, has became very useful to model building since most dependen-
cies and associations between variables can bevisualizedthrough graph representations. The key idea
behind these specification schemes is to utilize the correspondence betweenseparationin graphs and
conditional independencein probability. A graphical representation is used to represent qualitative multi-
variate relationships, specify and visualize multivariate statistical models, determine statistical properties
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of multivariate models, and develop computationally efficient algorithms for dealing with large multi-
variate models; for textbook expositions, see Whitakker (1990), Cox and Wermuth (1996) and Lauritzen
(1998).

An aspect widely developed in the graphical literature consists in relating the properties of the condi-
tional independence with algebraic structures satisfied by graph relationships. Thus, an operational link
is established between conditional independence and graph representations in the sense that conditions
obtained after manipulations with graphs can be translated in terms of conditional independence, and
conversely; for details, see,e.g., Pearl (1988), Geigeret al.(1988), Studeńy (1997) and Studeńy and
Bouckaert (1998).

This mutual fertilization works when universally valid properties of the conditional independence are
used; these ones can be found in,e.g., Martin et al.(1973), Dawid (1979a), D̈ohler (1980) and Mouchart
and Rolin (1984). Nevertheless, some specific problems in graphical models, or even some substantive
considerations in models building (for instance, structural zeros in finite models), require to restrict the
class of underlying probability distributions in order to obtain the desirable graphical property. To be
more specific, and to introduce the problem analyzed in this paper, consider the following property,
typically calledIntersection Property:

(i) X1 ⊥⊥ X2 | X3 and (ii)X1 ⊥⊥ X3 | X2 =⇒ (iii) X1 ⊥⊥ (X2, X3). (1.1)

whereX1, X2 andX3 are random variables defined on a same probability space(Ω,F , P ). This con-
dition is widely used in the graphical literature; see, among others, Frydenberg (1990, condition CI5),
Spohn (1980, section 2; 1994, Definition 3), Pearl and Paz (1987, section 4), Cox and Wermuth (1993,
section 2), Geiger and Pearl (1993, condition (7)), Kauermann (1996, section 2), Andersson, Madigan
and Perlman (1997, p. 87; 2001, p. 45), Koster (1996, section 3; 1999, section 3) and Studený and
Bouckaert (1998, p. 1438). It is, for instance, used to establish the equivalence between pairwise, local
and global Markov properties for undirected graphs; for definitions and details, see Pearl and Paz (1987)
and Frydenberg (1990).

Since Basu (1955, 1958), it is well known that the Intersection Property (1.1) does not hold universally,
but only under additional conditions –essentially that there be no common information betweenX2 and
X3. However, the implication is true under a stronger condition. Thus, for instance, whenΩ is a finite
set, Spohn (1994, Theorem 4) requires thatP be strictly positive in the sense thatP (A) = 0 only for
A = ∅. When(X1, X2, X3) is normally distributed, Cox and Wermuth (1993) require that the covariance
matrix be definite positive. More in general, it is often required thatP has a positive joint probability
density with respect to some product measure onΩ; see,e.g., Frydenberg (1990), Kauerman (1996),
Andersonet al.(1997, p. 87) and Lauritzen (1998, Proposition 3.1). Nevertheless, as Anderssonet
al.(1997, Remark 3.3) pointed out, the strict positivity of the density ofP (w.r.t. some product measure
on Ω) is not a necessary condition under which the Intersection Property (1.1) is valid; and Hill (1993)
asserts that “this positivity condition limits the possible applications [. . . ] In particular, the theorem
cannot be applied to Bayesian networks with functional constraints (Lauritzen and Spiegelhalter, 1988)
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or to contingency tables with structural zeros or to statistical mechanics systems with forbidden states
(Moussouris, 1974)” (p. 259).

Taking into account these considerations, the problem consists in looking for conditions much weaker
than the positivity of the density ofP under which the Intersection Property (1.1) is valid. This is
precisely the content of this paper. More specifically, in this paper we formalize the concept of “no
common information”, also known as “measurable separability”, so as to provide a sufficient assumption
to make the Intersection Property (1.1) valid. Next we closely examine the condition of no common
information and provide equivalent characterizations in two particular cases, namely the cases of discrete
random vector and of normally distributed random vector. We choose these two cases because they are
the underlying structure of most of the graphical representations of conditional independence; see,e.g.,
Spohn (1994, pp. 174s) for the first case, and Cox and Wermuth (1993) for the second case. In the
finite case, we prove that the condition of no common information betweenX2 andX3 is equivalent to a
condition restricting, but not excluding, the exact position of the null sets (or, sets of zero probability) in
the matrix which represents the joint distribution of(X2, X3). In the normal case, we prove that the no
common information corresponds to an equality between the ranks of the covariance matrices ofX2 and
of (X2 | X3), respectively.

The problem addressed in this paper, as well as its contribution, are not only related with graphical
models, but also with other fields such as Markov chains, causal inference and Basu’s First Theorem in
a Bayesian set-up. Let us also mention that Vantaggi (2001, 2002) establishes the Intersection Property
under alternative definitions of stochastic conditional independence motivated by the De Finetti’s (1949,
1970) critique of Kolmogorov axioms. The results obtained in this paper can, therefore, be considered
as its counter-part in a purely Kolmogorovian set-up.

This paper is organized as follows. Section 2 introduces a formal definition of the concept of no
common information. Thereafter, operational characterizations are discussed. This section ends with a
review of results relevant to the problem considered in the present paper. The main results of this paper
are contained in Sections 3 and 4. We complete the paper with some concluding remarks. The proofs of
the main results are gathered in the Appendix.

2 A Formalization of the Concept of No Common Information

2.1 Definition

Let X1 andX2 be two random variables defined on a common probability space(Ω,F , P ) valued in
(N1,N1) and (N2,N2), respectively. The information provided by the random variablesXi may be
represented by the generatedσ-field Xi = X−1

i (Ni) = {X−1
i (B) : B ∈ Ni} ⊂ F , often denoted as

σ(Xi). As a matter of fact,Xi heuristically corresponds to the set of events that may be described in
terms of that random variable (Florens and Mouchart, 1982, p. 588). The information thus defined does
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not depend on the coordinate system chosen to represent the corresponding random variable because
σ(Xi) = σ[h(Xi)] for all injective functionh.

As we do not want to distinguish twoP -a.s. equal events, we rather consider as the relevant information
the completedσ-fieldsXi = Xi∨F0, whereF0 is the completed trivialσ-field, namelyF0 = {A ∈ F :
P (A) ∈ {0, 1}} (whereA1 ∨ A2 is the smallestσ-field containingA1 ∪ A2). We use the measurable
completion rather than the Lebesgue completion not only to avoid loosing the countability generated
character of completedσ-fields (this condition might be viewed as a “technicality”), but also to avoid
introducing eventsnot generated by the random variables (this condition is directly related with our
concern, namely the information provided by a random variable). Note that the completed trivialσ-field
F0 is the same for equivalent probability measures (i.e.. probability measures having the same null sets
asP ).

The common information provided byX1 andX2 can be accordingly described asX1∩X2. Therefore,
X1 andX2 don’t share common informationif and only if

X1 ∩ X2 = F0, (2.1)

and we denote this property asX1 ‖ X2. When (2.1) holds, we also say thatX1 andX2 are measurably
separated; see Florenset al.(1990, section 5.2).

Let X3 be a random variable from(Ω,F , P ) to (N3,N3). The previous concept can be extended to
the case of no common information betweenX1 andX2 conditionally onX3, as follows:

X1 ∨ X3 ∩ X2 ∨ X3 = X3. (2.2)

We denote this property asX1 ‖ X2 | X3. When (2.2) holds, we also say thatX1 andX2 are measurably
separated conditionally onX3. Clearly condition (2.2) reduces to condition (2.1) whenX3 = F0. If we
want to make explicit the role of the probabilityP in this concept, we writeX1 ‖ X2 | X3; P .

2.2 Equivalent characterizations

Heuristically, the concept of measurable separability, or no common information, means that the in-
formation common toX1 andX2 is either trivial (formulation (2.1)) or “already known” throughX3

(formulation (2.2)). A deeper understanding of the concept may be obtained by considering equivalent
conditions. This is the objective of next theorem:

Theorem 2.1 Let Xi (i = 1, 2, 3) be random variables defined on a fixed probability space(Ω,F , P )
and valued on the measurable spaces(Ni,Ni). The following conditions are equivalent:
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(i) X1 andX2 are measurably separated conditionally onX3.

(ii) If f(X1, X3) = g(X2, X3) a.s. for somef , bounded Borel function defined on(N1×N3,N1⊗N3),
and someg, bounded Borel function defined on(N2 × N3,N2 ⊗ N3), thenf(X1, X3) = h(X3)
a.s. for someh, bounded Borel function defined on(N3,N3).

(iii) If V [f(X1, X3) | X2, X3] = 0 a.s. for somef , bounded Borel function defined on(N1×N3,N1⊗
N3), thenV [f(X1, X3) | X3] = 0 a.s.

The equivalence between statements 2 and 3 in Theorem 2.1 is straightforward. The equivalence between
statements 1 and 3 follows from the following relationship:

A ∈ (X1 ∨ X3) ∩ (X2 ∨ X3) ⇐⇒ A ∈ (X1 ∨ X3) andE(1I A | X2 ∨ X3) = 1IA a.s.

For additional details, see Florenset al.(1990, section 5.2). From condition (2.2), it should be clear that
the concept of measurable separability is symmetric betweenX1 andX2. Thus, assertions 2 and 3 in
Theorem 2.1 may also be symmetrized by permuting the indexes 1 and 2.

The property of measurable separability is meant to exclude joint distributions with a support such as
that one depicted in Figures 1 and 2. Indeed, in such casesX1 andX2 are not measurably separated
because the event{X1 ∈ A1} is a.s. equal to the event{X2 ∈ B1}: these events represent a non-trivial
information common toX1 andX2.

A1 A2

B1

B2

X2

X1

Figure 1: Counter-example to measurable separability

It should be clear from Theorem 2.1 and from these remarks that measurable separability depends
on the probabilityP through its null sets only. Thus, ifP andP ′ are equivalent probabilities, then
X1 ‖ X2 | X3; P ⇐⇒ X1 ‖ X2 | X3; P ′.
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X2

X1

Β1

Α1

Figure 2: Counter-example to measurable separability

2.3 Measurable separability and conditional independence

Two relationships between measurable separability and conditional independence are relevant for our
discussion about the Intersection Property (1.1). The first one tells us that measurable separability is a
(much) weaker property than conditional independence. More precisely,

Proposition 2.1 If X1 ⊥⊥ X2 | X3, thenX1 ‖ X2 | X3.

For a proof, see Florenset al.(1990, Theorem 5.2.7). Thus, a sufficient, but not necessary, condition for
measurable separability is that the joint density ofX2 andX3 be equivalent to a distribution makingX2

andX3 independent or that the support of the joint distribution be a rectangle.

A second relevant property is contained in the following proposition:

Proposition 2.2 The following properties are equivalent:

(i) X1 ⊥⊥ X2 | X3 andX1 ⊥⊥ X3 | X2.

(ii) X1 ⊥⊥ (X2, X3) | M whereM represent the information common toX2 andX3, namelyX2 ∩ X3.

For a proof, see Dawid (1980, Theorem 7.1), Mouchart and Rolin (1984, Corollary 3.6) or Florenset
al.(1990, Corollary 2.2.13). This proposition provides us with a condition under which the Intersection
Property (1.1) is true. As a matter of fact, if in Proposition 2.2, the information common toX1 andX2

reduces to the completed trivialσ-field F0, then implication (1.1) becomes true. This is the content of
the following theorem:
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Theorem 2.2 Under the condition of no common information betweenX2 andX3, namelyX2 ∩ X3 =
F0, the Intersection Property (1.1) is true.

As mentioned in the introduction, the literature of graphical models often use a condition of strict
positivity of the joint density of(X2, X3). This condition assume that the joint probability distribution
is dominated by the Lebesgue measure (onR2), implying that the interior of the support is not empty
and excluding situations with mixed distributions composed of a discrete component and a continuous
one, as illustrated in Figure 2. Under this restriction, the condition of positive density does indeed imply
measurable separability, but is actually much stronger and not necessary, as will be shown in next section.

Theorem 2.2 can be extended to a conditional version. More precisely,

Theorem 2.3 If X1 ⊥⊥ X2 | (X4, X3) andX1 ⊥⊥ X4 | (X2, X3), thenX1 ⊥⊥ (X2, X4) | X3 provided that
X2 ‖ X4 | X3.

For a proof, see Florenset al.(1990, Theorem 5.2.10).

Remark 1 As pointed out in the introductory section, Theorem 2.2 corresponds, in a Bayesian set-up,
to the First Basu’s Theorem as correctly established in Basu (1958). In a sampling-theory framework,
Koehn and Thomas (1975) have proved Basu’s (1958) result under a condition of the non-existence of a
splitting set. In a Bayesian framework, if the prior distributionµ is such that the predictive distribution
dominates all the sampling probabilities{P θ : θ ∈ Θ}, then measurable separability implies the non-
existence of splitting sets. If furthermore the prior distributionµ is such thatP θ(A) ∈ {0, 1} µ-a.s.
impliesP θ(A) ∈ {0, 1} for all θ ∈ Θ, then measurable separability is equivalent to the non-existence of
splitting sets; for details, see Florenset al.(1990, section 5.3.3).

The main conclusion of this section is that in order to establish the Intersection Property (1.1) in
particular cases, it is necessary to characterize the conditionX2 ∩ X3 = F0 in more operational terms.
This is precisely the content of the next two sections.

3 Measurable Separability in the Finite Case

3.1 Common information in the finite case: An example

Before characterizing measurable separability in the finite case, let us introduce an example which shows
that such a condition is necessary to establish implication (1.1). Consider so a finite distribution defined
on{0, 1} × {1, 2, 3} × {1, 2, 3} with a support containing 8 points only, defined as follows:
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X1 = 0 X1 = 0 X1 = 0 X1 = 0
X2 = 1 αq1 X2 = 1 αq2 X2 = 2 βq3 X2 = 3 βq4

X3 = 1 X3 = 2 X3 = 3 X3 = 3
X1 = 1 X1 = 1 X1 = 1 X1 = 1
X2 = 1 (1− α)q1 X2 = 1 (1− α)q2 X2 = 2 (1− β)q3 X2 = 3 (1− β)q4

X3 = 1 X3 = 2 X3 = 3 X3 = 3

whereq1q2q3q4α(1− α)β(1− β)(α− β) > 0 andq1 + q2 + q3 + q4 = 1.

It is easily checked, by direct computations, thatX1 ⊥⊥ X2 | X3 and, by symmetry betweenX2 and
X3, thatX1 ⊥⊥ X3 | X2. Nevertheless,X1 ⊥⊥ (X2, X3) is false (except in the excluded caseq1 = 1). Con-
sequently, implication (1.1) does not hold although the probability distribution of(X1, X2, X3) satisfies
conditions (i) and (ii) of the Intersection Property.

This example provides a key for an easy understanding of the concept of measurable separability in the
finite case. As a matter of fact, the joint distribution of(X2, X3) is given by

X3 = 1 X3 = 2 X3 = 3
X2 = 1 q1 q2 0
X2 = 2 0 0 q3

X2 = 3 0 0 q4

(3.1)

So, the support of(X2, X3) has 4 points which satisfy the following relationship, as Figure 3 shows:

{X2 = 1} = {X3 6= 3} a.s. (3.2)

Condition (3.2) represents an information common toX2 andX3 (i.e., the event{X2 = 1} is thesame
as the event{X3 6= 3} for the joint probability distribution). Thus, “no common information” between
X2 andX3 can be expressed saying that if there exists two functionsf andg such thatf(X1) = g(X2)
a.s. for the joint probability, then there exists a constantc such thatf(X1) = c a.s.; see Theorem 2.1,
statement (ii). In other words, “no common information” means that the only common information is the
trivial one,i.e., the class of measurable null sets.

3.2 Characterization of measurable separability in the finite case

To characterize measurable separability in the finite case, letNr (with r = 2, 3, 4) be finite sets and
Xr : Ω −→ Nr be random variables under the not restrictive condition thatP [Xr = i] > 0 for all
i ∈ Nr. We define
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1

2

3

X3

1 2 3 X2

Figure 3: Support of(X2, X3)

N
(k)
2 = {i ∈ N2 : P [X2 = i | X4 = k] > 0} for k ∈ N4,

N
(k)
3 = {j ∈ N3 : P [X3 = j | X4 = k] > 0} for k ∈ N4.

Fork ∈ N4, define the|N (k)
2 | × |N (k)

3 | matrixP(k) by

pij|k ≡ (P(k))ij = P [X2 = i,X3 = j | X4 = k] for (i, j) ∈ N
(k)
2 ×N

(k)
3 .

Finally, for k ∈ N4, let

N
(k)
3i = {j ∈ N

(k)
3 : P [X2 = i,X3 = j | X4 = k] > 0} for i ∈ N

(k)
2 .

The following theorem characterizes the measurable separability in the finite case:

Theorem 3.1 The following statements are equivalent:

(i) X2 ‖ X3 | X4;

(ii) (∀ k ∈ N4) (∀ I ⊂ N
(k)
2 ) with I 6= ∅ andI 6= N

(k)
2 :

(⋃

i∈I

N
(k)
3i

)
∩




⋃

i′∈N
(k)
2 \I

N
(k)
3i′


 6= ∅;
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(iii) (∀ k ∈ N4) (∀ I ⊂ N
(k)
2 ) with I 6= ∅ andI 6= N

(k)
2 [∃ (i, i′, j) ∈ I × (N (k)

2 \ I)×N
(k)
3 ] such that

pij|k · pi′j|k > 0,

whereA \B denotes the difference between setsA andB.

For a proof, see Appendix A.

Remark 2 Since the measurable separability conditionX2 ‖ X3 | X4 is symmetric inX2 andX3, one
could formally add conditions to Theorem 3.1, which would be obtained by interchanging(I, i, 2) with
(J, j, 3).

Next corollary makes explicit the particular case whereX4 is a constant random variable (equivalently,
X4 = F0:

Corollary 3.1 The following statements are equivalent:

(i) X2 ‖ X3;

(ii) (∀ I ⊂ N2) with I 6= ∅ andI 6= N2, it follows that

(⋃

i∈I

N3i

)
∩


 ⋃

i′∈N2\I
N3i′


 6= ∅;

(iii) (∀ I ⊂ N2) with I 6= ∅ andI 6= N2 [∃ (i, i′, j) ∈ I × (N2 \ I)×N3] such that

pij · pi′j > 0.

In Corollary 3.1, the setsN2 andN3 only contain points of positive probability. As mentioned before,
this is not a restrictive assumption since if there existsi0 ∈ N2 such thatP [X2 = i0] = 0, then
P [X2 = i0, X3 = j] = 0 for all j ∈ N3. So,N3i0 = ∅ and, consequently, the corresponding column in
the joint probability distribution of(X2, X3) can be eliminated.

Considering condition (ii) of Corollary 3.1, it can be noticed that the measurable separability between
X2 andX3 not only depends on each marginal distribution ofX2 andX3 through the setsN2 andN3,
but also on the joint distribution of(X2, X3) through the setsN3i for eachi ∈ N2. Moreover,N3i  N3

for some (possible all)i ∈ N2. Therefore, the case where there exists(i, j) ∈ N2 × N3 such that
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P [X2 = i, X3 = j] = 0 is not excluded. In other words, condition (ii) of Corollary 3.1 tells us in what
position must be the non-zeros (and so the zeros) probabilities for the joint distribution of(X2, X3): for
each(i, i′) ∈ I × (N2 \ I), there exists at least one columnj ∈ N3 such thatpij · pi′j > 0, as illustrated
in Figure 4.

i
pij

pi'j

 N2 \ I

j N3

i I

j

 i'

Figure 4: Condition (iii) of Corollary 3.1

Example 1 As an example, considerX2 ∈ {1, . . . , 5} andX3 ∈ {1, . . . , 4} and the following joint
probability distribution:

X3

X2

1 2 3 4
1 p1 0 0 p2

2 0 p3 p4 0
3 p5 0 0 p6

4 0 p7 0 p8

5 p9 0 p10 0

wherepi > 0 for all i = 1, . . . , 10 and
∑10

i=1 pi = 1. Although the support of this distribution has
only 10 points (so, there are 10 points of zero probability), it is possible to verify condition (ii) or (iii) of
Corollary 3.1, and thereforeX2 ‖ X3.

Condition (iii) in Corollary 3.1 shows that the conditionpij > 0 for all (i, j) is sufficient but far from
necessary for obtaining measurable separability betweenX2 andX3. The literature on graphical models
repeatedly mention the non-necessity of the strict positivity of allpij (see the references mentioned in
Section 1): condition (iii) in Corollary 3.1 gives, for the finite case, a necessaryandsufficient condition.
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Remark 3 In the more general case, namelyX2 ‖ X3 | X4, with X4 a non trivial random variable (i.e.,
F0  X4), the measurable separability betweenX2 andX3 conditionally onX4 should be verified for
all k ∈ N4. More precisely, the condition (iii) of Theorem 3.1 should be verified for each matrixP(k),
with k ∈ N4.

3.3 Common information in the finite case: A general condition

In which casesX2 andX3 are not measurably separated? Using the equivalence between conditions
(i) and (iii) of Corollary 3.1, it follows thatX2 andX3 are not measurably separated if and only if
(∃ I ⊂ N2) with I 6= ∅ andI 6= N2 [∀ (i, i′, j) ∈ I × (N2 \ I) × N3] such thatpij · pi′j = 0, i.e.,
pij = 0, orpi′j = 0, or both. This condition is equivalent to the following one: the matrixP representing
the joint probability distribution of(X2, X3) can, after permuting (if necessary) rows and/or columns, be
put in the form of a block-diagonal matrix. This is a standard issue in the non-decomposability of finite
Markov-chain in which case the probability matrix is square.

Example 2 Consider the case discussed in section 3.1: the joint probability distribution of(X2, X3) is
represented by the matrix (3.1). Such a matrix is a block-diagonal one, soX2 6 ‖ X3. This explains why
X1 is not independent of(X2, X3), althoughX1 ⊥⊥ X2 | X3 andX1 ⊥⊥ X3 | X2.

Example 3 Consider the counter-example provided by Hill (1993, p. 259), namely to assume a trivariate
discrete distribution such thatP (X1 = 0, X2 = 0, X3 = 0) = P (X1 = 1, X2 = 1, X3 = 1) = 0.5
andP (X1 = x1, X2 = x2, X3 = x3) = 0 otherwise. As pointed out by Hill (1993), this distribution
satisfies conditions (i) and (ii) of the Intersection Property, but not the conclusion. This situation can be
explained using the result established above: it can indeed be verified that the matrix representing the
joint distribution of(X2, X3) can be putted in the form of a block-diagonal matrix.

Remark 4 In the more general case, namely whenX4 is a non trivial random variable,X2 6 ‖ X3 | X4

if and only if there exists at least onek0 ∈ N4 such that, after permuting (if necessary) rows and/or
columns, the conditional distributionP(k0) of (X2, X3) given X4 = k0 can be put in the form of a
block-diagonal matrix.

3.4 Measurable separability and independence in the finite case

Let us now re-examine Proposition 2.1 in the discrete case. By definitionX2 ⊥⊥ X3 if and only if∀ (i, j) ∈
N2 ×N3

P [X2 = i,X3 = j] = P [X1 = i] · P [X2 = j],
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which is equivalent tor[P] = 1, whereP represents the joint distribution of(X2, X3). Consequently,
there are no non-null entries in the matrixP; so, condition (iii) of Corollary 3.1 is trivially satisfied.
This clearly shows that the condition of independence is sufficient but far from necessary to obtain the
measurable separability.

Remark 5 Again, whenX4 is a non trivial random variable, conditionX2 ⊥⊥ X3 | X4 is equivalent to
(∀ k ∈ N4) r[P(k)] = 1, and implies condition (iii) in Theorem 3.1.

4 Measure Separability in the Normal Case

A second case in which we want to analyze measurable separability, or no common information, is the
normal one. In such a case, the null sets are well described through the null space of ap × q matrix A,
namely Ker(A) = {x ∈ Rq : Ax = 0}.

Let us consider a random vectorX = (X2
′, X3

′, X4
′)′ ∈ Rp2+p3+p4 . Let

Ker [V (X2 | X4)] = {a ∈ Rp2 : a′X2 = E(a′X2 | X4) a.s.}

Ker [C(X3, X2 | X4)] = {a ∈ Rp2 : C(X3, a
′X2 | X4) = 0 a.s.}

whereV (· | ·) andC(·, · | ·) are the conditional variance and the conditional covariance operators,
respectively; for details, see,e.g., Drygas (1970) or Eaton (1989).

Suppose that(X2
′, X3

′ | X4
′)′ ∼ Np2+p3(µ(X4),Σ(X4)), whereΣ(X4) can be a positive or semi-

positive definite symmetric matrix. The following lemma establishes a simple result which provides an
easy key to characterize the measurable separability in the normal case; for a proof, see Appendix B.

Lemma 4.1 If (X2
′, X3

′ | X4
′)′ ∼ Np2+p3(µ(X4), Σ(X4)), then

Ker [V (X2 | X4)] = Ker [V (X2 | X3, X4)] ∩ Ker [C(X3, X2 | X4)] a.s. (4.1)

The following theorem (see Florenset al., 1993, Lemma 1.7) characterizes the measurable separability
in the normal case; for a proof, see Appendix C.

Theorem 4.1 If (X2
′, X3

′ | X4
′)′ ∼ Np2+p3(µ(X4),Σ(X4)), then the following propositions are equiv-

alent:

13



(i) X2 ‖ X3 | X4;

(ii) Ker [V (X2 | X4)] = Ker [V (X2 | X3, X4)] a.s.;

(iii) Ker [V (X2 | X3, X4)] ⊂ Ker [C(X3, X2 | X4)] a.s.;

(iv) r[V (X2 | X4)] = r[V (X2 | X3, X4)] a.s.

Lemma 4.1 and Theorem 4.1 are valid whether the conditional covariance matrixΣ(X4) is singular or
regular. The singular case is of particular interest since our concern is to examine the role of the null sets
for characterizing measurable separability.

Remark 6 Since the measurable separability conditionX2 ‖ X3 | X4 is symmetric inX2 andX3, one
could formally add conditions to Theorem 4.1 by interchangingX2 andX3.

If we consider the caseX4 = c a.s. (c ∈ N4), then the following corollary characterizes the measurable
separability betweenX2 andX3 as follows:

Corollary 4.1 If (X2
′, X3

′)′ ∼ Np2+p3(µ,Σ), with Σ is a positive or semi-positive definite symmetric
matrix, then the following propositions are equivalent:

(i) X2 ‖ X3;

(ii) Ker [V (X2)] = Ker [V (X2 | X3)];

(iii) Ker [V (X2 | X3)] ⊂ Ker [C(X3, X2)];

(iv) r[V (X2)] = r[V (X2 | X3)].

Clearly, whenΣ > 0, the density of(X2, X3) exists and is strictly positive, trivially ensuring the
measurable separability betweenX3 andX4; see Cox and Wermuth (1993, p. 206). Corollary 4.1 gives
a necessary and sufficient condition of measurable separability far weaker than the existence of a strictly
positive density. Corollary 4.1 also provides operational conditions to verify whenX2 andX3 are not
measurably separated.

The following lemma is useful to illustrate Proposition 2.1 in the normal case:

Lemma 4.2 If (X2
′, X3

′ | X4
′)′ ∼ Np2+p3(µ(X4),Σ(X4)), with Σ(X4) a positive or semi-positive

definite symmetric matrix, then

X2 ⊥⊥ X3 | X4 ⇐⇒ r[C(X3, X2 | X4)] = 0 ⇐⇒ Ker [C(X3, X2 | X4)] = Rp2 .
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Using Lemmas 4.1 and 4.2, it follows that

X2 ⊥⊥ X3 | X4 =⇒ Ker [V (X2 | X4)] = Ker [V (X2 | X3, X4)].

By statement (ii) of Theorem 4.1, we again conclude that measurable separability is much weaker than
conditional independence.

Example 4 The following example illustrates very simply that thea.s.positivity of the density (or, in the
normal case, the regularity of the covariance matrix) is not a necessary condition for measurable separa-
bility, and that the singularity of the covariance matrix is not a sufficient condition for non separability.
Indeed, consider a trivariate normal distribution with covariance matrix:

Σ =




1 1 .5
1 1 .5
.5 .5 1




It may be checked thatV (Y3 | Y1, Y2) = .75 > 0. Thus, in view of Corollary 4.1,Y3 and(Y1, Y2) are
measurably separated, whereasV (Y1 | Y2, Y3) = 0 and, therefore,Y1 and(Y2, Y3) are not measurably
separated. It may be noticed that, in this example, the singularity of the covariance matrix implies that
Y1 − Y2 is a.s. a constant, there is accordingly common information betweenY1 andY2 and, therefore,
betweenY1 and(Y2, Y3), whereas there is no common information betweenY3 and(Y1, Y2).

5 Concluding remarks

The concept of “no common information”, also called “measurable separability” or absence of “splitting
sets”, appears in different contexts in the statistical literature. This paper has endeavored to enhance a
better understanding of this concept by characterizing and illustrating what it is and what it is not in two
topical cases: the finite one and the multivariate normal one. An important issue was to analyze the role
of the null sets. In particular, in the finite case, the no common information was obtained even if the
corresponding contingency table has some zeros.

Another way for getting a deeper understanding is to examine the role of that property in different
contexts:

Basu’s First Theorem:The condition of measurable separability appears, in the Introduction of this pa-
per, as a supplementary condition for making the implication embodied in the Intersection Property (1.1)
valid. This condition has been met in the First Basu’s Theorem; see Basu and Pereira (1983, Theorem 2).
Interestingly enough, the first “proof” without the supplementary condition in Basu (1955) was wrong be-
cause of mistreating null sets associated with conditional densities and the corrected proof, Basu (1958)

15



and Koehn and Thomas (1975), also shows that the supplementary condition aims at avoiding somewhat
trivial pathologies, such as two independent observations of the exact value of the parameter. Situations
formally similar to Basu’s first theorem are frequently met in the literature on statistical inference; for
examples, see Dawid (1979b). This condition is also relevant in the literature on graphical models where
that supplementary condition is weaker than the too strong condition ofa.s. positive density and this
weakening is recognized as providing a considerably more useful, and operational, condition.

Causal Inference:The relevance of a suitable understanding of the concept, and the role, of measurable
separability is provided by an interesting paper on “The assumptions on which causal inferences rest”,
namely Stone (1993). Thus, let us consider the following random variables:X for treatment,Z for
observed covariates,U for unobserved covariates andY for responses, under the assumption thatU is
comprehensive enough to make the response determined byX, Z andU , namelyY = f(X, Z, U). The
no-causation hypothesis may be written asY ⊥⊥ X | (Z, U), but is not directly testable becauseU is not
observed. A testable version could beY ⊥⊥ X | Z and hopefully equivalent under a further assumption
of covariate sufficiency, namelyY ⊥⊥ U | (Z, X). Stone (1993) paper raises two interesting issues. A
first issue regards the role of measurable separability. As mentioned in Remark 2.3, ifX andU are
measurably separated conditionally onZ (i.e., X ‖ U | Z), thenY ⊥⊥ X | (Z, U) andY ⊥⊥ U | (Z, X)
imply Y ⊥⊥ (X, U) | Z and, therefore,Y ⊥⊥ X | Z. In other words, the desired no-causation hypothe-
sis along with covariate sufficiency imply the testable version of no-causation only under an hypothesis
of measurable separability. But, the equivalence asserted in Stone (1993) is misleading because The-
orem 2.2.10 in Florenset al.(1990) says thatY ⊥⊥ X | Z andY ⊥⊥ U | Z, X is actually equivalent to
Y ⊥⊥ (X, U) | Z which impliesY ⊥⊥ X | Z, so that the testable version of no-causation along with the
covariate sufficiency imply the desired no-causationwithoutrequiring a condition of measurable separa-
bility. The other issue regards the meaning of measurable separability which isnot the hypothesis that
the support of the conditional distribution of(X | Z, U) does not depend onU , as asserted in Stone
(1993): this is made clear in Example 4 after reminding that (using the notation of the example) always
P [(Y1, Y2, Y3)′ ∈ Im (Σ)+µ] = 1, i.e., supp[(Y1, Y2, Y3)′] ⊂ Im (Σ)+µ with probability 1. Interestingly
enough, Stone (1993) correctly noticed that the measurable separability is actually part of thedefinition
of unobserved covariates. Indeed,U may bedefinedby the propertiesY = f(X, Z, U) andX ‖ U | Z:
if there were common information betweenX andU conditionally onZ, it would be difficult to interpret
U as being both unobserved and comprehensive; for more details, see Mouchart (2004).

Estimability in Markov Processes:Somewhat different is the role of measurable separability in problems
of exact estimability. Thus Florenset al.(1990, Proposition 9.3.24) shows that the sampling measurable
separability of the first two observations in a stationary Markovian process is sufficient to ensure the
exact estimability of the minimal sufficient parameter: these authors also mention that the condition of
measurable separability is slightly too strong but easier to handle than Doeblin’s condition; see,e.g.,
Stout (1974, Section 3.6) or Breiman (1968, Section 7.3).

Identification of ATE:In recent unpublished works, for the analysis of identification of the Average Treat-
ment Effect (ATE) in non parametric models, Florenset al.(2003) have repeatedly used the condition of
measurable separability (see,e.g., their Theorem 3.5 for the equivalence between an exclusion condition
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and a Local Instrumental Variable condition, or Theorem 3.6 for the identification of the ATE).

Appendix

A Proof of Theorem 3.1

The equivalence between statements (ii) and (iii) follows from the definition of the setsN
(k)
3i andN

(k)
3i′ .

Before proving that statement (i) implies statement (ii), note that by Theorem 2.1,X2 ‖ X3 | X4 is
equivalent to asserts that if there exist two functionsf andg such thatf(i, k) = g(j, k) ∀ (i, j, k) such
thatpijk > 0, then there exists a functionh such thatf(i, k) = h(k) ∀ (i, k) such thatpi|k > 0. By the

definition of the setsN (k)
2 , N

(k)
3 andN

(k)
3i , this last implication is equivalent to the following one:

f(i, k) = g(j, k) ∀ k ∈ N4 ∀ (i, j) ∈ N
(k)
2 ×N

(k)
3i

(A.1)

=⇒ f(i, k) = h(k) ∀ k ∈ N4 ∀ i ∈ N
(k)
1 .

Proof of (i) =⇒ (ii): Indeed, if the condition (ii) is not satisfied, it follows that(∃ k ∈ N4) (∃ I ⊂ N
(k)
2 )

with I 6= ∅ andI 6= N
(k)
2 such that

(⋃

i∈I

N
(k)
3i

)
∩




⋃

i∈N
(k)
2 \I

N
(k)
3i


 = ∅.

Denoting
⋃
i∈I

N
(k)
3i asJ(I), it follows that

(i) J(I) ⊂




⋃

i∈N
(k)
2 \I

N
(k)
3i




c

=
⋂

i∈N
(k)
2 \I

(
N

(k)
3 \N

(k)
3i

)
,

(ii) J(I)c =
⋂
i∈I

(
N

(k)
3 \N

(k)
3i

)
.

(A.2)

Thus,
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(A.2.i) =⇒ [∀ j ∈ J(I)] (∀ i ∈ N
(k)
2 \ I) pij|k = 0

(A.2.ii) =⇒ [∀ j ∈ J(I)c] (∀ i ∈ I) pij|k = 0.

Consequently,P [X2 ∈ N
(k)
2 \I,X3 ∈ J(I) | X4 = k] = 0 andP [X2 ∈ I,X3 ∈ J(I)c | X4 = k] = 0.

Therefore

{X2 ∈ I} ∩ {X4 = k} = {X3 ∈ J(I)} ∩ {X4 = k} a.s. (A.3)

Moreover,

0 < P [X2 ∈ I,X4 = k] < 1 (A.4)

sinceP [X2 ∈ I | X4 = k] < 1. If not, i.e., if P [X2 ∈ I | X4 = k] = 1, then:

∑

i∈I

P [X2 = i | X4 = k] = 1 and I  N
(k)
2 .

Hence,(∃ i0 ∈ N
(k)
2 \ I) P [X2 = i0 | X4 = k] = 0. This is a contradiction with the definition of the

setN (k)
2 . Therefore, (A.3) and (A.4) jointly imply thatX2 ‖ X3 | X4 is violated (see (A.1)).

Proof of (iii) =⇒ (i): Assume that there exist two functionsf andg such that

f(i, k) = g(j, k) ∀ k ∈ N4 ∀ (i, j) ∈ N
(k)
2 ×N

(k)
3i . (A.5)

Condition (iii) implies that(∀ k ∈ N4) (∀ I ⊂ N
(k)
2 ) with I 6= ∅ andI 6= N

(k)
2 (∃ (i, i′) ∈ I ×N

(k)
2 \ I)

such that

N
(k)
3 ⊃ N

(k)
3i ∩ N

(k)
3i′ 6= ∅.

Let j0 ∈ N
(k)
3i ∩ N

(k)
3i′ . By (A.5) it follows thatf(i, k) = f(i′, k). Therefore, we have that(∀ k ∈ N4)

(∀ I ⊂ N
(k)
2 ) with I 6= ∅ andI 6= N

(k)
2 (∃ (i, i′) ∈ I ×N

(k)
2 \ I) such thatf(i, k) = f(i′, k). Applying

inductively this condition we obtain that∀ i, i′ ∈ N
(k)
2 f(i, k) = f(i′, k). Consequently, taking

i0 ∈ N
(k)
2 fixed, this last equality is equivalent tof(i, k) = f(i0, k) ≡ h(k) ∀ i ∈ N

(k)
2 .

¤
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B Proof of Lemma 4.1

In general,V (a′X2 | X4) = E[V (a′X2 | X3, X4) | X4] + V [E(a′X2 | X3, X4) | X4]. Under
normality,V [E(a′X2 | X3, X4) | X4] = 0 a.s. is equivalent toC(X3, a

′X2 | X4) = 0 a.s. Therefore,
the nullity of each member of the equality corresponds toa pertaining to the respective null spaces of
(4.1).

¤

C Proof of Theorem 4.1

The equivalence between (ii) and (iii) is an immediate consequence of Lemma 4.1, whereas the equiv-
alence between (ii) and (iv) is a consequence of the rank theorem in linear algebra (see,e.g., Halmos,
1974, Theorem 1, section 50). The proof of the equivalence between (i) and (iii) is based on the following
lemma:

Lemma C.1 Let (Z1
′, Z2

′)′ ∈ Rp1+p2 be a random vector such thatr[V (Z1 | Z2)] = q1 ≤ p1. Then
there exists aq1 × p1 matrixT with r(T ) = q1 such that

(i) r[V (TZ1 | Z2)] = q1;

(ii) σ(TZ1, Z2) = σ(Z1, Z2).

Proof of Lemma C.1: If q1 = p1, takeT = Ip1 . Assume therefore thatq1 < p1. Then there exists an

orthogonal matrix

(
T
Q

)
with T a q1 × p1 matrix andQ a (p1 − q1) × p1 matrix, such thatV (Z1 |

Z2) = T ′∆T , where∆ is the diagonal matrix with the positive eigenvalues ofV (Z1 | Z2). Therefore
V (TZ1 | Z2) = ∆; this proves (i). Moreover,V (QZ1 | Z2) = 0, C(TZ1, QZ1 | Z2) = 0, TT ′ = Iq1

andT ′T + Q′Q = Ip1 . It follows that

QZ1 = E(QZ1 | Z2) Z2-a.s.

and consequentlyZ1 = T ′TZ1 +Q′QZ1 = T ′TZ1 +Q′E(QZ1 | Z2) Z2-a.s. Thereforeσ(Z1, Z2) ⊂
σ(TZ1, Z2). The inverse inclusionσ(TZ1, Z2) ⊂ σ(Z1, Z2) being trivial, we obtain (ii).

¤

Proof of (i) ⇐⇒ (iii): To verify this equivalence, Lemma C.1 is used, on the one hand, to charac-
terize theσ-fieldsσ(X2, X3) andσ(X4, X3), and, on the other hand, to find a non-degenerate normal
distribution(Y ′

2 , Y
′
3 | X4), whereY2 andY3 are suitable transformations ofX2 andX3, respectively.
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As a matter of fact, assume thatr[V (X3 | X4)] = q3 < p3. By Lemma C.1, there exists a full rank
q3 × p3 matrixT3 such thatY3 = T3X3, r[V (Y3 | X4)] = q3 and

σ(X3, X4) = σ(Y3, X4). (C.1)

It follows that

(X2 | Y3, X4) ∼ Np2(g(X4) + B3(X4)Y3, V (X2 | Y3, X4)), (C.2)

wherer[V (X2 | Y3, X4)] = q2 < p2. By Lemma C.1, there exists a full rankq2× p2 matrixT2 such that
Y2 = T2X2 and

(Y2 | Y3, X4) ∼ Nq2(T2g(X4) + T2B3(X4)Y3, V (Y2 | Y3, X4)), r[V (Y2 | Y3, X4)] = q2. (C.3)

Moreover, using arguments similar to that used in the proof of Lemma C.1, it follows that

X2 = T ′2Y2 + Q′
2Q2 E(X2 | Y3, X4) (Y3, X4)-a.s.

whereQ2 is a full rank (p2 − q2) × p2 matrix such thatQ2Q
′
2 = Ip2−q2 andQ2T

′
2 = T2Q

′
2 = 0.

Therefore,Q2X2 = Q2 E(X2 | Y3, X4) (Y3, X4)-a.s. and, consequently,

σ(X2, X4) = σ(T2X2, Q2X2, X4) ⊂ σ(Y2, Q2 E(X2 | Y3, X4), X4).

Since the other inclusion is trivial, it follows that

σ(X2, X4) = σ(Y2, Q2 E(X2 | Y3, X4), X4). (C.4)

Thus, from (C.2) and (C.3) it follows that(Y ′
2 , Y

′
3 | X4) has a non-degenerate probability distribution.

Therefore, there exists a probability distributionP ′ ∼ P such that

σ(Y2) ⊥⊥ σ(Y3) | σ(X4); P ′, (C.5)

whereP corresponds to the probability distribution of(Y ′
2 , Y

′
3 , X

′
4). Sinceσ(Q2 E(X2 | Y3, X4)) ⊂

σ(Y3, X4), condition (C.5) implies that
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σ(Y2) ⊥⊥ σ(Y3) | σ(Q2 E(X2 | Y3, X4), X4); P ′.

SinceP ′ ∼ P , Proposition 2.1 implies that

σ(Y2) ‖ σ(Y3) | σ(Q2 E(X2 | Y3, X4), X4); P.

Thus, using conditions (C.1) and (C.4), it follows that

σ(X2, X4) ∩ σ(X3, X4) = σ(Y2, Q2 E(X2 | Y3, X4), X4) ∩ σ(Y3, X4)

= σ(Q2 E(X2 | Y3, X4), X4).

Therefore,σ(X2) ‖ σ(X3) | σ(X4) if and only if σ(Q2 E(X2 | Y3, X4)) ⊂ σ(X4) or, equivalently,
V [Q2 E(X2 | Y3, X4)] = 0, i.e.,

Q′
2Q2 C(X2, Y3 | X4) = 0. (C.6)

SinceQ′
2Q2 is an orthonormal projection on Ker[V (X2 | Y3, X4)], condition (C.6) is equivalent to

Im [C(X2, Y3 | X4)] ⊂ {Ker [V (X2 | Y3, X4]}⊥. This last relation can equivalently be rewritten as
Ker [V (X2 | Y3, X4] ⊂ Ker [C(Y3, X2 | X4)], which is equivalent to condition (iii) of Theorem 4.1
because of condition (C.1) andC(X3, X2 | X4) = T ′3 C(Y3, X2 | X4).

¤
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