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Abstract

This paper deals with the Intersection Property, or Basu’s First Theorem, which is valid under
a condition of no common information, also known as measurable separability. After formalizing
this notion, the paper reviews general properties and give operational characterizations in two topical
cases: the finite one and the multivariate normal one. The paper concludes discussing the relevance
of these characterizations for different fields as graphical models, zero entries in contingency tables,
causal analysis and estimability in Markov processes.
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1 Introduction

Conditional independence is presently accepted as a fundamental concept not only in the theory of sta-
tistical inference (seeg.g, Dawid, 1979a; Florenst al., 1990; or Nogale®t al., 2000), but also in
statistical modelling, particularly in structural modelling (seeg, Novick, 1979; Speed and Kiiveri,

1986; Lauritzen and Wermuth, 1989; Pearl, 1995; and Mouchart and SamMe@193).

The use of graphical models to represent dependence relations among random variables, and therefore
to represent conditional independence, has became very useful to model building since most dependen-
cies and associations between variables cavidalizedthrough graph representations. The key idea
behind these specification schemes is to utilize the correspondence bswpegationin graphs and
conditional independende probability. A graphical representation is used to represent qualitative multi-
variate relationships, specify and visualize multivariate statistical models, determine statistical properties



of multivariate models, and develop computationally efficient algorithms for dealing with large multi-
variate models; for textbook expositions, see Whitakker (1990), Cox and Wermuth (1996) and Lauritzen
(1998).

An aspect widely developed in the graphical literature consists in relating the properties of the condi-
tional independence with algebraic structures satisfied by graph relationships. Thus, an operational link
is established between conditional independence and graph representations in the sense that conditions
obtained after manipulations with graphs can be translated in terms of conditional independence, and
conversely; for details, see,g, Pearl (1988), Geigeet al(1988), Studep (1997) and Studgnand
Bouckaert (1998).

This mutual fertilization works when universally valid properties of the conditional independence are
used; these ones can be founddrg, Martin et al(1973), Dawid (1979a), Bhler (1980) and Mouchart
and Rolin (1984). Nevertheless, some specific problems in graphical models, or even some substantive
considerations in models building (for instance, structural zeros in finite models), require to restrict the
class of underlying probability distributions in order to obtain the desirable graphical property. To be
more specific, and to introduce the problem analyzed in this paper, consider the following property,
typically calledintersection Property

(I) X1 1L Xy | X3 and (II)X1 J_LX3 | Xy — (III) X3 J_L(XQ,X:;). (ll)

where X, X, and X3 are random variables defined on a same probability s(fac&, P). This con-

dition is widely used in the graphical literature; see, among others, Frydenberg (1990, condition CI5),
Spohn (1980, section 2; 1994, Definition 3), Pearl and Paz (1987, section 4), Cox and Wermuth (1993,
section 2), Geiger and Pearl (1993, condition (7)), Kauermann (1996, section 2), Andersson, Madigan
and Perlman (1997, p. 87; 2001, p. 45), Koster (1996, section 3; 1999, section 3) andyStnden
Bouckaert (1998, p. 1438). Itis, for instance, used to establish the equivalence between pairwise, local
and global Markov properties for undirected graphs; for definitions and details, see Pearl and Paz (1987)
and Frydenberg (1990).

Since Basu (1955, 1958), it is well known that the Intersection Property (1.1) does not hold universally,
but only under additional conditions —essentially that there be no common information betweil
X3. However, the implication is true under a stronger condition. Thus, for instance, Wieea finite
set, Spohn (1994, Theorem 4) requires tRabe strictly positive in the sense th&(A) = 0 only for
A = (. When(X1, X2, X3) is normally distributed, Cox and Wermuth (1993) require that the covariance
matrix be definite positive. More in general, it is often required tAdtas a positive joint probability
density with respect to some product measurgrsee,e.g, Frydenberg (1990), Kauerman (1996),
Andersonet al (1997, p. 87) and Lauritzen (1998, Proposition 3.1). Nevertheless, as Andatsson
al.(1997, Remark 3.3) pointed out, the strict positivity of the density? ¢fv.r.t. some product measure
on Q) is not a necessary condition under which the Intersection Property (1.1) is valid; and Hill (1993)
asserts that “this positivity condition limits the possible applicatians][In particular, the theorem
cannot be applied to Bayesian networks with functional constraints (Lauritzen and Spiegelhalter, 1988)



or to contingency tables with structural zeros or to statistical mechanics systems with forbidden states
(Moussouris, 1974)” (p. 259).

Taking into account these considerations, the problem consists in looking for conditions much weaker
than the positivity of the density aP under which the Intersection Property (1.1) is valid. This is
precisely the content of this paper. More specifically, in this paper we formalize the concept of “no
common information”, also known as “measurable separability”, so as to provide a sufficient assumption
to make the Intersection Property (1.1) valid. Next we closely examine the condition of no common
information and provide equivalent characterizations in two particular cases, namely the cases of discrete
random vector and of normally distributed random vector. We choose these two cases because they are
the underlying structure of most of the graphical representations of conditional independeneay,see,
Spohn (1994, pp. 174s) for the first case, and Cox and Wermuth (1993) for the second case. In the
finite case, we prove that the condition of no common information betweemd X5 is equivalent to a
condition restricting, but not excluding, the exact position of the null sets (or, sets of zero probability) in
the matrix which represents the joint distribution(dfs, X3). In the normal case, we prove that the no
common information corresponds to an equality between the ranks of the covariance matkigemdf
of (X2 | X3), respectively.

The problem addressed in this paper, as well as its contribution, are not only related with graphical
models, but also with other fields such as Markov chains, causal inference and Basu’s First Theorem in
a Bayesian set-up. Let us also mention that Vantaggi (2001, 2002) establishes the Intersection Property
under alternative definitions of stochastic conditional independence motivated by the De Finetti’'s (1949,
1970) critiqgue of Kolmogorov axioms. The results obtained in this paper can, therefore, be considered
as its counter-part in a purely Kolmogorovian set-up.

This paper is organized as follows. Section 2 introduces a formal definition of the concept of no
common information. Thereafter, operational characterizations are discussed. This section ends with a
review of results relevant to the problem considered in the present paper. The main results of this paper
are contained in Sections 3 and 4. We complete the paper with some concluding remarks. The proofs of
the main results are gathered in the Appendix.

2 A Formalization of the Concept of No Common Information

2.1 Definition

Let X; and X, be two random variables defined on a common probability sp@cé, P) valued in

(N1, N7) and (N2, N>), respectively. The information provided by the random variablgsnay be
represented by the generatedield X; = X; '(N;) = {X; }(B) : B € N;} C F, often denoted as
o(X;). As a matter of factX; heuristically corresponds to the set of events that may be described in
terms of that random variable (Florens and Mouchart, 1982, p. 588). The information thus defined does



not depend on the coordinate system chosen to represent the corresponding random variable because
o(X;) = o[h(X;)] for all injective functionh.

As we do not want to distinguish tw-a.s. equal events, we rather consider as the relevant information
the completed-fields X; = &; vV Fy, whereF is the completed triviad-field, namely%y = {4 € F :
P(A) € {0,1}} (whereA; v A; is the smallest-field containing4; U A2). We use the measurable
completion rather than the Lebesgue completion not only to avoid loosing the countability generated
character of completed-fields (this condition might be viewed as a “technicality”), but also to avoid
introducing eventsiot generated by the random variables (this condition is directly related with our
concern, namely the information provided by a random variable). Note that the completed-tiieia
Fo is the same for equivalent probability measuiies. (probability measures having the same null sets
asp).

The common information provided by, andX, can be accordingly described &N X>. Therefore,
X, and X5 don't share common informatidhand only if

XN Xy = Fo, (2.1)
and we denote this property &5 || X2. When (2.1) holds, we also say th¥t and X, are measurably
separategdsee Florengt al (1990, section 5.2).

Let X3 be a random variable frorf(2, 7, P) to (N3, N3). The previous concept can be extended to
the case of no common information betwegnand X, conditionally onX3, as follows:

X1V AANXV A = ?3 (2.2)

We denote this property 8; || X2 | X3. When (2.2) holds, we also say thét and X, are measurably
separated conditionally oX3. Clearly condition (2.2) reduces to condition (2.1) whgn= F,. If we
want to make explicit the role of the probabilifyin this concept, we write; || X2 | X3; P.

2.2 Equivalent characterizations

Heuristically, the concept of measurable separability, or no common information, means that the in-
formation common taX; and X5 is either trivial (formulation (2.1)) or “already known” througks
(formulation (2.2)). A deeper understanding of the concept may be obtained by considering equivalent
conditions. This is the objective of next theorem:

Theorem 2.1 Let X; (i = 1,2, 3) be random variables defined on a fixed probability spgee?, P)
and valued on the measurable spa¢as, ;). The following conditions are equivalent:



(i) X, and X, are measurably separated conditionally &n.

(i) If f(X1, X3) = g(X3, X3) a.s. for somg, bounded Borel function defined 6Ny x N3, N1 QN3),
and somey, bounded Borel function defined V2 x N3, Ay @ Nj3), thenf (X, X3) = h(X3)
a.s. for soméh, bounded Borel function defined Vs, \3).

(i) ¥ V[f(X1,X3) | X2, X3] = 0a.s. for somg, bounded Borel function defined 6N, x N3, N1 ®
Ng), thenV[f(Xl, X3> | Xg] =0a.s.

The equivalence between statements 2 and 3 in Theorem 2.1 is straightforward. The equivalence between
statements 1 and 3 follows from the following relationship:

Ae (V)N (X VAs) <= A (X VAs)andE(U 4 | AoV As) =1, as

For additional details, see Floreasal (1990, section 5.2). From condition (2.2), it should be clear that
the concept of measurable separability is symmetric betwgeand X,. Thus, assertions 2 and 3 in
Theorem 2.1 may also be symmetrized by permuting the indexes 1 and 2.

The property of measurable separability is meant to exclude joint distributions with a support such as
that one depicted in Figures 1 and 2. Indeed, in such cdsesnd X- are not measurably separated
because the evefifX; € A;} is a.s. equal to the evefiX, € B, }: these events represent a non-trivial
information common toX; and X5.
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Figure 1: Counter-example to measurable separability

It should be clear from Theorem 2.1 and from these remarks that measurable separability depends
on the probability” through its null sets only. Thus, P and P’ are equivalent probabilities, then
X1 H X | Xg; P+ X H X | Xg; P,
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Figure 2: Counter-example to measurable separability

2.3 Measurable separability and conditional independence

Two relationships between measurable separability and conditional independence are relevant for our
discussion about the Intersection Property (1.1). The first one tells us that measurable separability is a
(much) weaker property than conditional independence. More precisely,

Proposition 2.1 1f X7 1L X | X3, thenX; H X5 | X3.

For a proof, see Floreret al (1990, Theorem 5.2.7). Thus, a sufficient, but not necessary, condition for
measurable separability is that the joint densit¥efand X3 be equivalent to a distribution makink,
and X3 independent or that the support of the joint distribution be a rectangle.

A second relevant property is contained in the following proposition:
Proposition 2.2 The following properties are equivalent:

(I) X1 AL X | Xz and X7 1L X3 ‘ Xo.

(i) X1 1(Xs, X3) | M whereM represent the information common s and X3, namelyX, N Xs.

For a proof, see Dawid (1980, Theorem 7.1), Mouchart and Rolin (1984, Corollary 3.6) or Fairens
al.(1990, Corollary 2.2.13). This proposition provides us with a condition under which the Intersection
Property (1.1) is true. As a matter of fact, if in Proposition 2.2, the information comman &nd X,
reduces to the completed triviatfield 7, then implication (1.1) becomes true. This is the content of
the following theorem:



Theorem 2.2 Under the condition of no common information betwéénand X3, namelyX, N X3 =
Fo, the Intersection Property (1.1) is true.

As mentioned in the introduction, the literature of graphical models often use a condition of strict
positivity of the joint density of X, X3). This condition assume that the joint probability distribution
is dominated by the Lebesgue measure R3), implying that the interior of the support is not empty
and excluding situations with mixed distributions composed of a discrete component and a continuous
one, as illustrated in Figure 2. Under this restriction, the condition of positive density does indeed imply
measurable separability, but is actually much stronger and not necessary, as will be shown in next section.

Theorem 2.2 can be extended to a conditional version. More precisely,

Theorem 2.3 If X 1L X | (X4, X3) and X 1L X, | (X2, X3), thenX; 1L (X5, X4) | X3 provided that
Xo || X4 | Xs.

For a proof, see Floreret al (1990, Theorem 5.2.10).

Remark 1 As pointed out in the introductory section, Theorem 2.2 corresponds, in a Bayesian set-up,
to the First Basu's Theorem as correctly established in Basu (1958). In a sampling-theory framework,
Koehn and Thomas (1975) have proved Basu's (1958) result under a condition of the non-existence of a
splitting set. In a Bayesian framework, if the prior distributjoiis such that the predictive distribution
dominates all the sampling probabiliti€®’ : § ¢ ©}, then measurable separability implies the non-
existence of splitting sets. If furthermore the prior distributjoiis such thatP?(A) € {0,1} p-a.s.

implies P?(A) € {0, 1} for all § € ©, then measurable separability is equivalent to the non-existence of
splitting sets; for details, see Floreaisal (1990, section 5.3.3).

The main conclusion of this section is that in order to establish the Intersection Property (1.1) in
particular cases, it is necessary to characterize the condition X3 = F, in more operational terms.
This is precisely the content of the next two sections.

3 Measurable Separability in the Finite Case

3.1 Common information in the finite case: An example

Before characterizing measurable separability in the finite case, let us introduce an example which shows
that such a condition is necessary to establish implication (1.1). Consider so a finite distribution defined
on{0,1} x {1,2,3} x {1, 2,3} with a support containing 8 points only, defined as follows:



X:1=0 X1=0 X1=0 X =

Xo=1 aqi Xo=1 aqo Xo=2 Bqs Xo=3 Bqa
X3=1 X3=2 X3=3 X3=3

X =1 X =1 X =1 X1 =

X2:1 (1—a)q1 X2:1 (1—@)QQ X2:2 (1—ﬂ>Q3 X2:3 (1—/8)(]4
X3=1 X3=2 X3=3 X3=3

whereq1q2q3qa(1 — o) 3(1 — B)(a — 3) > 0 andqy + g2 + g3 + q4 = 1.

It is easily checked, by direct computations, that 1l X, | X3 and, by symmetry betweek, and
X3, thatX; Il X3 | X,. NeverthelessX; 1L (X5, X3) is false (except in the excluded cage= 1). Con-
sequently, implication (1.1) does not hold although the probability distributidiXef X2, X3) satisfies
conditions (i) and (ii) of the Intersection Property.

This example provides a key for an easy understanding of the concept of measurable separability in the
finite case. As a matter of fact, the joint distribution(dfs, X3) is given by

X3=1|X3=2|X3=3
Xo =1 q q2 0
XQ =2 0 0 qs (31)
Xo=3 0 0 q4

So, the support of X2, X3) has 4 points which satisfy the following relationship, as Figure 3 shows:

Condition (3.2) represents an information commotXtpand X (i.e., the evenf{ X, = 1} is thesame

as the evenf X3 # 3} for the joint probability distribution). Thus, “no common information” between
X9 and X3 can be expressed saying that if there exists two functfoasdg such thatf (X;) = g(X2)

a.s. for the joint probability, then there exists a constasuich thatf(X;) = c a.s.; see Theorem 2.1,
statement (ii). In other words, “no common information” means that the only common information is the
trivial one,i.e, the class of measurable null sets.

3.2 Characterization of measurable separability in the finite case

To characterize measurable separability in the finite casey,lgwith » = 2,3,4) be finite sets and
X, : 2 — N, be random variables under the not restrictive condition &, = i] > 0 for all
i € N,.. We define



Figure 3: Support of X5, X3)

N¥ = {ieNy : P[Xo =i| X4 = k] >0} forke Ny,
NP = {jeNs : P[Xs =j| Xy =k >0} forke N,
Fork € Ny, define thg N{¥| x |N{¥| matrix P(*) by
piji = (PW); = P[Xo = i, X3 = j | X4 = K] for (i,5) € NS x NP,
Finally, fork € Ny, let
NP = (jeNP : PX, =i, Xs =j| Xy =k >0} forieNP.

The following theorem characterizes the measurable separability in the finite case:
Theorem 3.1 The following statements are equivalent:

() Xo [| X5 | Xy;

(i) (Vke Ny (VIc NP)ywithI+£0andl £ NP

(U)o | U ) 2o
el

i eNINT



(i) (Vke Ny (VIc NFYwithT £ 0andl £ N [3(i,1,j) € T x (NS \ 1) x N{F] such that
Pijlk * Pirjie > 0,
whereA \ B denotes the difference between sétsnd B.

For a proof, see Appendix A.

Remark 2 Since the measurable separability condit®osn | X3 | X4 is symmetric inX; and X3, one
could formally add conditions to Theorem 3.1, which would be obtained by interchaffing) with
(4,7,3).

Next corollary makes explicit the particular case wh&rgis a constant random variable (equivalently,
Xy = Fo!

Corollary 3.1 The following statements are equivalent:

(i) Xo || X3;

(i) (VI C Ny)withI # () andI # No, it follows that

(LJ A@i) N ( U A%ﬂ) # 0;
i€l #EN\T

(i) (VI C No)withI #Qandl # Ny [3(i,7,5) € I x (N3 \ I) x N3] such that
pij - pirj > 0.

In Corollary 3.1, the setd/» and N3 only contain points of positive probability. As mentioned before,
this is not a restrictive assumption since if there existss N, such thatP[X, = ig] = 0, then
P[Xs =i9,X3 = j] =0forall j € N3. So,Ns;, = () and, consequently, the corresponding column in
the joint probability distribution of X, X3) can be eliminated.

Considering condition (ii) of Corollary 3.1, it can be noticed that the measurable separability between
X, and X3 not only depends on each marginal distributionXaf and X5 through the set®s and Vs,
but also on the joint distribution @¢fXs, X3) through the seté’s; for eachi € N,. Moreover,N3; & N3
for some (possible allj € N2. Therefore, the case where there exigtg) € N2 x N3 such that

10



P[X, =i, X3 = j] = 0is not excluded. In other words, condition (ii) of Corollary 3.1 tells us in what
position must be the non-zeros (and so the zeros) probabilities for the joint distributidi,oX3): for
each(i,i') € I x (N \ I), there exists at least one colum& N3 such thap;; - py; > 0, as illustrated

in Figure 4.

j€Ng

i€l o
Pij

i ENp\T o
pi'j

Figure 4: Condition (iii) of Corollary 3.1

Example 1 As an example, consideX, € {1,...,5} and X3 € {1,...,4} and the following joint
probability distribution:

X3
L [1[2]3 4]
1lpt| 0] 0 |p2
X, 2110 |p3s|ps| O
3(ps| 0| 0 |ps
4010 |pr| O |ps
Opy| 0 |pwo| O

wherep; > O foralli = 1,...,10 and}.}%, p; = 1. Although the support of this distribution has
only 10 points (so, there are 10 points of zero probability), it is possible to verify condition (ii) or (iii) of
Corollary 3.1, and therefor&, || Xs.

Condition (jii) in Corollary 3.1 shows that the conditipgy > 0 for all (4, j) is sufficient but far from
necessary for obtaining measurable separability betw&esnd X 3. The literature on graphical models
repeatedly mention the non-necessity of the strict positivity opal(see the references mentioned in
Section 1): condition (iii) in Corollary 3.1 gives, for the finite case, a necessaigufficient condition.

11



Remark 3 In the more general case, namély || X3 | X4, with X4 a non trivial random variable.€.,
Fo & Xy), the measurable separability betwe¥p and X5 conditionally onX 4 should be verified for
all k € N,. More precisely, the condition (iii) of Theorem 3.1 should be verified for each mtfix
with k € Ny.

3.3 Common information in the finite case: A general condition

In which casesX; and X5 are not measurably separated? Using the equivalence between conditions
() and (iii) of Corollary 3.1, it follows thatXs; and X3 are not measurably separated if and only if
(3T € No)with I # @ andl # Ny [V (i,i',5) € I x (N2 \ I) x N3] such thatp;; - py; = 0, i.e,

pi; = 0, 0rp;; = 0, or both. This condition is equivalent to the following one: the maiirepresenting

the joint probability distribution of X2, X3) can, after permuting (if necessary) rows and/or columns, be
put in the form of a block-diagonal matrix. This is a standard issue in the non-decomposability of finite
Markov-chain in which case the probability matrix is square.

Example 2 Consider the case discussed in section 3.1: the joint probability distributiQk.0fX3) is
represented by the matrix (3.1). Such a matrix is a block-diagonal oné; sfp Xs. This explains why
X1 is not independent afXs, X3), althoughX; 1l X, | X5 andX; 1L X3 | Xo.

Example 3 Consider the counter-example provided by Hill (1993, p. 259), namely to assume a trivariate
discrete distribution such th&(X; = 0, X2 = 0,X3 =0) = P(X; = 1,Xo = 1,X3 =1) = 0.5
andP(X; = =1, Xy = x9, X3 = x3) = 0 otherwise. As pointed out by Hill (1993), this distribution
satisfies conditions (i) and (i) of the Intersection Property, but not the conclusion. This situation can be
explained using the result established above: it can indeed be verified that the matrix representing the
joint distribution of (X3, X3) can be putted in the form of a block-diagonal matrix.

Remark 4 In the more general case, namely whEpis a non trivial random variableYs [ X3 | X4

if and only if there exists at least oy € N, such that, after permuting (if necessary) rows and/or
columns, the conditional distributioR(¥0) of (X2, X3) given X, = ko can be put in the form of a
block-diagonal matrix.

3.4 Measurable separability and independence in the finite case

Let us now re-examine Proposition 2.1 in the discrete case. By defititiah X if and only ifV (i, j) €
NQ X N3



which is equivalent to[P] = 1, whereP represents the joint distribution 65, X3). Consequently,

there are no non-null entries in the mati? so, condition (iii) of Corollary 3.1 is trivially satisfied.

This clearly shows that the condition of independence is sufficient but far from necessary to obtain the
measurable separability.

Remark 5 Again, whenX} is a non trivial random variable, conditiok; 1L X3 | X4 is equivalent to
(Vk € Ny) »[P®)] = 1, and implies condition (iii) in Theorem 3.1.

4 Measure Separability in the Normal Case

A second case in which we want to analyze measurable separability, or no common information, is the
normal one. In such a case, the null sets are well described through the null space gf matrix A,
namely KefA) = {z € R? : Az = 0}.

Let us consider a random vectdr = (X»/, X3/, X,/)’ € RP2P3tP4 | et

Ker[V(XQ | X4)] = {(1 € RP2 . CLIXQ = E(CL,XQ | X4) a.s}
Ker[C’(Xg,XQ | X4)] = {CL € RP2 . C(Xg,a/XQ | X4) =0 a.s}
whereV (- | -) andC(-,- | -) are the conditional variance and the conditional covariance operators,

respectively; for details, see,g, Drygas (1970) or Eaton (1989).

Suppose thatXs', X3' | X4') ~ Np,ips (1(X4), £(X4)), whereX(X,) can be a positive or semi-
positive definite symmetric matrix. The following lemma establishes a simple result which provides an
easy key to characterize the measurable separability in the normal case; for a proof, see Appendix B.

Lemma 4.1 If (Xo', X3' | X4') ~ Npyips (1(X4), X(X4)), then

Ker[V(Xz | X4)] = Ker[V(X2 | X3,X4)] N Ker[C’(Xg,XQ ’ X4)] a.s. (41)

The following theorem (see Floressal, 1993, Lemma 1.7) characterizes the measurable separability
in the normal case; for a proof, see Appendix C.

Theorem 4.1 If (X', X3" | X4) ~ Npytps (11(X4), 3(X4)), then the following propositions are equiv-
alent:

13



() Xo || X3 Xy
(i) Ker[V(X2| Xy)] = Ker[V(X2 | X3,X4)] a.s.;
(i) Ker[V(Xa| X3,X4)] C Ker[C(X3,Xo | X4)] as,;
(IV) T[V(XQ ’ X4)] = ’I”[V(XQ | X3,X4)] a.s.
Lemma 4.1 and Theorem 4.1 are valid whether the conditional covariance Makiy is singular or

regular. The singular case is of particular interest since our concern is to examine the role of the null sets
for characterizing measurable separability.

Remark 6 Since the measurable separability condition || X3 | X4 is symmetric inX, and X3, one
could formally add conditions to Theorem 4.1 by interchangiizgand Xs.

If we consider the cas&, = ca.s. ¢ € N,), then the following corollary characterizes the measurable
separability betweeX, and X5 as follows:

Corollary 4.1 If (X2, X3')" ~ Np,4ps (11, X), With X is a positive or semi-positive definite symmetric
matrix, then the following propositions are equivalent:

(i) Xo || Xs;

(i) Ker[V(X3)] = Ker[V(X2 | X3)];

(i) Ker[V(X2 | X3)] C Ker[C(Xs, Xo));

(iv) r[V(X2)] = r[V(X2 | X3)].

Clearly, whenX > 0, the density of( X, X3) exists and is strictly positive, trivially ensuring the
measurable separability betwe&n and X,; see Cox and Wermuth (1993, p. 206). Corollary 4.1 gives
a necessary and sufficient condition of measurable separability far weaker than the existence of a strictly

positive density. Corollary 4.1 also provides operational conditions to verify wiieand X3 are not
measurably separated.

The following lemma is useful to illustrate Proposition 2.1 in the normal case:

Lemma 4.2 If (Xo/, X3 | X4') ~ Npyaps (0(Xa), X(X4)), with X(X4) a positive or semi-positive
definite symmetric matrix, then

XQJ_LXg ’ Xy <= T[C(Xg,XQ | X4)} =0 <= Ker [C(Xg,Xg ’ X4)] = RP2,
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Using Lemmas 4.1 and 4.2, it follows that

X2 J_LXg | X4 — Ker [V(XQ | X4)] = Ker [V(XQ | Xg,X4)].

By statement (ii) of Theorem 4.1, we again conclude that measurable separability is much weaker than
conditional independence.

Example 4 The following example illustrates very simply that ths. positivity of the density (or, in the

normal case, the regularity of the covariance matrix) is not a necessary condition for measurable separa-
bility, and that the singularity of the covariance matrix is not a sufficient condition for non separability.
Indeed, consider a trivariate normal distribution with covariance matrix:

1 1 5
Y = 1 1 5

SR |
It may be checked that (Y5 | Yi1,Y2) = .75 > 0. Thus, in view of Corollary 4.1Y3 and (Y}, Y>) are
measurably separated, wherdagd; | Ys,Y3) = 0 and, thereforeY; and (Y2, Y3) are not measurably
separated. It may be noticed that, in this example, the singularity of the covariance matrix implies that

Y7 — Y, isa.s. a constant, there is accordingly common information betwgeandY> and, therefore,
betweeny; and(Y2, Y3), whereas there is no common information betw®&eand(Y1, Y>).

5 Concluding remarks

The concept of “no common information”, also called “measurable separability” or absence of “splitting
sets”, appears in different contexts in the statistical literature. This paper has endeavored to enhance a
better understanding of this concept by characterizing and illustrating what it is and what it is not in two
topical cases: the finite one and the multivariate normal one. An important issue was to analyze the role
of the null sets. In particular, in the finite case, the no common information was obtained even if the
corresponding contingency table has some zeros.

Another way for getting a deeper understanding is to examine the role of that property in different
contexts:

Basu'’s First TheoremThe condition of measurable separability appears, in the Introduction of this pa-
per, as a supplementary condition for making the implication embodied in the Intersection Property (1.1)
valid. This condition has been met in the First Basu’s Theorem; see Basu and Pereira (1983, Theorem 2).
Interestingly enough, the first “proof” without the supplementary condition in Basu (1955) was wrong be-
cause of mistreating null sets associated with conditional densities and the corrected proof, Basu (1958)
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and Koehn and Thomas (1975), also shows that the supplementary condition aims at avoiding somewhat
trivial pathologies, such as two independent observations of the exact value of the parameter. Situations
formally similar to Basu’s first theorem are frequently met in the literature on statistical inference; for
examples, see Dawid (1979b). This condition is also relevant in the literature on graphical models where
that supplementary condition is weaker than the too strong conditiamsofpositive density and this
weakening is recognized as providing a considerably more useful, and operational, condition.

Causal InferenceThe relevance of a suitable understanding of the concept, and the role, of measurable
separability is provided by an interesting paper on “The assumptions on which causal inferences rest”,
namely Stone (1993). Thus, let us consider the following random varialMefor treatment,Z for
observed covariateg] for unobserved covariates andfor responses, under the assumption ffids
comprehensive enough to make the response determin&d ByandU, namelyY = f(X, Z,U). The
no-causation hypothesis may be writtertad. X | (Z,U), but is not directly testable becauSes not
observed. A testable version could Bell X | Z and hopefully equivalent under a further assumption

of covariate sufficiency, namely ILU | (Z, X). Stone (1993) paper raises two interesting issues. A
first issue regards the role of measurable separability. As mentioned in Remark Z.&nifl U are
measurably separated conditionally Bri.e, X || U | Z),thenY ILX | (Z,U)andY ILU | (Z,X)

imply Y IL(X,U) | Z and, thereforeY 1L X | Z. In other words, the desired no-causation hypothe-
sis along with covariate sufficiency imply the testable version of no-causation only under an hypothesis
of measurable separability. But, the equivalence asserted in Stone (1993) is misleading because The-
orem 2.2.10 in Florenst al(1990) says that’ L X | Z andY 1LU | Z, X is actually equivalent to

Y I (X,U) | Z which impliesY 1L X | Z, so that the testable version of no-causation along with the
covariate sufficiency imply the desired no-causatigimoutrequiring a condition of measurable separa-
bility. The other issue regards the meaning of measurable separability whichttge hypothesis that

the support of the conditional distribution X | Z,U) does not depend olf, as asserted in Stone
(1993): this is made clear in Example 4 after reminding that (using the notation of the example) always
P[(Y1,Y2,Y3) € Im(X)+pu] = 1,i.e, supa(Y1, Ya, Y3)'] C Im (X)+p with probability 1. Interestingly
enough, Stone (1993) correctly noticed that the measurable separability is actually padefiriiten

of unobserved covariates. Indeédmay bedefinedby the propertiey” = f(X,Z,U)andX || U | Z:

if there were common information betwe&nandU conditionally onZ, it would be difficult to interpret

U as being both unobserved and comprehensive; for more details, see Mouchart (2004).

Estimability in Markov ProcesseS§omewhat different is the role of measurable separability in problems
of exact estimability. Thus Floreret al(1990, Proposition 9.3.24) shows that the sampling measurable
separability of the first two observations in a stationary Markovian process is sufficient to ensure the
exact estimability of the minimal sufficient parameter: these authors also mention that the condition of
measurable separability is slightly too strong but easier to handle than Doeblin’s conditior;gsee,
Stout (1974, Section 3.6) or Breiman (1968, Section 7.3).

Identification of ATEIn recent unpublished works, for the analysis of identification of the Average Treat-
ment Effect (ATE) in non parametric models, Florextsal (2003) have repeatedly used the condition of
measurable separability (seeg, their Theorem 3.5 for the equivalence between an exclusion condition
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and a Local Instrumental Variable condition, or Theorem 3.6 for the identification of the ATE).

Appendix

A Proof of Theorem 3.1

The equivalence between statements (ii) and (iii) follows from the definition of thé\éé}sandNéf,).
Before proving that statement (i) implies statement (ii), note that by TheorenX3.1| X3 | X, is
equivalent to asserts that if there exist two functigrendg such thatf (i, k) = g(j, k) V (i, j, k) such
thatp;;x > 0, then there exists a functidnsuch thatf (i, k) = h(k) V (i, k) such thap;;, > 0. By the

definition of the seti\fék), N?Sk) andN?Ef), this last implication is equivalent to the following one:

FGi.k) = g(j, k) VkeNs V(i,j) e N{® x NP
(A1)
— f(i,k)=h(k) YkeN; Vie NP,

Proof of (i) = (ii): Indeed, if the condition (ii) is not satisfied, it follows th@k € N4) (31 C NQ(k))
with T # 0 andT # N such that

(U Né?) nl U NP =0

= ieNSINT

Denoting N:,Ef) asJ(I), it follows that
el

O Jnc | U M = N (),
ieNSINT ieNSINT A2)

G e = N (M)

el

Thus,
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(A2i0) = [Vje )] (Vie NNO\I)  pyp =0

(A2i) = [VjeJI)] (Yiel) pyg =0

ConsequentlyP[ X, € Nék)\f, XzeJI)| Xs=k =0andP[Xy e I,Xs5€ J(I)°| X4 =k] = 0.
Therefore

{XQ S I} N {X4 = k‘} = {Xg € J(I)} N {X4 = k‘} a.s. (A.3)

Moreover,

0<PlXpel,X,=k <1 (A.4)
sinceP[Xo € 1| Xy = k] <1.Ifnot,ie,if P[Xo € I| Xy = k] =1, then:
S PXs=i|Xs=k =1 and I¢N".
iel

Hence,(3i € NQ(’“) \I) P[X2 = ip| X4 = k] = 0. This is a contradiction with the definition of the
setNQ(k). Therefore, (A.3) and (A.4) jointly imply thaXs, || X3 | X4 is violated (see (A.1)).

Proof of (iii) = (i): Assume that there exist two functiofisandg such that

Fk) = g(ik) VheNy V(i) € NP x NP, (A5)

Condition (jii) implies that'¥ k € Ny) (VI ¢ NS with I £ 0 andI # N¥ (3 (5,4') € T x NS\ 1)
such that

N o NS N £ 0.

Letjp € Néf) N Néf,). By (A.5) it follows thatf (i, k) = f(i’, k). Therefore, we have thdt' k € Ny)
(VI c NPywith T # 0 andl £ NP (3(,i) € T x NP\ I) such thatf (i, k) = f(i', k). Applying
inductively this condition we obtain thati, s € Nék) f(i, k) = f(@i', k). Consequently, taking

io € NP fixed, this last equality is equivalent ftti, k) = f(io,k) = h(k) Vie N,

O
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B Proof of Lemma 4.1

In general,V(a’Xy | X4) = E[V(d'X2 | X3,X4) | X4] + VI[E(d'X2 | X3,X4) | X4]. Under
normality, V[E(a' X2 | X3,X4) | X4] = 0 a.s. is equivalent t6’'(Xs3,a' Xs | X4) = 0 a.s. Therefore,
the nullity of each member of the equality corresponds peertaining to the respective null spaces of
(4.1).

O

C Proof of Theorem 4.1

The equivalence between (ii) and (iii) is an immediate consequence of Lemma 4.1, whereas the equiv-
alence between (ii) and (iv) is a consequence of the rank theorem in linear algebra gsé¢talmos,

1974, Theorem 1, section 50). The proof of the equivalence between (i) and (iii) is based on the following
lemma:

Lemma C.1 Let(Zy', Zy')" € RP1P2 be a random vector such thafV (Z; | Z3)] = ¢1 < p1. Then
there exists &, x p; matrix T with r(T) = ¢; such that

() r[V(TZ1 | Z2)] = qu;
(II) U(TZl,ZQ) = O’(Zl,Zg).

Proof of Lemma C.1: If ¢; = p1, takeT = I,,,. Assume therefore thai < p;. Then there exists an

orthogonal matrix( r > with 7" a ¢; x p; matrix and@ a (p1 — ¢q1) X p; matrix, such thal’(Z; |

Q
Zy) = T'AT, whereA is the diagonal matrix with the positive eigenvalues/@tZ, | Z;). Therefore

V(TZ, | Z2) = A; this proves (i). MoreovelV (QZ, | Z2) =0, C(TZ1,QZ:1 | Z2) = 0, TT" = I,
andT'T + Q'Q = I,,,. It follows that

QZl = E(QZl | ZQ) Z5-a.s.

and consequentlyfy = T'TZ1+ Q' QZ, =T'TZ1+ Q'E(QZ1 | Z3) Zs-a.s. Therefore (21, Z3) C
o(TZy,Zs). The inverse inclusion(TZ,, Z3) C o(Z1, Z2) being trivial, we obtain (ii).

0

Proof of (i) <= (iii): To verify this equivalence, Lemma C.1 is used, on the one hand, to charac-
terize thes-fields o (X5, X3) ando (X4, X3), and, on the other hand, to find a non-degenerate normal
distribution (Y7, Y3 | X4), whereY; andY; are suitable transformations &f, and X3, respectively.
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As a matter of fact, assume thdl/ (X3 | X4)] = ¢3 < ps. By Lemma C.1, there exists a full rank
g3 x p3 matrix T3 such thatr’s = T3 X3, [V (Y3 | X4)] = ¢3 and

U(X37X4) = U(Y37X4)‘ (Cl)
It follows that

(X2 | Y3, Xy) ~ N, (9(Xa) + B3(X4)Y3, V(X2 | Y3, X4)), (C.2)

wherer[V (X2 | Y3, X4)] = g2 < p2. By Lemma C.1, there exists a full ragk x p, matrix 7> such that
Yo =T5X5 and

(Y2 | Y3, Xy) ~ No, (Tog(Xa) + ToB3(Xa)Ys, V(Ya | Y3, X4)),  r[V(Ya | Y3, X4)] = g2 (C.3)
Moreover, using arguments similar to that used in the proof of Lemma C.1, it follows that

Xo =TV + Q3Q2 E(Xa | Y3, X4) (Y3, X4)-as.

where@); is a full rank (p2 — ¢2) x p2 matrix such thatQ2Q4 = I,,—4, and Q2T = T>Q5 = 0.
ThereforeQ2 X2 = Q2 E(X2 | Y3, X4) (Y3, X4)-a.s. and, consequently,

0(Xo, Xy) = 0(T2 X2, Q2X2, X4) C 0(Y2,Q2 E(X2 | Y3, Xy), X4).

Since the other inclusion is trivial, it follows that

(X2, Xy) = 0(Y2,Q2 E(X2 | Y3, Xy4), Xy). (C.4)

Thus, from (C.2) and (C.3) it follows thdt?, Y3 | X4) has a non-degenerate probability distribution.
Therefore, there exists a probability distributiBh~ P such that

o(Ya) Lo (Y3) | o(Xa); P/, (C.5)

where P corresponds to the probability distribution @f;, Y3, X}). Sinceo(Q2 E(X2 | Y3, X4)) C
o(Y3, X4), condition (C.5) implies that
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O'(YQ)_J.LO'(YE),) ’ U(QQ E(XQ ‘ YE)),X4),X4); Pl.

SinceP’ ~ P, Proposition 2.1 implies that

oY) || o(Ya) | o(Q2 E(X2 | Y3, X4), Xu); P.

Thus, using conditions (C.1) and (C.4), it follows that

0(Xo, X4)No(X3,X4) = o(Y2, Q2 E(X2 | Y3, Xy), X4) No(Ys, Xy)

= 0(Q2E(X2 | Y3, Xy), Xa).

Thereforeo(Xs) || o(X3) | o(Xy) ifand only if o(Q2 E(X2 | Y3, X4)) C o(X4) or, equivalently,
V[QQ E(X2 ’ YEg,X4)] =0, i.e.,

Q5Q2C(X2,Y3 | Xy) = 0. (C.6)

Since Q,Q- is an orthonormal projection on Kgr (X, | Y3, X4)], condition (C.6) is equivalent to
Im[C(X2,Ys3 | X4)] C {Ker[V (X2 | Y3, X4]}*. This last relation can equivalently be rewritten as
Ker[V (X2 | Y3, X4] C Ker[C(Y3, X2 | X4)], which is equivalent to condition (iii) of Theorem 4.1
because of condition (C.1) adt X3, Xo | X4) = T35 C (Y3, Xa | X4).

O
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