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Abstract

In this article we introduce a procedure to test the equality of regression functions

when the response variables are censored. The test is based on a comparison of

Kaplan-Meier estimators of the distribution of the censored residuals. Kolmogorov-

Smirnov and Cramér-von Mises type statistics are considered. Some asymptotic

results are proved: weak convergence of the process of interest, convergence of the

test statistics and behavior of the process under local alternatives. We also describe

a bootstrap procedure in order to approximate the critical values of the test. A

simulation study and an application to a real data set conclude the paper.
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1 Introduction. Motivation and statistical model

Regression models are used for describing the relationship between a response and a

covariate. In the field of survival analysis it can be useful to allow for censoring in the

response variable. For instance, we can consider a model where the survival time (for

patients having a certain disease) is the response variable and the age is the covariate.

If we can distinguish two or more groups in the population (gender, treated patients

and non-treated patients, etc.), we may be interested in testing for the equality of the

corresponding regression curves. This kind of test allows to check whether the effect of

the covariate over the variable of interest is the same in all the groups.

As it was pointed out in Fan and Gijbels (1994), when the response variable is cen-

sored the usual tools of regression (scatter plots, residuals plots, etc.) are not directly

applicable to check, at least visually, the shape of the regression curves. This motivates

the development of analytic tools in censored regression.

In this context, the statistical model can be described as follows. Let (Xj, Yj),

j = 1, . . . , k, be independent random vectors, where Yj represents a certain response

variable associated to the covariate Xj. Suppose that the covariates have common sup-

port RX . Assume that, for j = 1, . . . , k, the response variable Yj is subject to random

right censoring. This means that there exists a censoring variable Cj, independent of

Yj given Xj, such that we can observe Zj = min{Yj, Cj} and the indicator of censoring

∆j = I(Yj ≤ Cj). For j = 1, . . . , k, assume that the following non-parametric regression

models hold,

Yj = mj(Xj) + σj(Xj)εj (1)

where the error variable εj is independent of Xj, mj is an unknown conditional location

function

mj(x) =

∫ 1

0

F−1
j (s|x)J(s)ds (2)

and σj is an unknown conditional scale function representing possible heteroscedasticity

σ2
j (x) =

∫ 1

0

F−1
j (s|x)2J(s)ds−m2

j(x), (3)

where Fj(·|x) is the conditional distribution of Yj given Xj = x, F−1
j (s|x) = inf{t; Fj(t|x) ≥

s} is the corresponding quantile function and J(s) is a score function satisfying
∫ 1

0
J(s)ds =

1. We denote Fεj
for the distribution of the error εj in population j. By construction∫ 1

0
F−1

εj
(s)J(s)ds = 0 and

∫ 1

0
F−1

εj
(s)2J(s)ds = 1.
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The choice of the function J leads to different location and scale functions. In par-

ticular if J(s) = I(0 ≤ s ≤ 1) then mj(x) = E(Yj|Xj = x) is the conditional mean

function and σ2
j (x) = V ar(Yj|Xj = x) is the conditional variance function. However, it

may happen that this choice of J is not appropriate because of the inconsistency of the

estimator of the conditional distribution Fj(·|x) in the right tail due to the censoring . A

useful choice is J(s) = (q−p)−1I(p ≤ s ≤ q), which leads to trimmed means and trimmed

variances. The conditional median or other conditional quantiles can be seen as limits of

trimmed means.

The samples are (Xij, Zij, ∆ij), i = 1, ..., nj, from the distribution of (Xj, Zj, ∆j), for

j = 1, . . . , k. Denote n =
∑k

j=1 nj.

We are interested in testing the null hypothesis of equality between the location (re-

gression) functions

H0 : m1 = m2 = · · · = mk, (4)

versus the alternative

Ha : mi 6= mj for some i, j ∈ {1, . . . , k}.

When the distribution of the residuals and the variance functions are the same in all

the groups (we do not assume so, but it is an interesting situation), if the null hypothesis

holds for a particular definition of the location function, that is for a particular choice

of J , then it holds for all possible location functions. However, in a general situation

with different variances or different residual distributions, H0 can be true for a particular

choice of the functions mj and false for another one.

In Pardo-Fernández, Van Keilegom and González-Manteiga (2004) a mechanism of

comparison of regression curves for complete data is developed via the estimation of the

distribution of the residuals of the models. The idea of the testing procedure proposed

in that paper is to compare two estimators of the distribution of the residuals in each

population. More precisely, let (Yij − m̂j(Xij))/σ̂j(Xij) estimate the error εij and let

(Yij − m̂(Xij))/σ̂j(Xij) estimate the same quantity assuming that the null hypothesis

holds, where m̂j(·) is an appropriate kernel estimator of the regression function mj(·) in

population j, m̂(·) is an estimator of the joint regression function m(·) under H0, and

σ̂2
j (·) is an estimator of the variance function σ2

j (·). The idea is to construct the empirical

distribution functions of these estimated residuals and to compare them via Kolmogorov-

Smirnov and Cramér-von Mises type statistics. Under H0, the two estimators approximate

the corresponding error distribution Fεj
. However, if the null hypothesis is not true, they
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estimate different functions, so a difference between them gives evidence to the inequality

of the regression curves. In this paper we will extend that methodology to the situation

where the response variable may be censored. Now, because of the censoring in the

response variable, we will consider (Zij− m̂j(Xij))/σ̂j(Xij) and (Zij− m̂(Xij))/σ̂j(Xij) to

estimate the censored residuals, and we will substitute the empirical distribution by the

Kaplan-Meier estimator of the distribution under random censoring (Kaplan and Meier,

1958).

In the case of complete data, the problem of testing for the equality of regression

curves has been widely treated in the literature. A good and recent review on this topic

can be found in Neumeyer and Dette (2003). To the best of our knowledge, this problem

has not been treated in the case of censored responses.

The paper is organized as follows. In Section 2 we will introduce the testing proce-

dure. In Section 3 we will state the main asymptotic results. A bootstrap procedure to

approximate the critical points of the test is described in Section 4 and a simulation study

is presented in Section 5. Finally, we include an application to real data in Section 6. The

proofs of the main results are deferred to the Appendix.

2 Testing procedure

The testing procedure is based on the comparison of two non-parametric estimators of

the distribution of the residuals Fεj
in each population. This involves non-parametric

estimation of the location and scale functions. All these estimators will be constructed

using the estimator of the conditional distribution function Fj(·|x) when the response is

censored introduced by Beran (1981):

F̂j(y|x) = 1−
∏

Zij≤y,∆ij=1

(
1− W

(j)
ij (x, hn)

∑nj

l=1 I(Zlj ≥ Zij)W
(j)
lj (x, hn)

)
, (5)

where

W
(j)
ij (x, hn) =

K((x−Xij)/hn)∑nj

l=1 K((x−Xlj)/hn)

are Nadaraya-Watson type weights, K is a known kernel and hn is an appropriate band-

width sequence.

Now consider the following estimator of the location function for each sample, for

j = 1, . . . , k,

m̂j(x) =

∫ 1

0

F̂−1
j (s|x)J(s)ds, (6)
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and an estimator of the common location function under the null hypothesis (which we

will denote by m) taking into account all the samples

m̂(x) =
k∑

j=1

nj

n

f̂j(x)

f̂mix(x)
m̂j(x), (7)

where,

f̂j(x) =
1

njhn

nj∑
i=1

K

(
x−Xij

hn

)

is the kernel estimator of the density fj of Xj, and

f̂mix(x) =
k∑

j=1

nj

n
f̂j(x).

Note that f̂j(x) can be computed in the usual way because the covariates do not suffer

from censoring. The estimator of the scale function σj from each sample is

σ̂2
j (x) =

∫ 1

0

F̂−1
j (s|x)2J(s)ds− m̂2

j(x). (8)

The score function J will be chosen so that m̂j(x) and σ̂2
j (x) are consistent, even in

the case that the tails of the Beran estimator are not consistent.

Compute the estimators of the censored residuals in each sample

Êij =
Zij − m̂j(Xij)

σ̂j(Xij)
(9)

for i = 1, . . . , nj, j = 1, . . . , k, and estimate the distribution of the residuals from the

censored sample (Êij, ∆ij) using the Kaplan-Meier estimator

F̂εj
(y) = 1−

∏

Êij≤y,∆ij=1

(
1− 1∑nj

l=1 I(Êlj ≥ Êij0)

)
. (10)

If the null hypothesis is true, we can estimate the residuals in each sample using the

estimator of the common regression function m̂, that is

Êij0 =
Zij − m̂(Xij)

σ̂j(Xij)
(11)

for i = 1, . . . , nj, j = 1, . . . , k, and estimate the corresponding distribution from the

censored sample (Êij0, ∆ij)

F̂εj0(y) = 1−
∏

Êij0≤y,∆ij=1

(
1− 1∑nj

l=1 I(Êlj0 ≥ Êij0)

)
. (12)
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Under the null hypothesis, both F̂εj
and F̂εj0 are estimators of Fεj

. The fact that

there exists some difference between these two estimators of the distribution of the er-

rors gives evidence for the inequality of the location functions. This idea is formalized

theoretically in the following Theorem. Note that m̂(x) estimates consistently m(x) =∑k
j=1 pj

fj(x)

fmix(x)
mj(x), where fmix(x) =

∑k
j=1 pjfj(x) is the mixture of the densities of the

covariates, provided that nj/n → pj > 0. Let Fεj
(y) = P ((Yj−mj(Xj))/σj(Xj) ≤ y) and

Fεj0(y) = P ((Yj − m(Xj))/σj(Xj) ≤ y) be the theoretical versions (without estimated

curves) of the distributions considered in (10) and (12).

Theorem 1 Assume that mj is continuous, j = 1, . . . , k and the moments of order ν of

the distributions Fεj
(y) and Fεj0(y) exist for all ν ∈ N. Then Fεj

(y) = Fεj0(y), −∞ <

y < ∞, j = 1, . . . , k if and only if m1(x) = . . . = mk(x) for all x ∈ RX .

The equivalence given in the previous result is a theoretical justification of the proposed

testing procedure. Its proof can be found in the Appendix.

Let Hej
(y) = P ((Zj − mj(Xj))/σj(Xj) ≤ y) and τHej

= inf{y; Hej
(y) = 1}. All

the asymptotic theory we will develop below is valid up to any point T smaller than

minj{τHej
}. The multidimensional process

Ŵ(y) = (Ŵ1(y), . . . , Ŵk(y))t,

where

Ŵj(y) = n
1/2
j (F̂εj0(y)− F̂εj

(y)),

−∞ < y ≤ T , will be used to compare the two estimators of the distribution of the

residuals in each population. We propose a Kolmogorov-Smirnov type statistic

TKS =
k∑

j=1

sup
−∞<y<T

|Ŵj(y)| (13)

and a Cramér-von Mises type statistic

TCM =
k∑

j=1

∫ T

−∞
Ŵ 2

j (y)dF̂εj0(y). (14)

The testing procedure consists of rejecting the null hypothesis (4) with significance

level α when the value of the statistics TKS or TCM exceeds a certain critical value.
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3 Asymptotic results

In this section we state the asymptotic results associated to the testing procedure. In order

not to obstruct the description of the results, we defer the regularity assumptions and some

auxiliary definitions to the beginning of the Appendix, which also contains the proofs. In

the first part we work under the null hypothesis: we give an asymptotic representation

for the difference between the two estimators of the distribution of the residuals in each

population, we state the weak convergence of the corresponding multidimensional process

and the convergence of the test statistics. In the second part we study asymptotic results

under local alternatives converging to the null hypothesis at a rate n−1/2.

3.1 Asymptotic results under the null hypothesis

The notation in the results below is the following: for j = 1, . . . , k, Fj(x) = P (Xj ≤ x),

Fj(y|x) = P (Yj ≤ y|Xj = x), Gj(y|x) = P (Cj ≤ y|Xj = x), Hj(y|x) = P (Zj ≤ y|Xj =

x), Hj1(y|x) = P (Zj ≤ y, ∆j = 1|Xj = x). We denote Ej = (Zj −mj(X))/σj(Xj) and

Hej
(y) = P (Ej ≤ y), Hej1(y) = P (Ej ≤ y, ∆j = 1), Hej

(y|x) = P (Ej ≤ y|Xj = x),

Hej1(y|x) = P (Ej ≤ y, ∆j = 1|Xj = x). The derivatives of these functions will be

denoted with the corresponding lower case letters. Finally, other functions needed in the

theoretical results are (for j = 1, . . . , k)

ξj(z, δ, y|x) = (1− Fj(y|x))

[
−

∫ y∧z

−∞

dHj1(s|x)

(1−Hj(s|x))2
+

I(z ≤ y, δ = 1)

1−Hj(z|x)

]
,

ηj(z, δ|x) = σ−1
j (x)

∫ +∞

−∞
ξj(z, δ, v|x)J(Fj(v|x))dv,

γj1(y|x) =

∫ y

−∞

hej
(s|x)

(1−Hej
(s))2

dHej1(s) +

∫ y

−∞

dhej1(s|x)

1−Hej
(s)

.

Theorem 2 Assume (A1)-(A5) and Hej
(y|x), Hej1(y|x) satisfy (A6). Then, under the

null hypothesis H0, for j = 1, . . . , k,

F̂εj0(y)− F̂εj
(y) = −(1− Fεj

(y))
k∑

l=1

pl

{
n−1

l

nl∑
i=1

ψjl(Xil, Zil, ∆il, y)

}
+ oP (n−1/2)

uniformly in −∞ < y ≤ T , where

ψjl(x, z, δ, y) =

(
fj(x)

fmix(x)

σl(x)

σj(x)
− I(l = j)

pj

)
ηl(z, δ|x)γj1(y|x).
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Theorem 3 Assume (A1)-(A5) and Hej
(y|x), Hej1(y|x) satisfy (A6). Then under the

null hypothesis H0, the process Ŵ(y) = (Ŵ1(y), . . . , Ŵk(y))t, −∞ < y ≤ T, converges

weakly to a k-dimensional centered Gaussian process W(y) = (W1(y), . . . ,Wk(y))t with

covariance structure given by

Cov(Wj(y),Wj′(y
′)) =(pjpj′)

1/2(1− Fεj
(y))(1− Fεj′ (y

′))

×
k∑

l=1

plCov(ψjl(Xl, Zl, ∆l, y), ψj′l(Xl, Zl, ∆l, y
′)).

Corollary 4 Assume (A1)-(A5) and Hej
(y|x), Hej1(y|x) satisfy (A6). Then, under the

null hypothesis H0,

TKS
d→

k∑
j=1

sup
−∞<y<T

|Wj(y)|,

TCM
d→

k∑
j=1

∫ T

−∞
W 2

j (y)dFεj
(y).

3.2 Asymptotic results under local alternatives

Let us study now the limiting behavior of the process Ŵ(y) under local alternatives

Hl.a. : mj = m0 + n−1/2rj,

where the functions rj satisfy

(AR) (i) rj is two times continuously differentiable, for j = 1, . . . , k.

(ii) V ar[rj(Xl)] < ∞, for j = 1, . . . , k and l = 1, . . . , k.

In addition, we will use the following condition on the censoring variables. This

condition is needed in order to keep the proportion of censoring fixed for any value of n.

(AC) For j = 1, . . . , k, there exist random variables C0
j such that P (Cj ≤ y|Xj =

x) = P (C0
j + n−1/2rj(x) ≤ y|Xj = x).

We define Y 0
j = m0(Xj) + σj(Xj)εj and Z0

j = min{Y 0
j , C0

j }, and denote F 0
j (y|x) =

P (Y 0
j ≤ y|Xj = x), H0

j (y|x) = P (Z0
j ≤ y|Xj = x), H0

j1(y|x) = P (Z0
j ≤ y, ∆j = 1|Xj =

x),

ξ0
j (z, δ, y|x) = (1− F 0

j (y|x))

[
−

∫ y∧z

−∞

dH0
j1(s|x)

(1−H0
j (s|x))2

+
I(z ≤ y, δ = 1)

1−H0
j (z|x)

]
,
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η0
j (z, δ|x) = σ−1

j (x)

∫ +∞

−∞
ξ0
j (z, δ, v|x)J(F 0

j (v|x))dv.

Theorem 5 Assume (A1)-(A5), Hej
(y|x) and Hej1(y|x) satisfy (A6) and (AR), (AC)

hold. Then, under the alternative hypothesis Hl.a., for j = 1, . . . , k,

F̂εj0(y)− F̂εj
(y) = −(1− Fεj

(y))
k∑

l=1

pl

{
n−1

l

nl∑
i=1

ψ0
jl(Xil, Z

0
il, ∆il, y)

}

+n−1/2p
1/2
j fεj

(y)dj + oP (n−1/2)

uniformly in −∞ < y ≤ T , where

ψ0
jl(x, z, δ, y) =

(
fj(x)

fmix(x)

σl(x)

σj(x)
− I(l = j)

pj

)
η0

l (z, δ|x)γj1(y|x),

dj = E

[
R(Xj)− rj(Xj)

σj(Xj)

]
,

and R(u) =
∑k

j=1 pj
fj(u)

fmix(u)
rj(u).

Theorem 6 Assume (A1)-(A5), Hej
(y|x) and Hej1(y|x) satisfy (A6) and (AR), (AC)

hold. Then, under the alternative hypothesis Hl.a., the k-dimensional process Ŵ(y),−∞ <

y ≤ T, converges weakly to W0(y) + D(y), where D(y) = (p
1/2
1 fε1(y)d1, . . . , p

1/2
k fεk

(y)dk)
t

and W0(y) = (W 0
1 (y), . . . , W 0

k (y))t is the k-dimensional centered Gaussian process with

covariance structure given by

Cov(W 0
j (y),W 0

j′(y
′)) =(pjpj′)

1/2(1− Fεj
(y))(1− Fεj′ (y

′))

×
k∑

l=1

plCov(ψ0
jl(Xl, Z

0
l , ∆l, y), ψ0

j′l(Xl, Z
0
l , ∆l, y

′)).

Corollary 7 Assume (A1)-(A5), Hej
(y|x) and Hej1(y|x) satisfy (A6) and (AR), (AC)

hold. Then, under the alternative hypothesis Hl.a.,

TKS
d→

k∑
j=1

sup
−∞<y<T

|W 0
j (y) + p

1/2
j fεj

(y)dj|,

TCM
d→

k∑
j=1

∫ T

−∞
(W 0

j (y) + p
1/2
j fεj

(y)dj)
2dFεj

(y).
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The shift term dj that appears in the distribution of the test statistics under local

alternatives is the same as the one obtained by Pardo-Fernández, Van Keilegom and

González-Manteiga (2004) in a complete data situation. The same considerations as in

that paper can be made here: dj is not always different from zero. This means that,

although the test is universally consistent in the sense of Theorem 1, the consistency of

the test against alternatives converging to the null hypothesis at a rate n−1/2 may fail in

some particular situations.

4 Bootstrap

In practice, to apply this testing procedure we need the critical values of the test statis-

tics. The asymptotic distributions of the test statistics under the null hypothesis given

in Corollary 4 are complicated. Here we consider a bootstrap procedure based on the

censored residuals to approximate those values.

First, for j = 1, . . . , k and i = 1, . . . , nj, estimate the censored residuals in a non

parametric way, using each sample separately

Êij =
Zij − m̂j(Xij)

σ̂j(Xij)
. (15)

From the censored sample of estimated residuals {(Êij, ∆ij), i = 1, . . . , nj} compute the

Kaplan-Meier estimator F̂εj
and ‘standardize’ these residuals in order to verify the initial

assumption of having ‘location function’ 0 and ‘scale function’ 1. The standardized residu-

als are Ẽij = (Êij−λj)/ρj, where λj =
∫

F̂−1
εj

(s)J(s)ds and ρj = (
∫

F̂−1
εj

(s)2J(s)ds−λ2
j)

1/2.

For resampling the censored residuals we use the ‘naive bootstrap’ described in Efron

(1981) and studied in Akritas (1986). Different approaches of smooth bootstrap for cen-

sored data were considered in González-Manteiga, Cao and Marron (1996).

The bootstrap procedure we propose consists of the following steps. For fixed B and

for b = 1, . . . , B,

1. For each j = 1, . . . , k and i = 1, . . . , nj:

• Let Y ∗
ij,b = m̂(Xij)+ σ̂j(Xij)ε

∗
ij,b, where ε∗ij,b = Vij,b + ajZij,b, Vij,b is drawn from

F̂εj
(standardized), and Zij,b is a random variable with mean zero and variance

one.

• Select at random a C?
ij,b from a smoothed version of Ĝj(·|Xij), which is the Be-

ran estimator of Gj(·|Xij) obtained by replacing ∆ij by 1−∆ij in the expression

for F̂j(·|Xij).
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• Let Z?
ij,b = min(Y ?

ij,b, C
?
ij,b) and ∆?

ij,b = I(Y ?
ij,b ≤ C?

ij,b).

2. The bootstrap samples are, for j = 1, . . . , k, {(Xij, Z
∗
ij,b, ∆

∗
ij,b), i = 1, . . . , nj}.

3. Let T ∗
KS,b and T ∗

CM,b be the test statistics obtained from the bootstrap samples.

If we denote T ∗
KS,(b) and T ∗

CM,(b) for the order statistics obtained in step 3, then

T ∗
KS,[(1−α)B] and T ∗

CM,[(1−α)B] approximate the (1− α)-quantiles of the distribution of TKS

and TCM under the null hypothesis respectively.

5 Simulation study

In this section we present some simulations in order to study the practical behavior of the

proposed bootstrap procedure. We restrict ourselves to two-sample situations (k = 2).

More precisely, we consider the following models:

(i) m1(x) = x; m2(x) = x

(ii) m1(x) = exp(x); m2(x) = exp(x)

(iii) m1(x) = x; m2(x) = x + 1

(iv) m1(x) = exp(x); m2(x) = exp(x) + x

Clearly, models (i) and (ii) correspond to the null hypothesis and models (iii) and

(iv) to the alternative hypothesis. In each case we consider a homoscedastic and a het-

eroscedastic situation. In the homoscedastic case the variances are

σ2
1(x) = 0.25 and σ2

2(x) = 0.50, (16)

while in the heteroscedastic case the variance functions are

σ2
1(x) = exR 1

0 etdt
and σ2

2(x) = e2xR 1
0 e2tdt

. (17)

Note that in the heteroscedastic case the variances are larger than in the homoscedastic

case.

The censoring variables are

Cj = mj(Xj) + σj(Xj)ρj,

where ρj has survival function 1−Fρ(y) = (1−Fε(y))β. This mechanism of censoring can

be seen as a ‘conditional proportional hazards model’ (see Koziol and Green (1976) for
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the ‘proportional hazards model’) and it allows us to have the same amount of censoring

over all the support of the covariates. The proportion of censored data is (1 + β)−1. In

the tables we consider β = 1/3 (25% of censoring) and β = 1 (50% of censoring).

In the theoretical results we have used only one bandwidth. As in Pardo-Fernández,

Van Keilegom and González-Manteiga (2004), we have found that the bandwidth has not

a big impact on the results of the tests, but it is recommendable to use the same band-

width to estimate m and mj. The variance functions could be estimated with different

bandwidths. In these simulations we use a bandwidth of the type h = Cn−3/10 to esti-

mate m, mj and σj (j = 1, 2). The bandwidths chosen in this way verify the regularity

conditions assumed in the theoretical results. In the tables the cases C = 1 and C = 1.5

are shown. This will allow us to check the test sensitivity to the change of the bandwidth.

In Tables 1 and 2 the distribution of the errors is Exponential, and in this case, the

regression and variance functions are those corresponding to expressions (2) and (3) with

the choice J(s) = 0.75−1I(0 ≤ s ≤ 0.75) for the score function (trimmed mean and

variance). For the test statistics in (13) and (14) we take as the threshold T the value

corresponding to the quantile 75% of the combined sample of the estimated residuals

under the null hypothesis. Note that all these choices are reasonable for the models and

censoring mechanisms we have considered. We work with aj = n
−3/10
j in the smooth

bootstrap.

Table 1 shows the proportion of rejections in 1000 trials for sample sizes (n1, n2) =

(50, 50), (100, 50) and (100, 100), and when the expected amount of censored data is

25%. Table 2 shows the proportion of rejections in 1000 trials for sample sizes (n1, n2) =

(100, 100), (200, 100) and (200, 200) when the expected amount of censored data is 50%.

In all cases we worked with B = 200 bootstrap replications and significance levels α = 0.05

and α = 0.10. Larger samples sizes for models with 50% of censored data are justified by

the difficulty of those models.

The approximation of the level -models (i) and (ii)- is good in most cases. The results

for models (iii) and (iv) show that the tests gain power as the sample sizes increase.

In most cases the test based on TCM gives better results than the test based on TKS,

and we also observe that the choice of the bandwidth has little impact on the rejection

probabilities.

12



C = 1 C = 1.5

TKS TCM TKS TCM

(n1, n2) α : 0.050 0.100 0.050 0.100 0.050 0.100 0.050 0.100

Homoscedastic models

(50, 50) (i) 0.049 0.084 0.048 0.093 0.044 0.095 0.051 0.091

(ii) 0.042 0.089 0.048 0.094 0.044 0.090 0.051 0.094

(iii) 0.984 0.993 0.989 0.996 0.984 0.994 0.989 0.994

(iv) 0.505 0.629 0.550 0.674 0.489 0.643 0.560 0.667

(100, 50) (i) 0.059 0.112 0.057 0.104 0.061 0.098 0.067 0.098

(ii) 0.067 0.107 0.058 0.102 0.055 0.096 0.058 0.100

(iii) 0.999 0.999 0.998 0.999 1.000 1.000 1.000 1.000

(iv) 0.557 0.724 0.541 0.690 0.580 0.720 0.568 0.699

(100, 100) (i) 0.055 0.109 0.059 0.103 0.056 0.109 0.058 0.102

(ii) 0.060 0.117 0.062 0.103 0.057 0.105 0.058 0.110

(iii) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(iv) 0.863 0.924 0.888 0.935 0.862 0.923 0.879 0.932

Heteroscedastic models

(50, 50) (i) 0.045 0.090 0.044 0.094 0.044 0.085 0.046 0.090

(ii) 0.042 0.085 0.043 0.089 0.045 0.090 0.048 0.089

(iii) 0.771 0.849 0.792 0.864 0.763 0.853 0.777 0.866

(iv) 0.243 0.360 0.256 0.357 0.245 0.346 0.257 0.356

(100, 50) (i) 0.048 0.087 0.044 0.086 0.051 0.102 0.048 0.092

(ii) 0.050 0.086 0.046 0.088 0.048 0.089 0.049 0.091

(iii) 0.909 0.955 0.880 0.939 0.913 0.956 0.892 0.947

(iv) 0.236 0.343 0.191 0.283 0.246 0.363 0.221 0.313

(100, 100) (i) 0.066 0.112 0.057 0.116 0.059 0.117 0.059 0.111

(ii) 0.061 0.111 0.059 0.112 0.061 0.109 0.056 0.110

(iii) 0.976 0.987 0.973 0.989 0.971 0.985 0.974 0.988

(iv) 0.472 0.582 0.476 0.583 0.465 0.584 0.474 0.581

Table 1: Rejection probabilities (models i-iv) of the tests based on TKS and TCM when the

expected amount of censored data is 25%. The models are homoscedastic, with variances

given in (16), and heteroscedastic, with variances given in (17).
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C = 1 C = 1.5

TKS TCM TKS TCM

(n1, n2) α : 0.050 0.100 0.050 0.100 0.050 0.100 0.050 0.100

Homoscedastic models

(100, 100) (i) 0.052 0.093 0.055 0.093 0.042 0.081 0.049 0.083

(ii) 0.051 0.083 0.050 0.099 0.037 0.075 0.046 0.087

(iii) 0.995 0.997 0.995 0.997 0.995 0.997 0.994 0.996

(iv) 0.751 0.855 0.813 0.903 0.723 0.838 0.792 0.888

(200, 100) (i) 0.072 0.126 0.078 0.137 0.055 0.108 0.057 0.116

(ii) 0.071 0.119 0.074 0.139 0.064 0.111 0.064 0.114

(iii) 1.000 1.000 0.999 1.000 0.999 1.000 1.000 1.000

(iv) 0.808 0.903 0.841 0.910 0.851 0.922 0.866 0.933

(200, 200) (i) 0.053 0.101 0.059 0.105 0.052 0.090 0.057 0.098

(ii) 0.055 0.094 0.059 0.103 0.055 0.092 0.058 0.098

(iii) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(iv) 0.980 0.992 0.988 0.993 0.982 0.991 0.986 0.993

Heteroscedastic models

(100, 100) (i) 0.032 0.067 0.042 0.089 0.038 0.077 0.043 0.089

(ii) 0.035 0.070 0.041 0.081 0.039 0.071 0.045 0.086

(iii) 0.932 0.964 0.942 0.972 0.905 0.953 0.926 0.966

(iv) 0.387 0.520 0.441 0.578 0.370 0.495 0.430 0.565

(200, 100) (i) 0.050 0.103 0.065 0.125 0.045 0.098 0.055 0.104

(ii) 0.053 0.091 0.062 0.122 0.046 0.092 0.052 0.110

(iii) 0.987 0.995 0.991 0.997 0.990 0.997 0.990 0.998

(iv) 0.381 0.500 0.366 0.478 0.381 0.513 0.381 0.512

(200, 200) (i) 0.044 0.081 0.049 0.090 0.041 0.082 0.048 0.082

(ii) 0.046 0.086 0.049 0.089 0.046 0.086 0.046 0.089

(iii) 0.998 0.999 0.998 1.000 0.998 1.000 0.998 1.000

(iv) 0.688 0.787 0.722 0.812 0.669 0.786 0.722 0.800

Table 2: Rejection probabilities (models i-iv) of the tests based on TKS and TCM when the

expected amount of censored data is 50%. The models are homoscedastic, with variances

given in (16), and heteroscedastic, with variances given in (17).
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6 Application to real data

We illustrate our testing procedure with an application to the Small Cell Lung Cancer

Data. The data set is available in Ying, Jung and Wei (1995) and consists of lifetimes of

patients suffering from small cell lung cancer. The patients are divided into two groups

to follow two different treatments (Group A and Group B). The first group consists of

62 patients (15 censored) and the second group consists of 59 patients (8 censored). We

consider the base 10 log of the survival time (in days) as response variable and the age as

covariate. The support of the covariate was transformed into the interval [0,1]. We work

with different values for the bandwidth needed in the estimation, ranging from 0.15 to

0.40.

We have performed the test of equality of the regression curves of the two curves using

as score function J(s) = 0.75−1I(0 ≤ s ≤ 0.75) and J(s) = 0.50−1I(0.25 ≤ s ≤ 0.75).

The second choice of the function J produces curves closer to the conditional median.

The obtained results are very similar. The p-values are obtained from 1000 bootstrap

replications. Figure 1 shows the estimated curves, using h = 0.30 as a bandwidth.

When testing for the equality of the curves, the null hypothesis is clearly rejected in all

cases, with p-values smaller than 0.02 for the statistic TKM and smaller than 0.005 for TCM .

However, it seems reasonable to suppose that the regression curves differ only by a shift

(see Figure 1). A test to check that can be obtained by transforming the response variables

in Z ′
ij = Zij−tj, for j = 1, 2 and i = 1, . . . , nj, where tj = n−1

∑2
j=1

∑nj

i=1 m̂j(Xij). In this

case the p-values are larger than 0.55 for the statistic TKM and larger than 0.67 for TCM .

All these results are summarized in Figures 2 and 3, which show graphs of the p-values

versus the bandwidth.
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Appendix: Notation, auxiliary results and proofs

Proof of Theorem 1. Assume that Fεj
(y) = Fεj0(y), for −∞ < y < ∞. We write

P

(
Yj −m(Xj)

σj(Xj)
≤ y

)
= P

(
Yj −mj(Xj)

σj(Xj)
+

mj(Xj)−m(Xj)

σj(Xj)
≤ y

)
,

for all y, or equivalently

P

(
exp

{
Yj −m(Xj)

σj(Xj)

}
≤ y

)

= P

(
exp

{
Yj −mj(Xj)

σj(Xj)

}
exp

{
mj(Xj)−m(Xj)

σj(Xj)

}
≤ y

)
,

for all y. Since (Yj −mj(Xj))/σj(Xj) and Xj are independent, it follows that

E

[(
exp

{
Yj −m(Xj)

σj(Xj)

})2ν
]

= E

[(
exp

{
Yj −mj(Xj)

σj(Xj)

})2ν
]

E

[(
exp

{
mj(Xj)−m(Xj)

σj(Xj)

})2ν
]

,

for all ν. Then

E

[(
exp

{
mj(Xj)−m(Xj)

σj(Xj)

})2ν
]

= 1,

for all ν. Carleman condition (see e.g. Feller, 1966) ensures that

P

(
exp

{
mj(Xj)−m(Xj)

σj(Xj)

}
= 1

)
= 1

or

P

(
mj(Xj)−m(Xj)

σj(Xj)
= 0

)
= 1,

and this clearly implies that mj(x) = m(x) for all j = 1, . . . , k and for all x ∈ RX , except

for a set of points of probability zero. The continuity allows extending the equality of

the regression curves to the whole support of the covariates. The converse implication is

trivial.

Before starting the proofs of the results in Section 3, we state some additional notation

(j = 1, . . . , k)

ξej
(z, δ, y) = (1− Fεj

(y))

[
−

∫ y∧z

−∞

dHej1(s)

(1−Hej
(s))2

+
I(z ≤ y, δ = 1)

1−Hej
(z)

]
,

ζj(z, δ|x) = σ−1
j (x)

∫ +∞

−∞
ξj(z, δ, v|x)J(Fj(v|x))

v −mj(x)

σj(x)
dv,
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γj2(y|x) =

∫ y

−∞

shej
(s|x)

(1−Hej
(s))2

dHej1(s) +

∫ y

−∞

d(shej1(s|x))

1−Hej
(s)

.

The functions Hej
(y) and Hej1(y) are estimated in two different ways. First, we

estimate them using the empirical distribution function of the censored residuals from

each sample

Ĥej
(y) = n−1

j

nj∑
i=1

I(Êij ≤ y) and Ĥej1(y) = n−1
j

nj∑
i=1

I(Êij ≤ y, ∆ij = 1).

On the other hand, when working under the null hypothesis, we use the censored residuals

based on the estimator of the common regression function

Ĥej0(y) = n−1
j

nj∑
i=1

I(Êij0 ≤ y) and Ĥej10(y) = n−1
j

nj∑
i=1

I(Êij0 ≤ y, ∆ij = 1).

We list below the regularity assumptions we need for the proof of the main asymptotic

results.

(A1) For j = 1, . . . , k,

(i) Xj is absolutely continuous with compact support RX .

(ii) fj, mj and σj are two times continuously differentiable.

(iii) infx∈RX
fj (x) > 0 and infx∈RX

σj (x) > 0.

(A2) For j = 1, . . . , k,

(i) nj/n → pj > 0, and
∑k

j=1 pj = 1.

(ii) njh
4
n → 0 and njh

3+2δ
n log(h−1

n )−1 →∞ for some δ > 0.

(A3)

(i) K is a symmetric density function with compact support and K is twice continu-

ously differentiable.

(ii) J is twice continuously differentiable in the interior of its support,
∫ 1

0
J(s)ds = 1

and J(s) ≥ 0 for all 0 ≤ s ≤ 1.

(iii) For j = 1, . . . , k, let T̃xj be any value less than the upper bound of the support

of Hj(·|x) such that infx∈RX
(1−Hj(T̃xj|x)) > 0. Then there exist 0 ≤ s0j ≤ s1j ≤ 1 such

that s1j ≤ infx Fj(T̃xj|x), s0j ≤ inf{s ∈ [0, 1], J(s) 6= 0}, s1j ≥ sup{s ∈ [0, 1], J(s) 6= 0}
and infx∈RX

infs0j≤s≤s1j
fj(F

−1
j (s|x)|x) > 0.

(A4) For j = 1, . . . , k, the functions ηj and ζj are twice continuously differentiable

with respect to x and their first and second derivatives are bounded, uniformly in x ∈ RX ,

z < T̃xj and δ.
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In conditions (A5) and (A6) we use the generic notation L(y|x) for a conditional

distribution or subdistribution function, and denote l(y|x) = L′(y|x) for their derivative

with respect to y, L̇(y|x) their derivative with respect to x, and similar notation for higher

order derivatives.

(A5) Let L be Hj(y|x) or Hj1(y|x), for j = 1, . . . , k.

(i) L(y|x) is continuous.

(ii) l(y|x) = L′(y|x) exists, is continuous in (x, y), and supx,y |yL′(y|x)| < ∞.

(iii) L′′(y|x) exists, is continuous in (x, y), and supx,y |y2L′′(y|x)| < ∞.

(iv) L̇(y|x) exists, is continuous in (x, y), and supx,y |yL̇(y|x)| < ∞.

(v) L̈(y|x) exists, is continuous in (x, y), and supx,y |y2L̈(y|x)| < ∞.

(vi) L̇′(y|x) exists, is continuous in (x, y), and supx,y |yL̇′(y|x)| < ∞.

(A6)

(i) l(y|x) = L′(y|x) exists, is continuous in (x, y), and supx,y |yL′(y|x)| < ∞.

(ii) L′′(y|x) exists, is continuous in (x, y), and supx,y |y2L′′(y|x)| < ∞.

(iii) L̈(y|x) exists, is continuous in (x, y), and supx,y |yL̈(y|x)| < ∞.

(iv) L̈′(y|x) exists, is continuous in (x, y), and supx,y |yL̈′(y|x)| < ∞.

First we set four auxiliary lemmas, and then we prove the main results.

Lemma 8 Assume (A1)-(A5) and Hej
(y|x) satisfy (A6). Then under the null hypothesis

H0, for j = 1, . . . , k,

Ĥej0(y)−Hej
(y)

=
1

nj

nj∑
i=1

I(Eij ≤ y)−Hej
(y)− 1

nj

nj∑
i=1

yhej
(y|Xij)ζj(Zij, ∆ij|Xij)

− 1

n

k∑

l=1

nl∑
i=1

hej
(y|Xil)

fj(Xil)

fmix(Xil)

σl(Xil)

σj(Xil)
ηl(Zil, ∆il|Xil) + oP (n−1/2),

uniformly in −∞ < y ≤ T .

Proof. From the proof of Proposition A.2 in Van Keilegom and Akritas (1999), we have

that

Ĥej0(y)−Hej
(y) =

1

nj

nj∑
i=1

I(Eij ≤ y)−Hej
(y) (18)

+

∫
hej

(y|x)
m̂(x)−m(x)

σj(x)
fj(x)dx +

∫
yhej

(y|x)
σ̂j(x)− σj(x)

σj(x)
fj(x)dx

+oP (n
−1/2
j ),

18



uniformly in −∞ < y ≤ T . The last term is oP (n
−1/2
j ) because of the uniform consistency

of m̂ and σ̂j. The consistency of σ̂j is given in Proposition 4.5 in Van Keilegom and

Akritas (1999). The consistency of m̂ can be obtained using the consistency of m̂l (also

given in Proposition 4.5 in Van Keilegom and Akritas, 1999), the consistency of f̂l and

f̂mix and taking into account the relation

m̂(x)−m(x) =
k∑

l=1

nl

n

f̂l(x)

f̂mix(x)
(m̂l(x)−m(x))

=
k∑

l=1

nl

n

fl(x)

fmix(x)
(m̂l(x)−m(x)) + oP (n−1/2),

uniformly in x.

First using Proposition 4.8 in Van Keilegom and Akritas (1999)

m̂(x)−m(x)

= − 1

nhn

1

fmix(x)

k∑

l=1

nl∑
i=1

σl(x)K

(
x−Xil

hn

)
ηl(Zil, ∆il|x) + oP (n−1/2),

uniformly in x.

The two integrals in (18) will be analyzed separately. The first integral becomes
∫

hej
(y|x)

m̂(x)−m(x)

σj(x)
fj(x)dx

= − 1

nhn

k∑

l=1

nl∑
i=1

∫
hej

(y|x)
fj(x)

fmix(x)

σl(x)

σj(x)
ηl(Zil, ∆il|x)K

(
x−Xil

hn

)
dx + oP (n−1/2).

Using the change of variable u = (x−Xil)h
−1
n , a Taylor expansion of second order around

Xil and assumptions (A2-ii),(A3-i) and (A4) we obtain
∫

hej
(y|x)

m̂(x)−m(x)

σj(x)
fj(x)dx

= − 1

n

k∑

l=1

nl∑
i=1

hej
(y|Xil)

fj(Xil)

fmix(Xil)

σl(Xil)

σj(Xil)
ηl(Zil, ∆il|Xil) + oP (n−1/2).

From Proposition 4.9 of Van Keilegom and Akritas (1999) and a Taylor expansion as

we did above, we obtain a similar result for the second integral in (18)

∫
yhej

(y|x)
σ̂j(x)− σj(x)

σj(x)
fj(x)dx = − 1

nj

nj∑
i=1

yhej
(y|Xij)ζj(Zij, ∆ij|Xij) + oP (n−1/2).

The result stated in the Lemma now follows immediately.
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Lemma 9 Assume (A1)-(A5) and Hej1(y|x) satisfy (A6). Then under the null hypothesis

H0, for j = 1, . . . , k,

Ĥej10(y)−Hej1(y)

=
1

nj

nj∑
i=1

I(Eij ≤ y, ∆ij = 1)−Hej1(y)− 1

nj

nj∑
i=1

yhej1(y|Xij)ζj(Zij, ∆ij|Xij)

− 1

n

k∑

l=1

nl∑
i=1

hej1(y|Xil)
fj(Xil)

fmix(Xil)

σl(Xil)

σj(Xil)
ηl(Zil, ∆il|Xil) + oP (n

−1/2
j ),

uniformly in −∞ < y ≤ T .

Proof. Similar to the proof of Lemma 8.

Lemma 10 Assume (A1)-(A5) and Hej
(y|x) satisfy (A6). Then, for j = 1, . . . , k,

Ĥej
(y)−Hej

(y)

=
1

nj

nj∑
i=1

I(Eij ≤ y)−Hej
(y)− 1

nj

nj∑
i=1

yhej
(y|Xij)ζj(Zij, ∆ij|Xij)

− 1

nj

nj∑
i=1

hej
(y|Xij)ηj(Zij, ∆ij|Xij) + oP (n

−1/2
j ),

uniformly in −∞ < y ≤ T .

Proof. This is Proposition A.2 in Van Keilegom and Akritas (1999).

Lemma 11 Assume (A1)-(A5) and Hej1(y|x) satisfy (A6). Then, for j = 1, . . . , k,

Ĥej1(y)−Hej1(y)

=
1

nj

nj∑
i=1

I(Eij ≤ y, ∆ij = 1)−Hej1(y)− 1

nj

nj∑
i=1

yhej1(y|Xij)ζj(Zij, ∆ij|Xij)

− 1

nj

nj∑
i=1

hej1(y|Xij)ηj(Zij, ∆ij|Xij) + oP (n
−1/2
j ),

uniformly in −∞ < y ≤ T .

Proof. Similar to the previous one.
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Proof of Theorem 2. From the proof of Theorem 3.1 in Van Keilegom and Akritas

(1999), we have that

F̂εj0(y)− Fεj
(y)

= (1− Fεj
(y))

[∫ y

−∞

Ĥej
(s)−Hej

(s)

(1−Hej
(s))2

dHej1(s) +

∫ y

−∞

d(Ĥej1(s)−Hej1(s))

1−Hej
(s)

]

+oP (n−1/2).

As in the proof of Lemma 8, the last terms of the above expressions are oP (n−1/2) because

of the consistency of m̂ and σ̂j. Applying Lemmas 8 and 9

F̂εj0(y)− Fεj
(y)

=
1

nj

nj∑
i=1

ξej
(Eij, ∆ij, y)− 1

nj

nj∑
i=1

(1− Fεj
(y))ζj(Zij, ∆ij|Xij)γj2(y|Xij)

− 1

n

k∑

l=1

nl∑
i=1

(1− Fεj
(y))

fj(Xil)

fmix(Xil)

σl(x)

σj(Xil)
ηl(Zil, ∆il|Xil)γj1(y|Xil) + oP (n−1/2).

Analogously,

F̂εj
(y)− Fεj

(y)

= (1− Fεj
(y))

[∫ y

−∞

Ĥej
(s)−Hej

(s)

(1−Hej
(s))2

dHej1(s) +

∫ y

−∞

d(Ĥej1(s)−Hej1(s))

1−Hej
(s)

]

+oP (n
−1/2
j )

and applying Lemmas 10 and 11

F̂εj
(y)− Fεj

(y)

=
1

nj

nj∑
i=1

ξej
(Eij, ∆ij, y)− 1

nj

nj∑
i=1

(1− Fεj
(y))ζj(Zij, ∆ij|Xij)γj2(y|Xij)

− 1

nj

nj∑
i=1

(1− Fεj
(y))ηj(Zij, ∆ij|Xij)γj1(y|Xij) + oP (n

−1/2
j ).

By writing F̂εj0(y)− F̂εj
(y) = (F̂εj0(y)−Fεj

(y))− (F̂εj
(y)−Fεj

(y)), the representation

given in the statement of the Theorem follows immediately.

Proof of Theorem 3. We will use the Cramér-Wold device (see e.g. Serfling, 1980)

to prove the weak convergence of the multidimensional process Ŵ(y) by showing the weak
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convergence of any linear combination of its components. Let V̂ (y) =
∑k

j=1 ajŴj(y) be

one of these linear combinations.

Using the representation given in Theorem 2

k∑
j=1

ajŴj(y) =
k∑

j=1

ajn
1/2
j (F̂εj0(y)− F̂εj

(y))

= −
k∑

j=1

ajn
1/2
j (1− Fεj

(y))×

×
{

k∑

l=1

pln
−1
l

nl∑
i=1

fj(Xil)

fmix(Xil)

σl(Xil)

σj(Xil)

ηl(Zil, ∆il|Xil)γj1(y|Xil)

− 1

nj

nj∑
i=1

ηj(Zij, ∆ij|Xij)γj1(y|Xij)

}
+ oP (1)

=
k∑

l=1

1

n
1/2
l

nl∑
i=1

ϕl(Xil, Zil, ∆il, y) + oP (1),

where

ϕl(x, z, δ, y)

= −ηl(z, δ|x)

{
k∑

j=1

aj(pjpl)
1/2(1− Fεj

(y))
fj(x)

fmix(x)

σl(x)

σj(x)
γj1(y|x)− al(1− Fεl

(y))γl1(y|x)

}
.

Denote, for l = 1, . . . , k,

V̂l(y) = n
−1/2
l

nl∑
i=1

ϕl(Xil, Zil, ∆il, y).

With the notation of van der Vaart and Wellner (1996), if we consider the class of func-

tions Fl = {(x, z, δ) −→ ϕl(x, z, δ, y),−∞ < y < T}, then the process V̂l(y) is the

Fl-indexed process. In general, for any classes of functions G1 and G2, define G1 + G2 =

{g1 + g2; g1 ∈ G1, g2 ∈ G2} and G1G2 = {g1g2; g1 ∈ G1, g2 ∈ G2}. The class Fl can be writ-

ten as Fl =
∑k+1

j=1 F1
ljF2

lj, where, for j =, 1, . . . , k,

F1
lj =

{
(x, z, δ) −→ −ηl(z, δ|x)aj(pjpl)

1/2 fj(x)

fmix(x)

σl(x)

σj(x)
,−∞ < y ≤ T

}
,

F2
lj =

{
(x, z, δ) −→ (1− Fεj

(y))γj1(y|x),−∞ < y ≤ T
}

,

F1
l,k+1 = {(x, z, δ) −→ ηl(z, δ|x)al,−∞ < y ≤ T} .

and

F2
l,k+1 = {(x, z, δ) −→ (1− Fεl

(y))γl1(y|x),−∞ < y ≤ T} .
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The functions in classes F2
lj are bounded uniformly in y, as well as their first deriva-

tives. Let M be a bound for the absolute value of all these functions. If ε < 2M then

their bracketing numbers are N[ ](ε,F2
lj, L2(P )) = O(exp(Kε−1)), where N[ ] is the brack-

eting number, P is the measure of probability corresponding to the joint distribution of

(Xl, Zl, ∆l) and L2(P ) is the L2-norm. If ε ≥ 2M then N[ ](ε,F2
lj, L2(P )) = 1. Since

the classes F1
lj consist of only one function, hence the bracketing numbers of the product

classes F1
ljF2

lj verify the same conditions as those of the classes F2
lj.

By Theorem 2.10.6 in van der Vaart and Wellner (1996), which relates the bracketing

number of a sum of classes of functions to the bracketing numbers of each class, we obtain

N[ ](ε,Fl, L2(P )) ≤
k+1∏
j=1

N[ ](ε,F2
lj, L2(P )).

Now, we have

∫ ∞

0

√
log N[ ](ε,Fl, L2(P ))dε ≤

k+1∑
j=1

∫ 2M

0

√
log N[ ](ε,F2

ljFj3, L2(P ))dε

and then the integral
∫∞

0

√
log N[ ](ε,Fl, L2(P ))dε is finite. This implies that the class of

functions Fl is Donsker by Theorem 2.5.6 in van der Vaart and Wellner (1996). The weak

convergence of the process V̂l(y) now follows from pages 81 and 82 of the aforementioned

book. The limit process, Vl(y), is a zero-mean Gaussian process with covariance function

Cov(Vl(y), Vl(y
′)) = Cov(ϕl(Xl, Zl, ∆l, y), ϕl(Xl, Zl, ∆l, y

′)).

Write V̂ (y) =
∑k

l=1 V̂l(y). The processes V̂l(y) are independent. Using the first part of

this proof, we conclude that the process V̂ (y) converges weakly to a zero-mean Gaussian

process, V (y), with covariance function

Cov(V (y), V (y′)) =
k∑

l=1

Cov(ϕl(Xl, Zl, ∆l, y), ϕl(Xl, Zl, ∆l, y
′)).

Finally, since we have verified the weak convergence of V̂ (y), and using the Cramér-

Wold device, we can conclude that the k-dimensional process Ŵ(y) converges weakly to a

centered k-dimensional Gaussian process with covariance structure given in the statement

of the Theorem.

Proof of Corollary 4. The weak convergence of the k-dimensional process Ŵ(y) and

the continuous mapping theorem ensure the convergence of TKS.

For the statistic TCM , we will prove that
∫ T

−∞
Ŵ 2

j (y)dF̂εj0(y) →d

∫ T

−∞
W 2

j (y)dFεj
(y). (19)
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The weak convergence of the processes Ŵj(y) and n1/2(F̂εj0(y)−Fεj
(y)), and the Skorohod

construction (see Serfling, 1980) yield

sup
−∞<y≤T

|Ŵj(y)−Wj(y)| →a.s. 0, (20)

sup
−∞<y≤T

|F̂εj0(y)− Fεj
(y)| →a.s. 0. (21)

Now write
∣∣∣∣
∫ T

−∞
Ŵ 2

j (y)dF̂εj0(y)−
∫ T

−∞
W 2

j (y)dFεj
(y)

∣∣∣∣

≤
∣∣∣∣
∫ T

−∞
(Ŵ 2

j (y)−W 2
j (y))dF̂εj0(y)

∣∣∣∣ +

∣∣∣∣
∫ T

−∞
W 2

j (y)d(F̂εj0(y)− Fεj
(y))

∣∣∣∣ .

The first term of the right hand side of the above inequality is o(1) a.s. due to (20). The

trajectories of the limit process Wj(y) are bounded and continuous almost surely. Then,

by applying Helly-Bray Theorem (see p. 97 in Rao, 1965) to each of these trajectories

and taking into account (21), we obtain

∣∣∣∣
∫ T

−∞
W 2

j (y)d(F̂εj0(y)− Fεj
(y))

∣∣∣∣ →a.s. 0.

This concludes the proof of the Corollary.

Before proving the asymptotic results concerning the behavior of the process under

the alternative hypothesis, we introduce some notation and some general considerations.

Under Hl.a., the estimator of the common regression curve m̂ estimates mn(x) = m0(x)+

n−1/2R(x), where R(x) =
∑k

l=1 pl
fl(x)

fmix(x)
rl(x), and m̂j(x) estimates mjn(x) = m0(x) +

n−1/2rj(x). The censored residuals with respect to mn are Ej0 = (Zj −mn(Xj))/σj(Xj),

and with respect to mjn the residuals are Ej = (Zj −mjn(Xj))/σj(Xj) (for simplicity we

keep the same notation of subsection 3.1 for the last ones, although they depend on n).

We have the relation

Ej0 =
Zj −mn(Xj)

σj(Xj)
= Ej +

mjn(Xj)−mn(Xj)

σj(Xj)
= Ej − n−1/2R(Xj)− rj(Xj)

σj(Xj)
.

Note also that now F̂εj0(y) estimates Fεj0(y) = P ((Yj−mn(Xj))/σj(Xj) ≤ y). We denote

Hej0(y) = P (Ej0 ≤ y), Hej01(y) = P (Ej0 ≤ y, ∆j = 1), Hej0(y|x) = P (Ej0 ≤ y|Xj = x),

Hej01(y|x) = P (Ej0 ≤ y, ∆j = 1|Xj = x).
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Lemma 12 Assume (A1)-(A5) and Hej
(y|x) satisfy (A6) and (AR) holds. Then, under

the alternative hypothesis Hl.a., for any j = 1, . . . , k,

Ĥej0(y)−Hej0(y) =
1

nj

nj∑
i=1

I(Eij ≤ y)−Hej
(y)− 1

nj

nj∑
i=1

yhej
(y|Xij)ζj(Zij, ∆ij|Xij)

− 1

n

k∑

l=1

nl∑
i=1

hej
(y|Xil)

fj(Xil)

fmix(Xil)

σl(Xil)

σj(Xil)
ηl(Zil, ∆il|Xil) + oP (n

−1/2
j ),

uniformly in −∞ < y ≤ T .

Proof. We follow the proof of Proposition A.2 in Van Keilegom and Akritas (1999) and

write

Ĥej0(y)−Hej0(y) = n−1
j

nj∑
i=1

I(Eij0 ≤ y)−Hej0(y) (22)

+

∫
Hej0

(
yσ̂j(x) + m̂(x)−mn(x)

σj(x)

∣∣∣∣ x

)
fj(x)dx−

∫
Hej0(y|x)fj(x)dx + oP (n−1/2),

uniformly in −∞ < y ≤ T . Note that the remainder term in (22) is oP (n−1/2) provided

that m̂−mn satisfies Propositions 4.5, 4.6 and 4.7 in Van Keilegom and Akritas (1999).

These propositions can be shown to hold true under standard lines of proof.

We will analyze in detail each term of the expression above. First

Hej0(y) =

∫
Hej0(y|x)fj(x)dx (23)

=

∫
Hej

(y|x)fj(x)dx +

∫
hej

(y|x)
mn(x)−mjn(x)

σj(x)
fj(x)dx + o(n−1/2)

= Hej
(y) + n−1/2E

[
hej

(y|Xj)
R(Xj)− rj(Xj)

σj(Xj)

]
+ o(n−1/2),

and
∫

Hej0

(
yσ̂j(x) + m̂(x)−mn(x)

σj(x)

∣∣∣∣ x

)
fj(x)dx (24)

=

∫
Hej

(y|x)fj(x)dx +

∫
hej

(y|x)
yσ̂j(x) + m̂(x)−mjn(x)− yσj(x)

σj(x)
fj(x)dx + o(n−1/2)

= Hej
(y) +

∫
hej

(y|x)
y(σ̂j(x)− σj(x)) + m̂(x)−mn(x)

σj(x)
fj(x)dx

+ n−1/2E

[
hej

(y|Xj)
R(Xj)− rj(Xj)

σj(Xj)

]
+ o(n−1/2).
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An application of the proof of Lemma A.1 in Van Keilegom and Akritas (1999) yields

sup
y
|n−1

j

nj∑
i=1

{
I(Eij − n−1/2(R(Xij)− rj(Xij))σ

−1
j (Xij) ≤ y)

−P (Ej − n−1/2(R(Xj)− rj(Xj))σ
−1
j (Xj) ≤ y)− I(Eij ≤ y) + P (Ej ≤ y)

} |
= oP (n

−1/2
j )

Considering the following probability as a function of y and developing a Taylor ex-

pansion we obtain

P (Ej − n−1/2(R(Xj)− rj(Xj))σ
−1
j (Xj) ≤ y)

=

∫
P (Ej − n−1/2(R(Xj)− rj(Xj))σ

−1
j (Xj) ≤ y|Xj = x)fj(x)dx

=

∫
P (Ej ≤ y|Xj = x)fj(x)dx + n−1/2E[hej

(y|Xj)(R(Xj)− rj(Xj))σ
−1
j (Xj)] + o(n−1/2)

= P (Ej ≤ y) + n−1/2E[hej
(y|Xj)(R(Xj)− rj(Xj))σ

−1
j (Xj)] + o(n−1/2),

and hence

n−1
j

nj∑
i=1

I(Eij0 ≤ y) = n−1
j

nj∑
i=1

I(Eij − n−1/2(R(Xij)− rj(Xij))σ
−1
j (Xij) ≤ y) (25)

= n−1
j

nj∑
i=1

I(Eij ≤ y) + n−1/2E[hej
(y|Xj)(R(Xj)− rj(Xj))σ

−1
j (Xj)] + oP (n−1/2).

Substituting (23), (24) and (25) in (22), we obtain

Ĥej0(y)−Hej0(y) = n−1
j

nj∑
i=1

I(Eij ≤ y)−Hej
(y)

+

∫
hej

(y|x)
y(σ̂j(x)− σj(x)) + m̂(x)−mn(x)

σj(x)
fj(x)dx + oP (n−1/2).

Since m̂(x) − mn(x) =
∑k

l=1
nl

n
fl(x)

fmix(x)
(m̂l(x) − mln(x)) + oP (n−1/2), the integral on the

right-hand side of the expression above can be handled in a similar way as in the proof

of Lemma 8.

Lemma 13 Assume (A1)-(A5) and Hej1(y|x) satisfy (A6) and (AR) holds. Then, under
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the alternative hypothesis Hl.a., for any j = 1, . . . , k,

Ĥej10(y)−Hej10(y)

=
1

nj

nj∑
i=1

I(Eij ≤ y, ∆ij = 1)−Hej1(y)− 1

nj

nj∑
i=1

yhej1(y|Xij)ζj(Zij, ∆ij|Xij)

− 1

n

k∑

l=1

nl∑
i=1

hej1(y|Xil)
fj(Xil)

fmix(Xil)

σl(Xil)

σj(Xil)
ηl(Zil, ∆il|Xil) + oP (n

−1/2
j ),

uniformly in −∞ < y ≤ T .

Proof. Similar to the proof of Lemma 12.

Proof of Theorem 5. First we write

∫ y

−∞

d(Ĥej10(s)−Hej10(s))

1−Hej0(s)
=

∫ y

−∞

d(Ĥej10(s)−Hej10(s))

1−Hej
(s)

(26)

+

∫ y

−∞

(
1

1−Hej0(s)
− 1

1−Hej
(s)

)
d(Ĥej10(s)−Hej10(s)).

The proof of Corollary A.5 in Van Keilegom and Akritas (1999) can be adapted here to

show that

sup
−∞<y≤T

∣∣∣∣
∫ y

−∞

(
1

1−Hej0(s)
− 1

1−Hej
(s)

)
d(Ĥej10(s)−Hej10(s))

∣∣∣∣ = oP (n−1/2). (27)

Indeed, equation (23) in the proof of Lemma 12 says that Hej0(y) −Hej
(y) = O(n−1/2).

Note that this order is not stochastic and better than the equivalent one needed in the

above-mentioned proof. It suffices to follow the same steps to obtain (27). Hence the last

term of the expression (26) is oP (n−1/2), and we obtain

∫ y

−∞

d(Ĥej10(s)−Hej10(s))

1−Hej0(s)
=

∫ y

−∞

d(Ĥej10(s)−Hej10(s))

1−Hej
(s)

+ oP (n−1/2). (28)

Similarly to equation (23), it holds that

Hej10(y) =

∫
Hej1

(
yσj(x) + mn(x)−mjn(x)

σj(x)

∣∣∣∣x

)
fj(x)dx,

and taking derivatives and a Taylor expansion of hej1 around y

hej10(y) =

∫
hej1

(
yσj(x) + mn(x)−mjn(x)

σj(x)

∣∣∣∣ x

)
fj(x)dx = hej1(y) + O(n−1/2).
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It follows that

hej10(s)

(1−Hej0(s))
2

=
hej1(s)

(1−Hej
(s))2

+ hej10(s)

(
1

(1−Hej0(s))
2
− 1

(1−Hej
(s))2

)
+

1

(1−Hej
(s))2

(hej10(s)− hej1(s))

=
hej1(s)

(1−Hej
(s))2

+ O(n−1/2),

and since Ĥej0(y)−Hej0(y) = OP (n−1/2), we obtain

∫ y

−∞

Ĥej0(s)−Hej0(s)

(1−Hej0(s))
2

dHej10(s) =

∫ y

−∞

Ĥej0(s)−Hej0(s)

(1−Hej
(s))2

dHej1(s) + oP (n−1/2). (29)

Using (28) and (29), as in the proof of Theorem 2, we have that

F̂εj0(y)− Fεj0(y)

= (1− Fεj0(y))

[∫ y

−∞

Ĥej0(s)−Hej0(s)

(1−Hej
(s))2

dHej1(s) +

∫ y

−∞

d(Ĥej10(s)−Hej10(s))

1−Hej
(s)

]

+oP (n−1/2).

From the proof of Theorem 2, we also have

F̂εj
(y)− Fεj

(y)

= (1− Fεj
(y))

[∫ y

−∞

Ĥej
(s)−Hej

(s)

(1−Hej
(s))2

dHej1(s) +

∫ y

−∞

d(Ĥej1(s)−Hej1(s))

1−Hej
(s)

]

+oP (n
−1/2
j ).

Now write

Fεj0(y) = P

(
Yj −mn(Xj)

σj(Xj)
≤ y

)
= P

(
Yj −mjn(Xj)

σj(Xj)
− n−1/2R(Xj)− rj(Xj)

σj(Xj)
≤ y

)

=

∫
P

(
Yj −mjn(Xj)

σj(Xj)
− n−1/2R(Xj)− rj(Xj)

σj(Xj)
≤ y

∣∣∣∣Xj = x

)
fj(x)dx.

If we consider the probability inside the integral as a function of y and apply a Taylor

expansion, we obtain

Fεj0(y) = Fεj
(y) + n−1/2fεj

(y)E

[
R(Xj)− rj(Xj)

σj(Xj)

]
+ o(n−1/2). (30)

Straightforward calculations lead to ηj(Zj, ∆j|Xj) = η0
j (Z

0
j , ∆j|Xj). Following the

same steps as in the proof of Theorem 2, using Lemmas 12 and 13, and taking into
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account that Fεj0(y) = Fεj
(y) + O(n−1/2), we obtain the expressions

F̂εj0(y)− Fεj0(y) (31)

=
1

nj

nj∑
i=1

ξej
(Eij, ∆ij, y)− 1

nj

nj∑
i=1

(1− Fεj
(y))ζj(Zij, ∆ij|Xij)γj2(y|Xij)

− 1

n

k∑

l=1

nl∑
i=1

(1− Fεj
(y))

fj(Xil)

fmix(Xil)

σl(x)

σj(Xil)
η0

l (Z
0
il, ∆il|Xil)γj1(y|Xil) + oP (n−1/2),

and

F̂εj
(y)− Fεj

(y) (32)

=
1

nj

nj∑
i=1

ξej
(Eij, ∆ij, y)− 1

nj

nj∑
i=1

(1− Fεj
(y))ζj(Zij, ∆ij|Xij)γj2(y|Xij)

− 1

nj

nj∑
i=1

(1− Fεj
(y))η0

j (Z
0
ij, ∆ij|Xij)γj1(y|Xij) + oP (n

−1/2
j ).

Finally, by combining expressions (30), (31) and (32) we obtain the representation given

in the statement of the Theorem. The leading term of the obtained representation does

not depend on n, because the functions η0
j are defined in terms of distributions of ran-

dom variables which do not depend on n and the functions γj1 are defined in terms of

distributions of residuals.

Proof of Theorem 6. The leading term of the representation given in Theorem 5 when

working under Hl.a.

n1/2

k∑

l=1

pl

{
n−1

l

nl∑
i=1

ψ0
jl(Xil, Z

0
il, ∆il, y)

}

equals the leading term of the representation given under H0 in Theorem 2

n1/2

k∑

l=1

pl

{
n−1

l

nl∑
i=1

ψjl(Xil, Zil, ∆il, y)

}
,

where m0 in the first expression above plays the role of m in the second one. Hence the

asymptotic behavior is the same and the weak convergence follows immediately.

Proof of Corollary 7. The convergence of the test statistics under the alternative

hypothesis Hl.a. can be obtained in the same way as the proof of Corollary 4, by only

taking into account the weak convergence of the process established in Theorem 6.
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Figure 1: Scatter plot of ’log10(survival time)’ versus ’age’ (rescaled to [0, 1]) and estimated

regression curves of Group A (solid line, + for uncensored data, ¤ for censored data)

and Group B (dashed line, × for uncensored data, 4 for censored data), with J(s) =

0.75−1I(0 ≤ s ≤ 0.75) (top) and J(s) = 0.50−1I(0.25 ≤ s ≤ 0.75) (bottom).
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Figure 2: Graphs of the p-values as function of the bandwidth h when testing for the

equality of the regression curves with the test statistics TKS (line with circles) and TCM

(line with crosses). The curves were estimated using J(s) = 0.75−1I(0 ≤ s ≤ 0.75) (left)

and J(s) = 0.50−1I(0.25 ≤ s ≤ 0.75) (right). The solid horizontal line corresponds to a

p-value of 0.05.
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Figure 3: Graphs of the p-values as function of the bandwidth h when testing for constant

difference between the regression curves with the test statistics TKS (line with circles) and

TCM (line with crosses). The curves were estimated using J(s) = 0.75−1I(0 ≤ s ≤ 0.75)

(left) and J(s) = 0.50−1I(0.25 ≤ s ≤ 0.75) (right). The solid horizontal line corresponds

to a p-value of 0.05.
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