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Abstract

One of the most refered semiparametric regression models in literature is certainly the
Single-Index Model. It can be seen as a generalization of the Generalized Linear Model, where
the link function is kept unknown and has to be estimated via nonparametric techniques. In
this paper we propose a complete summary of the theory of the SIM : identification conditions,
estimation of the link, estimation of the index and goodness of fit tests, as well as a simulation
study permitting to compare the practical performances of different estimators of the index.

1 Introduction
Consider the model
Y =m(X)+e, (1)

with Y a scalar outcome, X a p-dimensional vector of regressors, m a function from a subset of R?
to the real line and € an univariate random disturbance. Suppose we are interested in estimating
the conditional mean function E(Y|X = z) from a sample {(X;,Y;),i = 1,...,n}. It is clear that
this function, also known as the regression function, is equal to m(z) provided that E(¢|X = z) is
zero, which is in general assumed.

It is well known that several main approaches can be considered to tackle the problem. First, one
can adopt the parametric point-of-view, assuming that m(.) and the distribution of £ are known up
to a finite set of parameters. These parameters can easily be estimated, e.g. solving a least squares
problem or by a maximum likelihood method. In spite of the easiness that this model presents
in terms of computation and interpretation of the results, it admits an important drawback : the
lack of flexibility. Indeed, in some situations, to force m(z) to belong to a parametric family of
functions can be too restrictive, even totally inappropriate, and this can lead to an important
modelling bias and wrong conclusions about the link between X and Y (unconsistent estimation of
m). On the other hand, the nonparametric approach releases such restrictive functional hypotheses
about m. Only mild smoothness conditions are required, e.g. one typically assumes that m(x)
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is twice differentiable, what allows a great flexibility for data analysis. Nevertheless, this greater
flexibility has a high cost : when increasing the number of regressors, these methods get very
demanding with respect to the number of observations. Specifically, the fastest achievable rate
of convergence in probability of nonparametric regression function estimators towards the true
regression function decreases as the number of components of X increases (Stone (1980)). Hence,
the larger the number of regressors, the larger the dimension of data samples needed in order to
achieve reasonable estimates. For sample sizes that we have to face in practice, this is translated
into critically bad estimates once the number of regressors is greater than 2 or 3. This phenomenon
is known as the ”curse of dimensionality” and motivates the need of dimension reduction methods.

Semiparametric models propose a mix of both approaches, which permits to compensate for
their respective drawbacks. They are characterized by a twofold parametrization, say 6 and -,
where 6 lies in a finite-dimensional space © and - lies in infinite-dimensional space I'. For example,
it should be the case if m belonged to a parametric family and the distribution of £ was totally
unknown in model (1). One of the most popular semiparametric model is precisely the single-index
model. It will be shown that it relaxes some of the restrictive assumptions of parametric models,
thus ensuring some flexibility, while avoiding the curse of dimensionality.

In section 2 a formal definition of single-index models and identification conditions are given.
Sections 3 and 4 propose a survey of the main estimation procedures in the SIM context while
section 5 is concerned with testing the single-index hypothesis. Finally, section 6 presents a small
simulation study that permits to compare the practical performances of these procedures.

2 Definition of a Single-Index Model and identification con-
ditions
2.1 Definition
Ichimura (1993) gives the following definition of a single-index model :
Definition 1 Let p and M be positive integers. The model
Y = g[h(X,00)] + ¢
where

e the random vector (X',Y) is such that Y € R and X € R? ;

e £ € R is an unobserved random disturbance, with E(¢|X) =0 ;

0o € RM is an unknown parameter vector to be estimated ;
e the function h: S x © — R, for some S x © C RP x RM | is known up to a parameter 0 ;

e the function g : R — R is not known ;
is a single index model.

Note that the model defined like above is indeed semiparametric : g lies in a finite-dimensional
space and the function g belongs to a functional space so that it can be seen as an infinite-
dimensional set of parameters. Moreover, the conditional probability of e is not specified, except
for E(e|X) =0.



Great simplifications in most of the results can be obtained by fixing

p
h(X,0)=0'X =Y 0% x®,
k=1

where 6%) and X® represent the kth components of vectors # and X. Ichimura calls such a model
a ”linear single-index model”. By sake of simplicity, and as this form for the function A is almost
ever supposed, ”single-index model” will always refer to linear single-index model in this paper.
Hence, all the methods examined hereafter rest on the main following hypothesis :

E(Y|X = z) = g(6p)- (2)
An equivalent formulation of hypothesis (2) is given by the following condition :
3o € R?: E(Y|X =z) = E(Y|0,X = 6z),

so that we can note that the single-index modelling is strongly related to the first step of the
projection pursuit approach defined by Hall (1989).

2.2 Identification conditions

Restrictions must be imposed in order to make 6y and g uniquely determined by the population
distribution of (X,Y). It is quite clear that such conditions are needed. Suppose for example that
g is a constant function on R : any vector of R? should be acceptable as estimator of 6y. It is
also clear that, as in a linear model, no identification is possible if there is an exact linear relation
among the components of X.

More formally, let o be any constant and 3 be any non-zero constant. Define the function g* by

9" (o + Bu) = g(u)
for all u in the support of 8;X. We have

E(Y|X=2) = g(6a) (3)
— g*(a+B0ha). (4)

Models (3) and (4) are equivalent : they could not be distinguished, even if the whole population
(X,Y) was known. Therefore, restrictions on « (location) and 3 (scale) have to be imposed in
order to make 0y and g uniquely defined. In the remainder, these will be : X contains no intercept
(location restriction) and the first component of g is equal to one (scale restriction)?.

Besides, g must be differentiable. Indeed, note that the single-index hypothesis imposes that
E(Y|X = z) remains constant if z changes in such a way that 6z stays constant. However, if 65X
is continuously distributed, the set of X values on which 6, X = c has probability 0 for any ¢, so
that no identification is possible. But if g is differentiable, then g(6,X) is close to g(c) provided
that 6, X is close to c. Therefore, the set of X values on which X is within any specified non-zero
distance of ¢ has non-zero probability and identification of 6y gets possible through ”approximate”
constancy of 6,X.

Based on Ichimura’s observations, it can be stated :

lanother common scale restriction is to fix the euclidean norm of 8g equal to one.



Theorem 2 6y and g are identified if :
e g is differentiable and not constant on the support of 6pX ;
e X admits at least one continuously distributed component ;

e the support of X is mot contained in any proper linear subspace of RP ;

e 0 € O, with®={fcRr:0V =1}.

The second condition ensures that for any p-vector 6, the linear combination §’ X is continuously
distributed. Note that if some covariates are actually discrete, two extra conditions are needed :
(1) varying the values of the discrete components must not divide the support of ;X into disjoints
subsets ; (2) g must not be a periodic function.

3 Estimating g

Suppose at first that 6y is known. Then g can be estimated by classical means of univariate
nonparametric regression of Y on U = l%X . Many various methods are proposed in Hérdle (1990).
Although it is well known that it is not the more efficient one, the Nadaraya-Watson kernel estimator
is used in many situations because of its easiness of implementation and interpretation and its
mathematical tractability. It is defined the following way.

Let {(X;,Y;),i=1,...,n} be the sample and define U; = 6, X;. Let K be the kernel function,
usually taken to be a bounded symmetric probability density, and h a bandwidth, i.e. a smoothing
parameter. Then the Nadaraya-Watson estimator of the regression function is

n

1 u—U;
g% (1) = ——— E K 2)Y;
90 w) = Sy 2K ()Y ®)
where p%" is the usual kernel estimator of the density p of U :
1 & u—U;
plol(v) = = K(——=
P = K (6)

Of course, these estimators cannot be implemented since 6, is not known. If an estimator 9 of
0o is known, the estimator of g becomes :

Pr) = — 3 K, @

~ ~
with U; = 6 X; and

5 1& u— IA]~
=0,h § K 2
P (w) nh p ( h )-

(8)

Methods of estimating 6y will be described in the next section. It will be shown that 6y can be
estimated with a n~1/2 rate of convergence in probability, i.e. there exist estimators 6 such that

(6 —60) = Op(n™'/2),



which is the typical rate of convergence for parametric estimators. Besides, it is well known that no
nonparametric estimator of regression functions can achieve this rate. The convergence of 9 is thus
faster than the fastest possible rate of any nonparametric estimator of g. Therefore, it is intuitively
clear that the difference between the estimators g%-"(u) and g%"(u) is asymptotically negligible.

Specifically, we have

(nh)V2[g%" () — g(uw)] = (nh)/*[g%" (u) — g(w)] + op(1)

for any u in the support of X, which shows that root-n estimation of f has no effect on the
asymptotic distribution of the Nadaraya-Watson estimator. See Horowitz (1998) for a complete
argument of this result. Hence, the estimation of g is direct via standard methods once an estimator
of 6y is known, so that this point will no more be explicitly developed in the next sections. Note
however an important attraction of the SIM : because the nonparametric estimation of g, the model
remains flexible enough, but as this nonparametric estimation is done on an univariate index U,
the curse of dimensionality is avoided.

4 Estimating 6,

Many methods of estimating 6y have been proposed in the literature. We resume most of them in this
section. First, notice that estimators of § can be classified in two main groups, according to whether
they require solving nonlinear optimization problem (M-estimators) or not (direct estimators).

4.1 Me-estimators

If g was known, a M-estimator of 8 should typically have the form

0 = arg max U(Y;, g(0' X; 9
gy 0 0(0X), ©)

where ¥ : R?2 — R is a function verifying some mild regularity conditions. In the SIM context, we
substitute the unknown g for its leave-one-out Nadaraya-Watson estimator, so that the criterion to
maximize becomes

—Z\If ,(0'X)). (10)

The leave-one-out estimator of g at point 8’ X;, denoted by g( Z) (6’ X;), is equal to the Nadaraya-
Watson estimator (7) based on all the observations but the ith, and is used for evident bias reasons.
Note that a trimming function 7(X;) is often added to (10) for technical reasons. It is essentially
useful in the proofs in order to guard against too small values for the denominator appearing in the
expression of g? [ )(0 X;). Nevertheless, in practice, one may often take 7 = 1, so that we will not
refer again to this problem.

Delecroix and Hristache (1999) give sufficient conditions on ¥ in order to make the estimator
0 as. consistent and asymptotically normal, for any joint law of (X,Y"). They show that it is the
case if U is equal to the log-likelihood of a density belonging to the exponential family, i.e. if there
exist differentiable functions A, B and C : R — R satisfying

A(x)+C'(x)r=0

and



C'(z) >0 VzeR,

such that

¥(y,z) = A(z) + C(z)y + B(y). (11)

Theorem 3 0 converges a.s. towards 6y, and

if

V(@ —65) 5 N(0, )

{(X,Y;),i=1,...,n} is an i.i.d. sample ;

the support S of X is compact ;

;relgp(G'x) >0;

p and g are three times continuously differentiable functions, and their third derivatives satisfy
suitable Lipschitz conditions ;

G(z,0) = g(0'x) is twice continuously differentiable function with respect to 6, on S x © ;
P(z,0) = p(§'z) is continuous on S X O ;

E(JY|™) < oo, m>4;

o%(z) = var(Y|X = z) is bounded and positive on S ;

the kernel K is a twice continuously differentiable function with support [—1,1] and the second
derivative satisfies a suitable Lipschitz condition. Moreover,

. 1ifj=0
j — .
/v K(v)dv—{ 0ifj—=1

the bandwidth sequence is such that h ~n~"7, with v € (%, %) ;

U(y,x) is as (11) with the functions A and C twice continuously differentiable and their
second derivatives satisfy a suitable Lipschitz condition ;

the matriz
89(0'X)| 6g(0'X)| }
90 0=0¢ 69/ 0=0¢

M = E{C"[9(6,X)]

is positive definite.

Note that X3, = M~V M~ with

69(0'X) | 8g(0'X) | }
09 =0T g 10=b0

V = E{[C"(9(65X))]*0*(X)

and that this matrix can be consistently estimated. An important observation is the following :
since 8 is known to be equal to 1 for any 6 belonging to ©, the matrix M and V are degenerate,
so that their first row and their first column are equal to zero. This also holds for ¥js. Another
remark is that the estimator # can be made efficient via a slight modification of the criterion, for
any function ¥ satisfying (11).

We examine hereafter two important particular M-estimators : generalizations of the parametric
least squares and maximum likelihood estimators.



4.1.1 Semiparametric Least Squares (SLS)

Description As in a parametric least squares problem, the idea is to minimize the mean square
distance between the observed values Y; and the values given by the model g(6’ X;). If g was known,
we should have the classical least squares estimator given by

. _ 15 NV — o0 X2
0 —argmlnn;w(Xz)[Yl g(0' X7, (12)

where w is a positive bounded weight function. Under mild regularity conditions, least squares
theory shows that this estimator 6 is root-n consistent (see o.a. Amemiya (1985)). In the single-
index context, the least squares criterion to minimize becomes

—ZwX)[Y a0 (O X, (13)

where the leave-one-out Nadaraya-Watson estimator is used as a trite function of 6.
Ichimura (1993) studied this method in details. He pointed out a important modification : in a

general framework, it is needed to weight the terms in the calculation of g%" the same way it was
done in the calculation of (12). The estimator §?’_}§)(0'X,-) appearing in criterion (13) now becomes

6'X;—0'X;
> w(X;)K(==5—1)Y;

~0.h [pt J#i
= ;worj)K(%" X0 X
JFL

However, if the variance function 0 (x) depends on x only through the index 6z, then this correction
is not necessary.

Weighting scheme The choice of the weight function w affects the efficiency of the estimator.
Newey and Stoker (1993) found the efficiency bound for semiparametric models. In a single-index
context, the SLS estimator achieves this bound if

w(z) = 1/0%(x). (15)

If 0%(x) is unknown, a consistent estimator 3%(z) has to be used in (15). Such an estimator can

be obtained by using the following two-steps procedure : first, estimate 6y by 51, the minimizer of
the unweighted version of (13), which is a root-n but inefficient estimator. Then let e; be the ith
residual from the estimated model, i.e.

= Y; - g (6, X)),

and set 3%(x) equal to a nonparametric estimator (e.g. the Nadaraya-Watson estimator) of the
mean regression of €2 on z. Note that if we know a function V such that

o*(z) = Vig(b2)],

we can also act as follows : first compute 01 taking the welght functlon w to be identically equal to
1, as above. Then in expression (13) replace w(X;) by {V[g?* (0 X;)]}~! in order to compute .



4.1.2 Semiparametric Maximum Likelihood (SML)

Description Another optimization based method is inspired by the parametric maximum likeli-
hood methods. In our single-index context, the joint distribution of X and Y and the conditional
density of Y given X clearly depend on 6 and on g. Suppose this conditional density depends upon
X only through 6,X and denote these two Iy ¢(.,.) and I, (.|.), respectively. The likelihood is

Lg(e) = H lg,G(Xia Y:)
i=1

= JJleo(Vilt'X =6'X,) f(Xi)

i=1

where f is the marginal density of X. Hence the log-likelihood is

LLy(0) =) "logle(Yil6'X = 60'X;) + > log f(Xi).

=1 =1

n
Of course the term ) log f(X;) does not depend on g and 6, so that maximizing LL4(#) amounts

i=1
n
to maximizing Y logly ¢(Y;|X = X;). If g was known, the maximum likelihood estimator of 6

1=
should be given by the following maximization problem

6" = argmax ) loglyo(Yi|6'X = 0'X;). (16)
oce -

Standard theory of maximum likelihood estimation implies that 6* is root-n consistent, efficient
and asymptotically normal under regularity conditions.

Nevertheless, since g is unknown, 8* is not feasible. If the conditional distribution of Y given
X is known up to g and 6 (what we call the "nonignorant” semiparametric maximum likelihood),
we simply overcome the problem by replacing g in problem (16) with its Nadaraya-Watson leave-
one-out estimator, thus forming a pseudo-likelihood. The estimator is finally given by

0 = argmaxy log L. , Y;|0'X =0'X;). 17
g m ; glgon o(Yil ) (17)

If the conditional distribution of ¥ given X is not known (the "ignorant” SML), we estimate it in
a fully nonparametric way :

Y,—Y; 0'X;—0'X;
;K( Y0 (EX Xy
JF

LYo X =0'X;) = ,

X, _0'X,
Y K(—5—1)
i &

i.e. nothing else but a kernel estimator of the joint distribution of (6’ X,Y’) divided by the classical
kernel estimator of the marginal density of ’X. Delecroix et al. (2003) show that the resulting
estimator is asymptotically efficient : it keeps the most important property of the parametric
maximum likelihood estimators.



Illustration To illustrate this method, consider the case where the only possible values of Y are
0 and 1 (binary-response models). See Klein and Spady (1993) for a detailed study of the problem.
With the constraint of Y being binary, we have directly that

g0ox) =E(Y|X =2)=P(Y =1|X =1)
which leads to the following conditional distribution of Y given X :
loo(Y|X) = g(6/'X)" (1 - g(6'X))' ™

The estimator of g is thus given by?

= sngmax" {Y:loglg? (0°X,)] + (1~ Yo logl1 — 30 (¢ X)) }.

b0 o

4.1.3 Bandwidth selection

In order to construct the estimator (14), a bandwidth h is needed. The choice of that bandwidth
is crucial, because practical performance of the method can depend significantly on it. Delecroix et
al. (2003) propose an empirical rule for selecting it. Actually, they extend the methodology first
introduced by Hérdle et al. (1993) for the SLS estimator. Define

n

§(0,h) = > WY, G0 (0 X)) (18)

i=1

the criterion to be maximized. One way to select the bandwidth is to consider it as an extra
parameter of the model, and to maximize the aim function with respect to it as well. That is :

(5, B) = argmax S(6, h). (19)
0€©,heR+

An important feature is that the semiparametric criterion §(0, h) can be split into a purely para-
metric part S(#), a purely nonparametric part 7'(h) and some negligible reminders terms, where

Z (i, 9(6'X:)) — (Y;, 9(66X:))]

and
1 0
T(h) = > W(Y;, 525 (6X:).
i=1
5(6) is an approximation of S(6) = E(¥(Y, g(¢' X)) and T(h) is the usual cross-validation criterion
for choosing h when 6 is known. This result leads to a simple way of simultaneously maximizing
with respect to both 6 and h as it is very much like separately maximizing S(#) with respect to 6

and T'(h) with respect to h. It is proved that this method produces a root-n consistent estimator
of # and an asymptotically optimal estimator of A, in the sense that

E/hopt — ].,

where h,pt is the theoretical optimal value of the bandwidth.

2here the above mentioned eventual trimming term should be useful in order to keep Z]\(eihi) away from 0 or 1 as
well.



4.2 Direct estimators

Although their many advantages (efficiency, asymptotic normality, automatic selection of the band-
width, ...), M-estimators admit an important drawback : they require solving an intricate opti-
mization problem in a high dimensional space (see e.g. (19)). In spite of slightly worst theoretical
properties, direct estimators are highly attractive, as they provide the estimator on an analytic
form.

4.2.1 Average Derivatives Estimator (ADE)

Recall we set u = 0yz and m(z) = g(yz). Average derivatives method rests on the fact that

09 ,
Vm(z) = 8—2(00@ b,

which induces that

b = Blu(X)Vm(X)] = Bu(X) 22 (6,X)] 0y (20)
for any bounded continuous weight function w. The quantity §, is called a weighted average
derivative of g with weight function w. It appears from (20) that any weighted average derivative is
proportional to 6y, provided E[w(X )%(GGX )] is not zero. Note that this condition is in particular
violated when w = 1, g is an even function and X is symmetrically distributed. Remark also that
considering the gradient of m implies that X is a continuously distributed random vector. However,
an extension of the method to the case where some components of X are discrete is possible. See
Horowitz and Hérdle (1996).

Unweighted Average Derivatives (UADE) Hérdle and Stoker (1989) take w = 1 and use
nonparametric estimation of the marginal density of X. Let f(z) be this marginal density, Vf =
Of |0z its gradient vector and let | = —V f/ f the negative log-density derivative. By definition, we
have

5= /Vg(%x)f(a:)dx.
Assuming that f(z) = 0 on the boundary of z values, integration by parts gives

6

- / 9(02)V £ (z)dz

/ 9(6)2)l(z) f (2)da
E[Y 1(X)].

The proposed estimator is a sample analog of this last expression, using a nonparametric estimator
of I(z), that is

~ 1
b= U »(X)Y; (21)

where



fA'h can be the classical leave-one-out multivariate kernel density estimator

Rl = =S K(E=2)

i

(22)

with K a multivariate kernel function. Remark that dividing by ]Zl*i) can lead to erratic behavior
when its value becomes too small, what can motivate once again the introduction of a trimming
term in (21). By dividing this vector § by its first component, one gets an estimate of y. Hardle
and Stoker (1989) show :

Theorem 4 § is a consistent estimator of 6 and

V(6 —8) % N(0,%,)

e X is a continuously distributed vector of size p with density f being smooth and having partial
derivatives of order ¢ > p+2 ;

o the support Q of f is a convex subset of RP and f(x) = 0 for all x € 0N, where 00 is the
boundary of Q ;

e the function g is twice differentiable ;
e the second moments of gﬁ and gl exist ;
e the function ma(z) = E(Y?| X = x) is continuous in z ;

e f(z) and g(z) obey suitable local Lipschitz conditions and any partial derivative of f is locally
Holder continuous ;

o the bandwidth sequence is such that h — 0, nh??=2 — 0 ;

o the multivariate kernel K has support {u | ||u|| < 1} and is such that K(u) =0 if ||Ju|]| =1
and [ K(u)du=1. K is of order g, i.e.

. =0if0<li+..+0, <
/ull ub ...u‘;K(U)d“{ 7éoifl1+.1..+lng '

This latter condition implies that K must be a higher-order kernel, meaning that it must take on
positive and negative values. Such kernel is usually used to reduce bias. In other words, it is needed
here to insure that the asymptotic distribution of /n(é — §) is centered at 0. Remark also that
§ achieves Op (n~1/2) rate of convergence although nonparametric kernel estimators of I(z) cannot
achieve it. This is due to the sum over 7 in (21), that makes 5 an average of kernel estimators. It
is well known that averages of kernel estimators can achieve faster rates of convergence than kernel

estimators that are not averaged. The variance-covariance matrix X, is the covariance matrix of
r(Y, X), where

(Y, X) = Vm(X) + [Y — m(X)]I(X),
and can be consistently estimated.

Several remarks can be expressed. First, the method is based on a fully nonparametric estimation
of the multivariate density f(x), which is severely subject to the curse of dimensionality. Hence,
we loose the main advantage of the single-index modelling.

11



Second, experiments show that the method is very sensitive to the choice of h. It turns out to
be very important to have automatic methods for setting the bandwidth that assures good small
sample behavior of the estimator. Hardle et al. (1992) state that the best choice of h is substantially
smaller than the typical bandwidth for density estlmatlon In fact, it appears that the behavior
of I" is essentially dictated by the estimation of V f what makes the optimal bandwidth close to
the typical bandwidth for density derivatives estimation. They show that the best bandwidth is of
order n=2/(24+P)  and propose a plug-in estimator based on the minimization of the MSE of 5. The
idea is very 31m11ar to what will be done for density—weighted ADE, see below.

Third, remark that since \/ﬁ(/é\ —§6) — N(0,%,), the delta method provides

V(6 — 6p) — N(0,9),

with
Q:¢Zu¢,a
where
0 0 c-- e 0
(2
&5 & O 0
b= : 0o . : . (23)
: : ’ 0
P)
_% 0o --- 0 6(_11)

Note that the first row and the first column of the obtained matrix (2 are equal to zero, which
obviously marks the fact that the first component of 0 is equal to one, without uncertainty.

Density-weighted Average Derivatives (DWADE) The previous method requires the esti-
mation of both the density f and its gradient. To avoid this twofold estimation, Powell et al. (1989)
have proposed to set w(z) = f(z). With this weight function, we have, from (20),

o= [ Vo) )da

Assuming again that f(z) = 0 on the boundary of the support of X, we find

6 = 2 [ 962V (s) flz)da
—2 E[Y Vf(X)] (24)

so that we can estimate 6 with

~ 2.
bp=—— YiVf y(Xa).
i=1

As announced, only the gradient of f has to be estimated. This can be done using the formula

Vi) = 1) )3
NE=

12



which is nothing else but the gradient of a leave-one-out version of the kernel density estimator
(22). The estimator of é; is thus directly given by

br=- n(n — 1)hp+1 E;VK T — )Y (25)
i=1j#1i

Remark that no denominator appears in this latter expression, what is another great advantage of
this weighting scheme, compared with the unweighted ADE. Nevertheless, the estimator is again
based on a nonparametric estimation in a multidimensional space. Powell et al. (1989) prove the
following theorem. Let P = (p+4)/2 if p is even and P = (p+ 3)/2 if p is odd.

Theorem 5 3f is a consistent estimator of ¢, and

V(s —67) % N(0,%).

e X is a continuously distributed vector of size p with density f being smooth and having partial
derivatives up to order P+1 ;

o the support Q of f is a convex subset of RP and f(x) = 0 for all x € 0N, where OQ is the
boundary of Q ;

e g is continuously differentiable in the components of x ;

e the components of the random vector Vg and random matriz [V f][Y, X'] have finite second
moments ;

e Vf and V(gf) satisfy suitable Lipschitz conditions ;
e E(Y?|X =z) is continuous in z ;
o h obeys nh?*? — 0o and nh*F — 0 as n — oo ;

o the multivariate kernel K has support {u € RP | ||u|| < 1} and is such that K(u) = 0 if
[lul| =1 and [ K(u)du = 1. All moments of order P of K ezist. Besides, we have

=0if0<li+..+l, <P
/ulllu122 u;pK(u)du{ 03l ot b= P

Note that this latter condition requires K to be a higher-order kernel, as P > 2 once p > 1. The
matrix X is 2 times the variance-covariance matrix of 7(Y, X)), where

r(X,Y) = f(X)Vm(X) — [Y —m(X)]VF(X),

and can be consistently estimated. As previously, this result implies that 0 is a \/n-consistent
estimator of 6y, with asymptotic normal distribution.

Based on observations of Hérdle and Tsybakov (1993), Powell and Stoker (1996) propose a
plug-in bandwidth selection rule for this estimator. They develop the mean squared error of 6 as

E[Hgf — 682 = Qin ' + Qan2h P2 4 Q3h?F + lower order terms, (26)
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where (1, Q2 and Q3 are constants depending on the unknown parameters of the model. It is easy
to see that the value which minimizes the leading terms of (26) is

h* = ho n~2/(2P+r+2)

where

1/(2P+p+2)

ho = <Q2(p+2)) .
PQs

The constants @2 and ()3 can be consistently estimated provided there is an initial bandwidth

estimate h; available. This pilot bandwidth has less influence on the final result, so that it can be
determined via less elaborate methods. Consistent estimators are

~ 1 X. — X;
= —— S (Y, - Y)? ||[VK(EL—2)? 2
% = LY VKR (27)
Q= | ] I
P )P —RfT
~ 1/(2P+p+2)
o = Q2(p+2)
PQs
where 7 is any positive number # 1. It is shown that
h* = ho n~2/(2P+pt2) (28)

is such that

E* — h* — op(n_2/(2p+p+2)).

Iterative average derivative estimator (IADE) The major drawback of the previous two
procedures is the need to estimate the density of X and/or its gradient in a fully nonparametric way,
what can lead to very poor performance due to the curse of dimensionality. Hristache et al. (2001)
propose another type of direct estimate of 8y, which can be regarded as an iterative improvement
of the average derivative estimator. The idea is the following. Suppose for the moment that p = 2
and that the observations X; are scattered uniformly over the square [0, 1]2. The expected gradient
of m, appearing in (20) with w = 1, will be estimated by a sample average of estimates of this Vm
at each point X;. At X;, a kind of local least squares problem is used :

’I’?L(Xz) . . n L / N I u
<%<Xi))‘62§;‘;%‘p§(ya ) =B (X = XOPK(Z5). (29)

As kernel, it is here recommended to choose a function depending only on the squared euclidean

norm of its argument, that is
X;— X, 1; - X2
K|l =2 ') - K, (+X*=—= 0
(5= (5
so that the weights of all points X; outside a spherical neighborhood V},(X;) of diameter h around
X; vanish. Hence, the expected gradient

8" = E[Vm(X)]
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can be estimated by

~ 13—
= — XZ
p n;ym()
leading to an estimate of 8y being
6= % (30)
B
It is shown that the following upper bound for the error of the estimate ﬁ holds :
1B -6 < Cuh+ G LElL (31)

\/_ hJ
where Cy and Cs are constants and £ is a gaussian random vector with zero mean. The first term is
the deterministic error, due to the local approximation of m by a linear function in (29). It is thus
a bias term and therefore proportional to h. The second term is the stochastic error, independent
of m and of order (y/nh)~!. The balance between these two terms gives® h ~ n~/4 and the error
is then

18— 67|l = O(n=1/4), (32)

just as well for 3 as for §. Of course, we are far from the achievable n~1/2

that an improvement is needed.

rate of convergence, so

Recall that we are working for the moment in a two-dimensional space for X. As the bias term
of (31) is in fact proportional to the width of the projection of the spheric neighborhood V;,(X;) on
the direction 6y, we can stretch V,(X;) along the direction orthogonal to 6y without increasing this
bias term. This reflection is based on a well known property of the gradient : it points towards the
direction in which the function increases most, and this function is locally constant in the orthogonal
direction. Although 6y is not known, we can use the first estimate (30) : at any X; define an elliptic
window V4 ,(X;), centered at X;, with small axis of size O(ph) (with p < 1) oriented along 6, and
large axis of size O(h) orthogonal to . If p is small and @ a good approximation of 8, we can
expect that the approximation error of m by a linear function in the neighborhood V3, , would be
small. We can deal with such an elliptic window by replacing the weights Ko(h~2||X; — X;||2) in
(29) with Ko(h~?||A,5(X; — Xi)||*), where the positive definite symmetric matrix

Ag=1+p 00 (33)

defines the elliptic geometry of the window. The estimate of the gradient at X; is now given by

XD N g min Z[ " —c) — B(X; — X)]*Ko “AP’@’(XJ; Xl | (34)
h

Vm(X;)) ccrper

that is, from classical least-squares theory,

P 1 14,50 — X))

3when p > 4, one cannot take the optimal initial window h = O(n~1/4) in(29) because there will not be enough
observations points in the neighborhood V4, (X;) to compute the p-dimensional vector Vm(X;) (problem related to
the curse of dimensionality). One has to take h = O(n~1/7).
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with

Wi, (@) = i<xf_ x) (Xj L ) 'K, (IIA,,,z;(X;; XZ->||2> .

Jj=1

After averaging, we can compute the estimator 8 of 6y the same way as in (30). It can be shown
that this estimate satisfies

16— 0ol =03hp2+04%

if there exists some v > 0 such that || — 6o|| < v and p > 7. From (32), we have y = O(n=1/4), so
that we can take h = O(1) and p = O(n~'/%) leading to

16 = 6o|| = O(n="/2). (35)

The estimator  is thus root-n consistent. The procedure can be iterated, each time flattening the
elliptic window in the direction of the current estimate and stretching it in the orthogonal direction
: the bias term then rapidly becomes negligible with respect to the stochastic term. Note that
thanks to the matrix notations (33), the argument easily extends to p > 2.

The assumptions needed to attain (35) are the following :

e the kernel function K is nonnegative and bounded by 1, is positive on [0,1[ and vanishes
outside, and is continuously differentiable;

e g is twice differentiable with bounded second derivative;

e the value
E[Vm(X)]
is separated away from 0;

e the design points are "well diffused” throughout the support of X (see the reference for more
details).

This latter condition ensures that the matrix Wh,Ap'@(') is well-conditioned at any point Xj.
Note that the asymptotic distribution of this estimator is not mentioned as such. It is simply
stated that \/n(0 — o) is close in distribution to a gaussian vector.

4.2.2 Sliced Inverse Regression (SIR)

In a dimension reduction purpose, Li (1991) proposed a simple and easy to implement algorithm.
Duan and Li (1991) adapted this method in the single-index context. It is based on the relation-
ship between 0 and the inverse regression E(X|Y = y). Unfortunately, their results require an
important design condition :

Condition 6 For any 6 € RP, the conditional expectation E(6'X|0,X = u) is linear in u.

If it is not the case, a bias has to be taken into account. It can be shown that this condition is
fulfilled if X is sampled randomly from any nondegenerate elliptically symmetric distribution, e.g.
the normal distribution.

16



Description The enormous advantage of considering the inverse regression function &(y) =
E(X|Y = y) is to avoid the curse of dimensionality. Indeed, £(y) can be nonparametrically es-
timated in a reliable way since Y is a scalar. It is noteworthy that we have

£(y) = p + Zbor(y), (36)
where u = E(X), ¥ = cov(X) and

_ E[6y(X —p|Y =y
Rly) == 97,56,

This follows from the fact that

O(z — 1) X600

X0,X = 0yx) =

due to the design condition on X, and £(y) = E[E(X|0,X)|Y = y].

Hence, from (36), it appears that g is proportional to 371(£(y) — u), with the proportionality
constant being 1/k(y). For any y such that x(y) # 0, we can thus estimate 6y by suitably scaling an
estimate of ¥ ~1(&(y) —p). In order to combine the information from all y’s, consider T’ = cov(£(Y)).
We have, according to (36), that

I = var(k(Y))X600p>.

This matrix has clearly rank one : the only degree of freedom of £ is y. From Cauchy’s inequality,
it is found that 0y solves the maximization problem
o'To
0o = argmax——. 38
0 %E@ 0120 ( )
0y is thus the suitably scaled principal eigenvector for I', with respect to the inner product

< a,b>=a'%h. (39)

The maximum value of the quotient is the principal eigenvalue. Remark that the spectral decom-
position for I' is trivial : all eigenvalues except the first are zero, since the rank of I" is one.

Sampling case The estimation of g is of course based on relation (38), where the matrix I" and
Y are estimated from the data. First of all we need to estimate the inverse regression function
&(y). For simplicity, a step function is used for this estimation. It might be not very efficient if
the interest is the function £(y) itself, but here it is just used at the first step of the procedure and
it can be shown that the whole method is almost insensitive* to the smoothing degree of E The
estimation is done as follows : first, the range of Y is partitioned into, say, @ slices {s1,...,sg}. For
each slice, £(y) is estimated by the sample average of the corresponding X;’s, that is

n

Y XI(Y; € 5)
:L if y € s4.
> I(Y; € sq)

4this is emphasized in Zhu and Fang (1996), where a kernel estimate of the inverse regression function is used.
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Similarly to (36), we have

€ = E(&,) = n+ S0k,
where
ke = Ek(Y)|Y € s4].

Thus, if the scalar kq for the gth slice is nonzero, we can estimate the direction of 8y using the

direction of i—l(Eq — X), where X and S are the sample average and variance-covariance matrix
of vector X.

Since there is usually more than one slice for which &, is nonzero, we can combine the information
from all these slices to estimate the direction of 6y. Let

5 = (51) "')fQ),ﬂ E: (gla "'agQ)Iﬂ k = (kla "'akQ)Ia
pg = P(Y €sg), p=(p1,..,pq)" and P = D(p) — pp/

where D(p) denotes the diagonal matrix with elements being the elements of vector p. p, can
obviously be estimated by p, the sample proportion of Y;’s in the gth slice, which leads to an

estimate P of P. T is then estimated by

~

T = ¢ P,

which is nothing else but a weighted sample variance-covariance matrix for the vector E Remark
that, by using P as weight matrix, each slice is weighted by the sample proportion of observations
falling inside the slice. By the strong law of large numbers, I' converges almost surely to

€ PE = K PkX0,0,%,

which is proportional to I'. The estimator of fg is then the answer of a maximization problem
similar to (38) :
- AY:
0 = argmax———. 40
R ST (40)

This sliced inverse regression estimator is thus the principal eigenvector for T with respect to the
inner product (a,b) = o’ $b. If the matrix 3 is well-conditioned, it is well known that it amounts

to the (suitably scaled) principal eigenvector of the matrix - 1F.

If 8,;, is the unit principal eigenvector of ST and 8§y the unit principal eigenvector of £~1T,
Duan and Li (1991) showed that

Theorem 7 5\3” is a consistent estimator of 6 and

\/ﬁ(/&\siq" - 60) i’ N(O, Z:sz"r)

e the regressor variable X is sampled randomly from a nondegenerate elliptically symmetric
distribution;

o k'Pk > 0.
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This latter condition can be difficult to check in practice, because very few is usually known about
k. A sufficient condition is that k # 0, which is much easier to verify. For example, this condition
holds if x(y) is monotonic. On the other hand, this condition prevents the inverse regression curve
from being degenerate. This could be the case if g is a symmetric function about the mean of X.
The matrix ¥4, can be found in the reference. Of course, this result implies that 6, is a root-n
consistent estimator of §y and is asymptotically normal, with variance-covariance matrix ¢X ¢’
¢ is as in (23).

Violation of the design condition A natural question is to ask whether the slicing regression
still provides a good estimate of 6y when the hypothesis about the design of X is not fulfilled
anymore. Let 6% be the solution to the maximization problem of (38) and A be the value of the
quotient for this 8*. 6* is the population version of the sliced inverse regression estimate. However,
if the condition is not met, #* might not be collinear with 8y. Let A = cov[E(X |0, X = 0yx)]. With
respect to the inner product (39), the principal eigenvector of A is 6y and its principal eigenvalue is
one. Let 7 be the second eigenvalue. Since, under the condition, E(X|0,X = 0yz) falls along the
straight line (37), 7 = 0. If the hypothesis is violated, E(X |05 X = 6x) is a curve which meanders
around (37) and 7 measures the largest mean squared deviation from this line. Duan and Li (1991)
show that a bound for the noncollinearity between 8* and 0y is given by

sin? (6, 0%) < @

We see that 6g and 6" are collinear either if 7 = 0 (the condition is not violated) or if A = 1
(Y = g(0,X), where g is invertible). As 7 depends on A which itself depends on 6y, this bound can
be estimated if we have an initial estimate of this parameter. If it is not the case, we can replace 7
by supT(f), obviously leading to a more conservative bound.

6€o

4.3 Other estimators

The four previous ideas (SLS, SML, ADE, SIR) are historically the most popular ones in order to
estimate 0y. Nevertheless, this list is far to be exhaustive. There are much more estimators which
have been proposed in the literature. Han (1987) proposes an estimator based on the rank correlation
between the observed values and the values fitted by the model. Asymptotic theory for this estimator
is completed in Sherman (1993) and a generalization is given in Cavanagh and Sherman (1998).
Unfortunately, this method requires the link function g to be strictly monotonic. In a dimension
reduction purpose, Li (1992) suggests a method called Principal Hessian Directions, which can be
adapted to the Single-Index context. Cook (1998) revisits it. However, the main results are based
on Stein’s lemma’®, which assumes that X has a normal distribution. Naik and Tsai (2000) extend
the method of Partial Least Squares, well suited in parametric regression, to the case of Single-
Index models. Xia et al. (2002) propose an adaptive approach for dimension reduction, called the
Minimum Average Variance Estimation (MAVE). This is a kind of M-estimation method, inspired
by the SIR method, the TADE method and the idea of local linear smoothers, but with fewer
restrictions on the distribution of the covariates. A drawback is that no asymptotic distribution
for the estimator is provided. Finally, Huh and Park (2002) derive an extension of ADE, where
the gradient of the regression function is evaluated in any X; via local polynomial fits based on
kernel weighted conditional likelihoods. A problem is that the method requires the maximization
of locally weighted log-likelihood, that is it looses the main advantage of direct estimators. Besides,
the conditional distribution of Y given X is assumed to belong to the exponential family.

5lemma 4, in Stein (1981).
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5 Testing for the single-index hypothesis

Although the unknown nature of g provides a great flexibility for the model, hypothesis (2) remains
somewhat restrictive : geometrically, it amounts to say that the regression function is constant
when the regressors are varying along any direction orthogonal to 8g. Therefore, it seems crucial
to check the validity of this assumption. Specifically, we have to test

Hp:3g: R — R, 30y € R? such that E(Y|X = z) = g(yz) a.e.
versus

Hy:Vg:R — R,V € R E(Y|X =z) # g(0yx).

5.1 Fan and Li’s test

The first consistent test was proposed by Fan and Li (1996). Their procedure was based on the
analysis of the residuals. With

g = Y; - 9(06){2)’
we see that

E(e|X =X;) = E(Yi|X =X;) — E(g(6,X:)| X = X;)
= m(X;) - 9(6pX),

which equals zero if and only if Hy is true. Hence, E{[E(g;|X = X;)]?} > 0 and the equality
holds only under Hy. This property will be the basis of the test. Based on 8 a root-n consistent
estimator of fp and g% the associated kernel estimator of g with bandwidth h (see expression (7)),
an empirical version I,, of E{[E(g;|X = X;)]?} can be computed and compared to 0. Of course,
the larger I, the more evidence there is to reject Hy. Asymptotic properties of this test statistic

are given and it is shown that the test can detect sequences of local alternatives that differ from
the null by O((nh?/?)=1/2),

5.2 Delecroix, Hall and Vial’s test

This latter remark constitutes the main drawback of the procedure : it fails to detect alternatives
distant from n~='/2 from Hpy. Delecroix et al. (2004) develop such a test, based on geometrical
arguments. As explained in introduction of this section, under Hy, the regression function m is a
p-variate function of x which varies only with the value of the trace of x on 6y.The proposed test
statistic can be built on a measure of the variability of integral averages of m over hypercylinders
whose axes are orthogonal to the potential index vector of the model. In this case, if the hypercylin-
ders have congruent bases and represent axial slices of a space orthogonal to 6y, then the integral
averages will not vary with either the thickness or the location of the hypercylinders. Formally, let
&1 and Sp be two such hypercylinders (see the figures 1 and 2 for a representation in the case p = 2)
and let Is(m) be the integral average of m over an hypercylinder S :

Ts(m) = T, (1)
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Fig.1 : hypercylinders whose axes are orthogonal to the index vector.
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Fig.2 : hypercylinders whose axes are not orthogonal to the index vector.

Assuming the single-index model hypothesis, we have®

ISl (m) = IS2 (m)

Building an empirical version of such Is(m), depending on the orientation of the cylinders, the
variability of integral averages can be estimated by”

—

W(6) = / (Ts, (m) — T, (m))?dS,

where the integral is taken over the "set” of all pairs of hypercylinders defined as above. Naturally,
if W(0) exceeds a certain critical value, Hy is rejected. The proposed calibration is based on a
bootstrap algorithm.

5.3 Other tests

Tt is probably worth mentioning Li (1992)’s approach. He tackles the problem in a totally different
way, considering the multiple-index model, that is

Y = g(0,X,60,X, ..., 0,X) +e,

and proposes a significance test for determining the number k£ of components needed in the model.
Of course, finding that one component is enough amounts to accept the single-index hypothesis and
vice-versa. The clue is to check how many eigenvalues of an estimate of a matrix that we know
being of rank k are significantly different of 0. Based on Stein’s lemma, the method unhappily
requires the normality of the regressors X. However, the idea is interesting.

6a formal mathematical statement of the equivalence of single index-ness and this property can be found in
Delecroix et al. (2004).
"Note that § = arg min W () can be shown to be a root-n consistent estimator of 0.
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Finally, one can also mentioned Stute and Zhu (2002)’s test. As for the test of Fan and Li,
this one is based on the residuals. The difference is that they transform, via an estimated quantile

~
function, the estimated index 6 X; to a variable which is approximately uniform on the unit interval
[0,1], which makes everything distribution-free, no matter the distributions of § and X. The
obtained test can detect local alternatives when they approach the null at the rate O(n_l/ ).

6 A simulation study

In this section, we investigate the practical performances of the different methods proposed in
the previous sections from the perspective of estimating the unknown index vector #y. The data
{(X;,Y:),i=1,...,n} are independent and drawn from the following model :

Y; = g(6,X:) + &,

with
g(z) = sin(z),
p=2,
00 = (1’ 2)/a
g; ~ N(0,0.1)
and
X; ~ N(0,I).

First of all remark that the normal distribution of the error term implies that the nonignorant SML
exactly amounts to the SLS. Therefore, the results given in the table below for the SML are the
results for an ignorant SML. Second, note that as the first component of 6, is known to be 1, the

only parameter to be estimated is 0(()2), equal to 2.

The sample size is set to n = 50, n = 100 or n = 200 and 500 Monte-Carlo replications are drawn
in each case. Each time a kernel estimate was needed, we used the Nadaraya-Watson estimator with
Epanechnikov kernel. The needed bandwidths have been directly determined from (19) for SLS and
SML, and has been fixed after prior experiments for AD estimators. So was set the number of slices
for SIR. The expectation and the standard deviation of 6, for each method, are given in the table
below.

n=>50 n = 100 n = 200
mean(f) st.dev.(d) mean(d) st.dev.(d) mean(d) st.dev.(6)
SLS 1.6923 2.6458 2.2453 1.1564 2.1021 0.4738

SML 1.6447 2.4647 2.1965 1.1842 2.1076 0.5792
UADE 0.8398 2.8443 1.4219 2.5131 1.5704 3.1159
DWADE 1.7231 2.3047 2.0650 2.0697 2.2435 1.0359
TADE 1.0358 2.7653 0.9291 2.6166 0.8698 2.6036
SIR 0.0421 2.6013 0.5222 2.7310 0.7634 2.6060
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First of all, it can be seen that the standard deviation of the estimates remains very important
for n = 50 and n = 100, so that no significant effect of X on Y could be detected, in an
inference purpose. We also note that once the sample size grows, the M-estimators becomes clearly
better than the direct ones, what was expected as it is stated that M-estimators are asymptotically
efficient. On the other hand, for small sample size (n = 50), the DWAD Estimator seems to be
the best choice : smallest bias and smallest variance. Nevertheless, as this estimator is subject to
the curse of dimensionality, one could expect that its behavior should be worse with p larger than
2. A surprising feature is that the variance of UADE, TADE and SIR does not decrease with n.
Actually, these methods are numerically very unstable, so that no reliable estimation seems to be
possible from them, even when n becomes large. Finally, recalling that the SLS method is here
totally equivalent to the nonignorant SML method, it is seen that the first one is slightly better
than the latter, for n sufficiently large, what could also be expected.

7 Concluding remarks

The aim of this paper was not to make out an exhaustive survey about the whole existing theory
about Single-Index Models. We simply wanted to provide the main basic ideas of this theory to
the interested reader. This latter can found detailed and rigorous mathematical developments in
the mentioned references, if needed. The principal part of the work is devoted to the estimation of
the index coefficients : six methods among the most popular ones have been set out. All proposed
estimators are root-n consistent, and the most have been proven to be asymptotically normal.
Theoretically, M-estimators get some very nice properties. In particular, they are efficient and
they do not require strong assumptions on the distribution of X, contrary to the direct methods.
Besides, they supply the bandwidth needed for the nonparametric estimation of the link function.
On the other hand, direct estimators are much more easy and fast to compute, as they do not
require solving an nonlinear optimization problem. Practically, the simulation study shows that the
M-estimators again outperform the direct ones. Among the direct estimators, the only one which
gives satisfactory results seems to be the density-weighted average derivative estimator. One can
take advantage of this fact by using it as an initial estimate in the optimization problems arising
in M-estimation. However, the DWAD estimation lies on a bandwidth, and the choice of this
bandwidth remains problematical. Once the index coefficients have been estimated, the estimation
of the link function is done via standard nonparametric regression methods, with any danger of
curse of dimensionality, as the index is an univariate random variable. The rate of convergence of
this estimate is the usual rate of univariate nonparametric regression : O((nh)~/?).
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