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Abstract

Over the last decades more and more attention has been paid to the problem how to

fit a parametric model of time series with time-varying parameters. A typical example

is given by autoregressive models with time-varying parameters (tvAR processes). We

propose a procedure to fit such time-varying models to general nonstationary processes.

The estimator is a maximum Whittle likelihood estimator on sieves. The results do not

assume that the observed process belongs to a specific class of time-varying parametric

models. We discuss in more details the fitting of tvAR(p) processes for which we treat

the problem of the selection of the order p, and propose an iterative algorithm for the

computation of the estimator. Comparison with model selection by AIC is provided

through simulations.
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1 Introduction

In recent years several estimation methods have been derived for locally stationary time

series models, that is for models whose parameters change slowly in time and which can

locally be approximated by stationary processes. In this paper we address the problem of

model selection for sieve estimates for such models in a rigorous way. As a contrast function

we use an approximation of the Kullback-Leibler divergence.

Below we assume that the true process is locally stationary in the sense of Dahlhaus

(1997) (see Definition 2.1 below). As models we will study models parametrized by D-

dimensional parameter functions θ(u), for example the time-varying autoregressive (tvAR(p))

model

Xt,T +

p
∑

j=1

aj

(

t

T

)

Xt−j,T = εt,T , t = 0, . . . , T − 1 , T > 0 , (1.1)

where εt,T are independent normal random variables N (0, σ2(t/T )). Here

θ(u) = (σ2(u), a1(u), . . . , ap(u))

with D = p + 1. As usual for locally stationary processes the parameters are rescaled to

the unit interval to obtain a meaningful asymptotic theory.

A usual assumption is that the coefficients aj(u) may be approximated satisfactorily by

a linear combination of a small number of known function. For instance, Subba Rao (1970)

assumes that the first three terms of the Taylor expansion give a good approximation for the

parameters, i.e. aj(u) = aj,0 + aj,1u + aj,2u
2/2. Similar ideas with various approximations

in a finite-dimensional linear space of approximation may be found in the literature, see

for instance the review in Grenier (1983). In summary one approximates the time-varying

parameters in a suitable orthonormal basis {ϕj} and assumes that the expansion

aj(u) =

m
∑

i=1

ajiϕi(u) (1.2)

holds true for each j = 1, . . . ,D.

The problem of choosing the number m of elements in the sum (1.2) occurs and we pro-

pose in this paper a data-driven method for selecting this parameter. More specifically, the

goal of this paper is to develop a data-driven method that automatically selects an estima-

tor θ̂m̂ from a collection of estimators θ̂m for different m. These estimators are constructed

as minimum contrast estimators where the contrast function is an approximation of the

Gaussian likelihood of the model. The estimator θ̂m̂ is obtained from a model selection

procedure.

The proposed procedure is inspired by the work of Barron et al. (1999); Birgé and

Massart (1998), who studied several types of contrasts and estimates in various contexts

but under the assumption of linearity of the contrast function, and under the assumption
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of independence. An extension of the procedure with an L2 contrast function to standard

time series problems may be found in the literature (Baraud et al., 2001; Comte, 2001). Our

situation is different and more complex in the sense that we are dealing with dependent,

covariance nonstationary data. The example of tvAR(p) models shows that the estimation

procedure is complicated by the fact that the curve θ is not observed “directly”. This is in

contrast to classical nonparametric regression, where the curve θ(·) is observed plus some

noise. In our context, the characteristics of the process (such as the spectrum) may depend

on the parameter curves in a highly nonlinear way. An additional difficulty is that our

contrast function is the Whittle likelihood, which is more natural in the context of spectral

density estimation.

The paper is organized as follows. In the next section, we recall the formal definition of

locally stationary processes and their evolutionary spectral density. Then, in Section 3, we

address the problem of semiparametric estimation. This problem is presented in a general

setting including the tvAR(p) model as a particular example. This section summarizes

the main results of the paper. In Section 4, we focus on the particular problem of fitting

tvAR(p) models, including the question of the selection of p, and propose an algorithm

for the estimation of the parameter curves. This section also includes simulation results

and compares the proposed model selection method with a method based on the AIC. The

proof of the main results are to be found in Section 5. They are based on two maximal

inequalities for the deviation of the empirical process of locally stationary processes that

are proved in a technical appendix.

2 The model of local stationarity

2.1 Locally stationary processes

We assume that the observed data X1, . . . ,XT follow a general locally stationary processes

as introduced in Dahlhaus (1997).

Definition 2.1. A sequence of stochastic processes {Xt,T ; t = 1, . . . , T} is called locally

stationary with transfer function A◦ if there exists a representation

Xt,T =

∫ π

−π
A◦

t,T (λ) exp(iλt)dZ(λ), t = 1, . . . , T, T > 0,

where

1. Z(λ) is a complex valued Gaussian process on [−π, π] with Z(λ) = Z(−λ), EZ(λ) = 0

and orthonormal increments, i.e.

E{dZ(λ1), dZ(λ2)} = η (λ1 + λ2) dλ1dλ2

where η(λ) =
∑∞

j=−∞ δ(λ+2πj) is the period 2π extension of the Dirac delta function

(Dirac comb), and where
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2. there exists a positive constant K and a function A(u, λ) on [0, 1] × [−π, π) which is

2π-periodic in λ, with A(u,−λ) = A(u, λ), such that for all T ,

sup
t,λ

|A◦
t,T (λ) − A(t/T, λ)| 6 K/T .

Moreover, a locally stationary process is said to be Gaussian if its increment process {Z(λ), λ ∈
[−π, π]} is Gaussian.

This definition of covariance nonstationary processes is a straightforward extension of

the spectral (Cramér) representation for stationary time series. The difference comes from

the transfer function A(z, λ) that is depending on both time and frequency and is defined

on [0, 1] × [−π, π). The smoothness of A in u defines the departure from stationarity and

ensures the locally stationary behavior of the process. The smoothness assumptions on

A are formulated via the total variation norm. Recall that the total variation norm of a

univariate function f defined on an interval [a, b] is given by

TV[a,b](f) = sup

{

I
∑

i=1

∣

∣

∣
f (ai) − f (ai−1)

∣

∣

∣
: a < a0 < . . . < aI < b, I ∈ N

}

.

If there is no risk of ambiguity on the domain of f , we sometimes write TV(f) for the

total variation norm of f . We can now formulate the exact smoothness assumptions on A,

following the setting of Neumann and von Sachs (1997).

Assumption 2.1. The function A in Definition 2.1 is such that

(a) supu TV[−π,π] (A(u, ·)) 6 C1 < ∞

(b) supλ TV[0,1] (A(·, λ)) 6 C2 < ∞

(c) supu,λ |A(u, λ)| 6 κs < ∞

(d) infu,λ |A(u, λ)| > κ1 for some κ1 > 0

(e) supu

∑

s∈Z
|Â(u, s)| < ∞, where Â(u, s) := (2π)−1

∫ π
−π dλ A(u, λ) exp(iλs)

for s ∈ Z and u ∈ [0, 1].

In the above definition two different functions A◦
t,T (λ) and A(t/T, λ) are defined. This

complicated construction is necessary if we want to model a class of processes which is

rich enough to cover interesting applications. In particular, if we do not define these two

functions, i.e. if A◦
t,T (λ) = A(t/T, λ) in the above definition, then the class does no longer

include tvAR(p) processes (as shown in Dahlhaus (1996)).
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2.2 Evolutionary spectral density

If {Xt,T } is a locally stationary process then the Wigner-Ville spectrum is given by

fT (u, λ) =
1

2π

∞
∑

s=−∞
Cov

(

X[uT−s/2],T ,X[uT+s/2],T

)

exp(−iλs),

where we have used the convention A◦
t;T (λ) = A(0, λ) for t < 1 and A◦

t,T (λ) = A(1, λ) for

t > T . Neumann and von Sachs (1997) have shown under Assumption 2.1 that

∫ 1

0
du

∫ π

−π
dλ |fT (u, λ) − f(u, λ)|2 = oT (1)

where

f(u, λ) :=
∣

∣A(u, λ)
∣

∣

2

(see also Dahlhaus (1996)). f(u, λ) is called the evolutionary spectral density (ESD) of the

process. The above result is important because it shows the uniqueness of the evolutionary

spectral density f(u, λ).

3 Semiparametric estimation

The model we like to fit is characterized by a D-dimensional parameter function θ(u),

u ∈ (0, 1), which defines the evolutionary spectral density fθ(u)(λ). Dahlhaus and Neumann

(2001) suggested to use a minimum distance method for the estimation of θ(·), which is

based on a contrast function between some nonparametric estimate of the evolutionary

spectral density and the (model) evolutionary spectral density. We follow this method and

have to define a suitable nonparametric estimate and the contrast function.

3.1 Contrast functions

Suppose we observe data {X1,T , . . . ,XT,T } from a locally stationary process with evolution-

ary spectral density f(u, λ). Motivated by the above convergence result for the Wigner-Ville

spectrum Neumann and von Sachs (1997) define the preperiodogram as

JT (u, λ) =
1

2π

∑

k

X[uT+ k+1

2 ],TX[uT− k−1

2 ],T exp(−ikλ)

where the sum over k if for k ∈ Z such that 1 6 [uT − (k− 1)/2], [uT +(k +1)/2] 6 T . The

preperiodogram may be regarded as a raw estimate of the ESD at time u and frequency λ.

Similarly to the behaviour of the ordinary periodogram for stationary processes, the prepe-

riodogram of locally stationary time series is asymptotically unbiased but has a diverging

variance as T → ∞. In the following, it is used as a pre-estimator of the evolutionary

spectral density. The advantage of this definition is that it does not contain any implicit
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smoothing, neither in frequency nor in time. The decision about the degree of smoothing

in each of these directions is left to the major smoothing step itself.

If the goal of the analysis is the estimation of the evolutionary spectral density f(u, λ),

then we can use a fully nonparametric estimate (e.g. by smoothing the preperiodogram).

However, in the present paper, our goal is to fit a semiparametric model fθ(u)(λ) to the data.

It is worth mentioning that f is not assumed to obey the structure of the semiparametric

model to be fitted. In other words, we do not assume that the evolutionary spectral density

generating the process takes the form fθ(u)(λ).

The distance between the semiparametric model fθ and the true evolutionary spectral

density generating the process f is measured by a contrast function. Here, we use

L (fθ, f) =
1

4π

∫ 1

0
du

∫ π

−π
dλ

{

log fθ(u)(λ) +
f(u, λ)

fθ(u)(λ)

}

,

which is up to a constant the asymptotic Kullback-Leibler information divergence of a locally

stationary process (Dahlhaus, 1996). Then, we define the empirical contrast function by

LT (fθ, JT ) =
1

4πT

T
∑

t=1

∫ π

−π
dλ

{

log fθ(t/T ) (λ) +
JT (t/T, λ)

fθ(t/T )(λ)

}

,

where JT (t/T, λ) is the preperiodogram. LT (fθ, JT ) is an approximation to the negative

log-likelihood of locally stationary stationary process (Dahlhaus, 2000).

3.2 The sieve estimator

Our aim is to develop a nonparametric estimator of the multivariate curve θ(·) = (θ(1)(·),
· · · , θ(D)(·)). Theoretically, an estimator can be constructed by minimizing the empirical

contrast function LT (fθ, JT ) over a class Θ of parameter curves. However, this minimisation

procedure may pose serious numerical (computational) problems, in particular if the class

Θ is a complicated infinite dimensional space. Another problem arising when the set of

parameters is too large, is that we could get suboptimal rates of convergence (as compared

to the minimax risk).

The approach we follow is a suitable adaptation of the method of sieves (Birgé and

Massart, 1998). Each component θ(i)(·) of the target vector curve is approximated in

a finite-dimensional, linear space of approximation Smi
. As our aim is to estimate a D-

dimensional curve, we set ND,T = {m = (m1, . . . ,mD),mj ∈ MT } and, for each multi-index

m = (m1, . . . ,mD), we define Fm = Sm1
⊗ . . . ⊗ SmD

.

The estimation procedure has two steps:

1. On each space Fm, we minimize the empirical contrast function and compute the

minimum contrast estimator

θ̂m = arg min
θ∈Fm

LT (fθ, JT ) (3.1)

for each m ∈ ND,T .
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2. From the set {θ̂m : m ∈ ND,T} of estimators, we choose m̂ among the family ND,T

such that

m̂ = arg min
m∈ND,T

{

LT

(

fθ̂m
, JT

)

+ pen(m)
}

where pen(m) is a penalty function to be specified later.

Finally, the sieve estimator is

θ̂ = θ̂m̂. (3.2)

The explicit form of the penalty function is derived in Theorem 3.2 below.

Note that, in the above procedure, we assumed that the order D is fixed and known. A

discussion about the selection of this parameter for the fitting of time-varying autoregressive

model is presented in Section 4 below.

3.3 The collection of models

Before stating the main results and assumptions, we have to introduce some notations. If

g(u, λ) is a function over [0, 1] × (−π, π), then we set

g̃(u, j) :=

∫ π

−π
dλ g(u, λ) exp(iλj) ,

and define

ρ2(g) =

(
∫ 1

0
du

∫ π

−π
dλ |g(u, λ)|2

)1/2

, ρ∞(g) :=

∞
∑

j=−∞
sup

u
|g̃(u, j)| ,

ṽ(g) := sup
j

TV (g̃(·, j)) .

Correspondingly, we set ρ2(g1, g2) := ρ2(g1 − g2), ρ∞(g1, g2) := ρ∞(g1 − g2) and ṽ(g1, g2) :=

ṽ(g1 − g2).

If θ is a D-dimensional curve, we also need the following definitions:

‖θ‖2
2 :=

D
∑

i=1

∫ 1

0
du
(

θ(i)(u)
)2

, ‖θ‖∞ := sup
i=1,...,D

sup
u∈[0,1]

|θ(i)(u)| , TV(θ) :=

D
∑

i=1

TV(θ(i)) .

The choice of a family of models {Fm,m ∈ ND,T } (i.e. the choice of a sieve) is ba-

sically guided by approximation theory. Typical examples are trigonometric polynomials,

wavelet expansions or piecewise polynomials, because their approximation properties are

well studied in the literature.

In this paper, each space Smi
is a linear finite-dimensional subspace of L2([0, 1]) ∩

L∞([0, 1]) spanned by some orthonormal basis {ϕj ; j ∈ Λmi
} with |Λmi

| = dmi
. For a given

linear sieve, we need to describe the relationships between its L2 and L∞ structures. That is
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the reason why we introduce the two indices rm and Φm, that will be involved in the upper

bound for the risk of minimum contrast estimators on this sieve. These indices already

play a crucial role in the work of Birgé and Massart (1998). However, in our context, their

definition is slightly different due to our specific framework.

Consider the expansion of θ(i) in the basis Smi
:

θ(i) =
∑

j∈Λmi

βijϕj(u) i = 1, . . . ,D .

and set

rm =
1√
dm

sup
β 6=0

supi

∥

∥

∥

∑

j∈Λmi
βijϕj

∥

∥

∥

∞
supi,j |βij |

, (3.3)

Φm =
1√
dm

sup
16i6D

∥

∥

∥

∑

j∈Λmi

ϕ2
j

∥

∥

∥

1/2

∞
,

where dm =
∑D

i=1 dmi
is the dimension of Fm.

The two indices rm and Φm describe the relationships between the L2 and the L∞

structure of the sieve rm. An extension of Lemma 1 of Birgé and Massart (1998) leads to

the inequalities Φm 6 rm 6 Φm

√
dm.

We consider the following assumptions on the collection of models:

Assumption 3.1. (a) For all mi ∈ MT , Smi
is a linear subspace of L2([0, 1]) ∩L∞([0, 1])

with finite dimension dmi
. It is generated by the orthonormal system of functions

{ϕj ; j ∈ Λmi
} such that there exists a finite and positive ṽmi

with supj∈Λmi
TV(ϕj) 6

dmi
ṽmi

.

(b) For all m = (m1, . . . ,mD) in ND,T , Fm denotes the product space Sm1
⊗ . . . ⊗ SmD

of dimension dm =
∑D

i=1 dmi
. Each Fm is such that max16i6D ṽmi

6 ṽm < ∞ and

rm 6 Crm

√

T/dm for all m ∈ ND,T .

(c) The collection of models F = {Fm : m ∈ ND,T} is such that F⋆
m = {1/f ; f ∈ Fm} are

convex. Moreover, maxm∈ND,T
dm 6 T , supF ‖θ‖2 6 k2 < ∞, supF ‖θ‖∞ 6 k∞ < ∞

and supF TV(θ) 6 ṽ < ∞.

To fix the ideas, we now present two examples of models which fulfill Assumption 3.1 .

Other examples of models may be found in the standard literature (see for instance Barron

et al. (1999) or Comte (2001)).

Example 3.1 (Trigonometric polynomials). Consider spaces Smi
generated from the func-

tions ϕj(u) =
√

2 cos(2πju) for j = 0, . . . ,mi − 1. The dimension of Smi
is dmi

= mi. This

collection is such that Φ2
m 6 1, hence rm 6

√
dm and Assumption 3.1 holds with Crm = 1

provided that dm 6
√

T .
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Example 3.2 (Piecewise polynomials). Consider dyadic partitions of [0, 1] given by Im =

{[j2−m, (j +1)2−m], j = 0, . . . ,m−1}. Given some integer s, the space Smi
is defined as the

space of piecewise polynomials with degree bounded by s−1 on the partition Im. The dimen-

sion of Smi
is r2mi and it follows from Barron et al. (1999) that rm 6

√

(r + 1)(2r + 1) =

Crm provided that dm 6 T .

3.4 Main results

We first consider the following assumptions on distances.

Assumption 3.2. For all θ and ν in ∪m∈ND,T
Fm, there exists finite strictly positive con-

stants K2,K
′
2,K∞,Ktv (which may depend on D) such that

(a) K ′ −1
2 ‖θ − ν‖2 6 ρ2 (1/fθ − 1/fν) 6 K2‖θ − ν‖2 ;

(b) ρ∞ (1/fθ − 1/fν) 6 K∞‖θ − ν‖∞ ;

(c) TV (1/fθ − 1/fν) 6 Ktv TV(θ − ν).

The first result is on the Kullback-Leibler divergence between f and fθ̂m
for a fixed space

Fm. In the formulation of the result, we denote by Σ the covariance matrix of the process

{Xt,T }, i.e. the entry (s, t) of Σ is Cov(Xs,T ,Xt,T ), and ‖Σ‖spec denotes the spectral norm

of the matrix Σ.

Theorem 3.1. Suppose that we observe data X1,T , . . . ,XT,T from a Gaussian locally sta-

tionary process. Fix a sieve Fm according to Assumptions 2.1 and define

θm = arg min
θ∈Fm

L (fθ, f)

Under Assumptions 3.1 and 3.2, the minimum contrast estimator θ̂m over a fixed sieve Fm

is such that

EL
(

fθ̂m
, f
)

6 L (fθm
, f) + (c1 + ‖Σ‖2

spec)
1 + dm

T

where c1 is a positive finite constant depending on κ1,K, k∞, ṽ,K2,K
′
2,K∞.

The proof is to be found in Section 5. The second result is about the estimator θ̂m̂

computed from the model selection procedure described above. We first need the following

assumption on the number of sieves.

Assumption 3.3. There exists some weights Lm and a finite constant Υ such that

∑

m∈ND,T

exp(−Lmdm) 6 Υ < ∞ .
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Theorem 3.2. Suppose that we observe data X1,T , . . . ,XT,T from a Gaussian locally sta-

tionary process and suppose that Assumptions 2.1 and 3.1 to 3.3 hold true. For all m ∈
ND,T , define θm = arg minθ∈Fm

L (fθ, f) . If the penalty function pen(·) is such that

pen(m) > c3
1 + dm

T
+ c4

dm(1 + Lm)

T
‖Σ‖2

spec (3.4)

then the estimator θ̂m̂ defined in (3.2) is such that

EL
(

fθ̂m̂
, f
)

6 inf
m∈ND,T

{L (fθm
, f) + pen(m)} + c5

Υ‖Σ‖2
spec + 1

T

where c3, c4 are positive finite coefficients depending on κ1,K, k∞, ṽ,K2,K
′
2,K∞, Crm and

c5 is a positive, finite constance depending on κ1,K, k∞, ṽ,K2,K
′
2,K∞.

This theorem shows that the selection of the sieve Fm̂ among all sieves {Fm;m ∈ ND,T }
leads to an estimator of the spectral density f̂m̂ that performs as well as the best estimator

fθ̂m
among m ∈ ND,T . The price to pay for this adaptation appears through the sequence

Lm and the constant of the T−1 term, which is different in the two theorems. Note that

the specific form for c3 and c4 is derived in the proof section.

We now discuss the important situation where the true ESD f takes the semiparametric

form fθ◦ for a given θ◦ ∈ Θ, where Θ is a class of time-varying curves with D component

(D is known). In that case, one way to measure the quality of the estimation procedure is

to consider the norm ‖ · ‖2 defined above instead of the Kullback-Leibler divergence. With

the L2 norm, similar results than Theorems 3.1–3.2 can be derived. However, as there is no

equivalence between the Kullback-Leibler divergence and the L2 norm, it is worth saying

that this result is not a corollary of the two theorems. Therefore an explicit proof is needed,

but this proof can be adapted from the proof of the two above theorems.

Proposition 3.1. Suppose that we observe data X1,T , . . . ,XT,T from a Gaussian locally

stationary process with evolutionary spectral density fθ◦, where θ◦ is a time-varying D-

dimensional curve. Suppose that Assumptions 2.1 and 3.1 to 3.3 hold true and set

θm = arg min
θ∈Fm

L(fθ, fθ◦)

for all m ∈ ND,T . Then,

(a) the minimum contrast estimator θ̂m over a fixed sieve Fm (see (3.1)) is such that

E‖θ̂m − θ◦‖2
2 6 ‖θm − θ◦‖2

2 + (c6 + ‖Σ‖2
spec)

1 + dm

T

for all m ∈ ND,T ;

(b) if the penalty function pen(·) is such that (3.4) holds true, then the estimator θ̂m̂ defined

in (3.2) is such that

E‖θ̂m̂ − θ◦‖2
2 6 inf

m∈ND,T

{

‖θm − θ◦‖2
2 + pen(m)

}

+ c7

Υ‖Σ‖2
spec + 1

T
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where c6, c7 are positive, finite coefficients depending on κ1,K, k∞, ṽ,K2,K
′
2,K∞.

Again, a comparison between the two results (a) and (b) shows that the automatic

selection of the index m does not increase the estimation error significantly. Moreover,

from this proposition, it is easy to derive an adaptation result with respect to the unknown

smoothness of the curve θ◦. Let β > 0, we recall that a function g ∈ L2([0, 1]) belongs to

the Besov space Bβ,2
∞ if it satisfies

‖g‖β,2 = sup
u>0

u−βωd(g, u)2 < ∞ d = [β] + 1

where ωd(g, u)2 is the modulus of continuity defined by ωd(g, u)2 = sup|h|6u ‖∆2
hg‖2 where

∆hg(x) = g(x− h)− g(x) and ∆2
hg = ∆h∆hg. Let us suppose that each component θ◦(i) of

the target curve belongs to a Besov space Bβi,2∞ . If we consider the trigonometric polynomial

model or the piecewise polynomial model, it is known from approximation theory (De Vore

and Lorentz, 1993) that if r > β, then ‖θ◦(i) − θ
(i)
m ‖2 6 C(β)‖θ◦(i)‖β,2d

−βi
mi , where r is the

regularity of the polynomial model. For these models, Lm = 1 and the proposition leads to

the following corollary.

Corollary 3.1. Suppose that we observe data X1,T , . . . ,XT,T from a Gaussian locally

stationary process with evolutionary spectral density fθ◦, where θ◦ is a time-varying D-

dimensional curve. Suppose in addition that each component θ◦(i) of the target curve belongs

to a Besov space Bβi,2∞ . Under Assumptions 2.1 and 3.1 to 3.3, the estimator (3.2) is such

that

E‖θ̂m̂ − θ◦‖2
2 6 c8T

− 2β
2β+1

where β = min{β1, . . . , βD} and c8 depends on κ1,K, k∞, ṽ,K2,K
′
2,K∞ and ‖Σ‖spec.

If the model is correctly specified, this result gives the rate of convergence of the es-

timator to the true target curve. If only one curve has to be estimated (D = 1), this

result gives the usual rate of convergence in Besov smoothness classes. If more that one

curve has to be estimated, the global risk is bounded at a rate corresponding to the least

smooth class β = min{β1, . . . , βD}. Moulines, Priouret and Roueff (2004, Theorem 4) have

proved that this is the optimal rate of convergence for time-varying AR models in certain

Lipschitz-spaces. We conjecture that this is also the optimal rate in the above Besov-spaces

if all βi are the same.

4 Fitting time-varying autoregressive models

In this section, we focus on the particular situation of fitting a tvAR(p) model to non-

stationary data. The model then takes the form (1.1) and the target curve is denoted by

θ(·) = (θ(0)(·), θ(1)(·), . . . , θ(p)(·)) with θ(0)(·) = σ2(·) and θ(i)(·) = ai(·), i = 1, . . . , p. The

model selection procedure presented in Section 3 can be adapted to the situation where the
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order p is unknown but bounded from above by a given nonnegative integer P . In such a

case, we need to define the sieve as follow: Each component θ(i)(·) is approximated in a

linear finite dimensional space Sm, m ∈ MT where, with a slight change of notation, we set

Np,T = {(p,m0, . . . ,mp),mj ∈ MT } and, for each m = (p,m0, . . . ,mp) ∈ Np,T we define

Fm = Sm0
⊗ . . .⊗Smp . The set of approximation space is then defined by the set of indexes

NT = ∪P
j=1Nj,T (see also Baraud et al. (2001)).

The evolutionary spectral density of a tvAR(p) is

fθ(u)(λ) =
σ2(u)

2π
· 1

|∑p
j=0 aj(u) exp(iλj)|2

see Dahlhaus (1996). With this particular form of spectrum and the Kolmogorov’s formula,

we obtain after some straightforward calculations

LT (fθ, JT ) =
1

2T

T
∑

t=1

[

log σ2

(

t

T

)

+
1

σ2
(

t
T

)×

×
{(

Γt,T a

(

t

T

)

+ Ct,T

)′
Γ−1

t,T

(

Γt,T a

(

t

T

)

+ Ct,T

)

+ cT

(

t

T
, 0

)

− C ′
t,T Γ−1

t,T Ct,T

}

]

(4.1)

with

a

(

t

T

)

=

(

a1

(

t

T

)

, . . . , ap

(

t

T

))′
,

cT

(

t

T
, j

)

=

∫ π

−π
dλ JT

(

t

T
, λ

)

exp(iλj) = X[t+ j+1

2 ]X[t− j−1

2 ] ,

Ct,T =

(

cT

(

t

T
, 1

)

, . . . , cT

(

t

T
, p

))′
,

Γt,T =

{

cT

(

t

T
, j − k

)}

j,k=1,...,p

.

The following subsections consider the practical implementation of the model selection

procedure. All codes are written in R, and are available upon request.

4.1 Model selection with a stationary innovation process

If we assume that σ2(u) is constant over time, an explicit formula can be written for the

estimator θ̂m(u) at a fixed m ∈ NT . This derivation is an extension of the expansion of

Dahlhaus (1997, equations (4.3)-(4.4)), where the localized periodogram of Dahlhaus (1997)

is replaced by the preperiodogram JT . We therefore skip the details of the derivation that

leads to the estimator.
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For the sake of simplicity, we start by considering the case where the dimention of Smj

does not depend on j, i.e. we fit the model aj(u) =
∑dm−1

k=0 θjkϕk(u), where dm = dim(Sm).

Let θ = (θ1,0, . . . , θ1,dm−1, . . . , θp,dm−1)
′. Let Φ(·) be the matrix {ϕj(·)ϕk(·)}j,k=0,...,dm−1

and set ϕ(·) = (ϕ0(·), . . . , ϕdm−1(·))′. Then, if A ⊗ B denotes the left direct product of the

matrices A and B, the parameters that minimize LT (fθ, JT ) are given by

θ̂m = −
(

1

T

T
∑

t=1

Φ

(

t

T

)

⊗ Γt,T

)−1(

1

T

T
∑

t=1

ϕ

(

t

T

)

⊗ Ct,T

)

(4.2)

and

σ̂2
m =

1

T

T
∑

t=1

cT

(

t

T
, 0

)

+
1

T
θ̂′T

T
∑

t=1

ϕ

(

t

T

)

⊗ Ct,T . (4.3)

The resulting system is similar to the Yule-Walker equations. If the dimension of Smj

depends on j, i.e. if different spaces Sj are used to fit different curves aj(u), the estimator

is obtained similarly after deleting the corresponding columns and rows in

1

T

T
∑

t=1

Φ

(

t

T

)

⊗ Σt,T

and

1

T

T
∑

t=1

ϕ

(

t

T

)

⊗ Ct,T .

We now apply the estimation procedure based on model selection developed in Section

3. The contrast function is given by (4.1) and, from Theorem 3.2, the penalty is set to

pen(m) = c3
1 + dm

T
+ c4

dm(1 + Lm)

T
‖Σ‖spec .

The implementation of our procedure requires the pre-estimation of ‖Σ‖spec and the com-

putation of c3 and c4. In our simulations, we compute ‖Σ‖spec following the method of

Van Bellegem and von Sachs (2003); Van Bellegem and von Sachs (2004). First, we no-

tice that the entry (t, j) of the matrix Σ is given by the covariance operator c(t/T, j) =
∫

dλf(t/T, λ) exp(iλj). For a given lag j, a pre-estimator of c(u, j) is then given by the

smoothing of cT (u, j) with respect to u ∈ [0, 1]. If ĉT (u, j) denotes this smoothed curve, we

then estimate Σ by

Σ̂s,t = ĉT

(

s + t

2T
, |s − t|

)

I(|s − t| 6 M)

where M is a prescribed nonnegative integer. The indicator function I(|s− t| 6 M) sets to

zero all Σ̂s,t with |s − t| > M . The indicator function appears because it is expected that

the covariance function c(u, j) tends to zero for large lags j (Assumption 2.1(e)). Therefore

12



it reduces the variance of the pre-estimation. ‖Σ‖spec is then estimated by computing the

largest eigenvalue of the symmetric matrix Σ̂. For more details about the choice of the

tuning parameters (choice of M , bandwidth selection in the estimation of ĉT (u, j)) and the

properties of this pre-estimator, we refer to the more exhaustive study of Van Bellegem and

von Sachs (2003); Van Bellegem and von Sachs (2004).

Constants c3 and c4 are explicitely given in the proof of the results but they are difficult

to compute explicitely since they depend on some constants of the model (such as K2 for

instance). Therefore, we first need an initial calibration step to fix c3 and c4. However,

Theorem 3.2 ensures that the results are optimal if we consider upper bounds for c3 and c4.

This means that the results are very robust to a large choice of c3, c4. In the simulations

of this paper, we used c3 = c4 = 1. One option is to select these constants from a grid of

prescribed values in a data-driven way, based for instance on the out-of-sample properties

of the estimator.

We now compare our model selection procedure with a selection based on the Akaike

information criterion

AIC(m) := log σ̂2(m) +
2

T

(

1 + p +

p
∑

i=1

dmi

)

, m = (p,m1, . . . ,mp) .

This form of the AIC has been proposed in Dahlhaus (1997, Section 6) and illustrated

through simulations on one example of a tvAR(2) process. We consider the same example

in our first simulation. Its parameters are σ(u) ≡ 1, a1(u) = −1.8 cos(1.5 − cos 4πu) and

a2(u) ≡ 0.81 and the innovations εt are stationary Gaussian with unit variance. In our

estimation procedure we use trigonometric sieves as described in Example 3.1 above. It is

worth mentioning that the curve a1(u) cannot be written as a finite linear combination of

trigonometric functions and we are therefore in a misspecified case. Table 1 presents the

results of a Monte-Carlo simulation based on 100 generations of the tvAR process of sample

size T = 64 and 128, and with P = 2. This table compares the order selection based on

our method with the selection based on the AIC. It also computes the error of estimation,

based on the mean squared error, the mean absolute deviation error and the mean square

prediction error.

Table 1 shows that the models selected by our penalized likelihood method are near

(dm1
, dm2) = (3, 1) while the models selected by AIC are around (4.5, 3.5). From the specific

tvAR(2) we considered, it is clear that the true order of the second curve is dm2
= 1. This

table then reveals how the AIC overfits, while the penalized likelihood does not.

If we consider the estimation of the curve a1(u), there is no true order. To have an

idea which order provides the best fitting, Figure 1 gives the result of one simulation based

on T = 128. In this particular simulation, the penalized likelihood method selected the

models (3, 1) while the AIC selected (6, 4). This figure confirms that the model (3, 1) gives

a better fit, while the AIC overfits. The mean quadratic error and mean absolute deviation

computed in Table 1 confirm the better performance of the estimator based on the penalized
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likelihood criterion.

T = 64 T = 128

Pen. Lik. AIC Pen. Lik. AIC

Model selection:

dm1
2.80 4.67 2.99 4.47

(0.424) (1.658) (0.010) (1.625)

dm2
0.84 3.32 1.02 3.44

(0.136) (5.008) (0.101) (4.289)

Mean quadratic error:

a1(u) 0.18 0.31 0.07 0.21

(0.150) (0.320) (0.296) (0.512)

a2(u) 1.87 2.34 2.037 2.218

(0.127) (2.063) (0.113) (1.172)

Mean absolute deviation:

a1(u) 0.26 0.37 0.13 0.24

(0.073) (0.042) (0.046) (0.861)

a2(u) 1.14 1.21 1.17 1.18

(0.005) (0.048) (0.003) (0.023)

Mean square prediction error: 1.53 2.01 1.47 1.54

(3.55) (5.58) (3.23) (4.54)

Mean absolute prediction error: 0.92 1.03 0.89 0.91

(0.13) (0.19) (0.14) (0.15)

Table 1: Simulations are based on 100 generations of a tvAR(2) process of sam-

ple size T = 64 and T = 128. The “Model selection” row presents the mean of

the orders dmi
(i = 1, 2) for our method (Pen. Lik) and the AIC method. The

“Mean quadratic error” row shows the mean of the square error T−1
∑

t(âi(t/T )−
ai(t/T ))2 (i = 1, 2) while the “Mean absolute deviation” presents the mean

of the error T−1
∑

t |âi(t/T ) − ai(t/T )| (i = 1, 2). The “Mean square predic-

tion error” evaluates the mean over all samples of (T − p)−1σ̂−2
∑T

t=p+1
(Xt,T −

∑p

j=1
âj(t/T )Xt−j,T )2 and the “Mean absolute prediction error” computes the

mean over all samples of (T − p)−1|σ̂|−1
∑T

t=p+1
|Xt,T −∑p

j=1
âj(t/T )Xt−j,T |. In

all rows, numbers in parenthesis are the variance computed from the 100 samples.

Remark: In the row dm2
, the value 0.84 < 1 apppears when the procedure select

the order p = 1. In such a case, dm2
is 0.
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(a) The original time series (T = 128).
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(b) Estimation of a1 based on the penalized

likelihood.
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(c) Estimation of a2 based on the penalized

likelihood.
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(d) Estimation of a1 based on the AIC.
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(e) Estimation of a2 based on the AIC.

Figure 1: In each figure, the solid line plots the true curves ai (i = 1, 2) and

the dotted line is the estimator. This example is based on a simulation of length

T = 128. The orders selected by the penalized likelihood method are (dm1
, dm2

) =

(3, 1) while the AIC method selected (6, 4).
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4.2 Model selection with a nonstationary innovation process

If the function σ2(u) is not constant over time, explicit formula for the estimators cannot be

easily derived. For this general situation, we propose an iterative procedure of estimation

that we will now describe.

Step I (Initialisation). Compute initial estimators θ̂T and σ̂2
T from the above formula

(4.2–4.3).

Step II (Update of σ̂2
T ). Given θ̂

(1)
T , compute the vector s2

T = (s2
T (t/T ))t=1,...,T that min-

imizes the likelihood (4.1) evaluated with aj(u) = â
(1)
j (u) :=

∑

k θ̂
(1)
jk ϕj(u):

s2
T

(

t

T

)

=

(

Γt,T â(1)

(

t

T

)

+ Ct,T

)′
Γ−1

t,T

(

Γt,T â(1)

(

t

T

)

+ Ct,T

)

+ cT

(

t

T
, 0

)

− C ′
t,T Γ−1

t,T Ct,T .

If d0 denotes the dimension of the sieve Fd0
on which σ2 is estimated, then update

σ̂2
T to the curve that smooth s2

T over the space Fd0
, i.e.

σ̂2
T (t/T ) =

d0−1
∑

j=0

α̂jϕj(t/T )

where the vector α̂ = (α̂0, . . . , α̂d0−1) is such that α̂ = (∆′∆)−1∆′ŝT
2 with ∆it =

ϕi(t/T ).

Step III (Update of θ̂T ). Given σ̂2
T , update θ̂T to the value that minimizes the likelihood

(4.1) computed with σ2 = σ̂2
T . This leads to

θ̂
(2)
T = −

(

1

T

T
∑

t=1

Φ
(

t
T

)

⊗ Γt,T

σ̂2
T

(

t
T

)

)−1(

1

T

T
∑

t=1

ϕ
(

t
T

)

⊗ Ct,T

σ̂2
T

(

t
T

)

)

Step IV (Loop). Iterate steps II and III until convergence.

We illustrate this procedure on a second simulation, based on a tvAR(1) process with

time-varying innovations. The coefficient is given by a1(u) = (3u/4 − 1/2)I(u 6 2/3) +

(12u/5 − 8/5)I(u > 2/3) and the evolutionary variance is given by σ2(u) = −2 cos(6π(u +

.45)/5) + 2. The analysis considers a sieve generated by the Legendre polynomials, which

define an orthonormal basis of polynomial functions. In this example, we then work again

in a misspecified case since a1(u) and σ2(u) cannot be written as a finite linear combination

of Legendre polynomials.

Figure 2 shows the result of one simulation based on T = 128 data. In this simulation

the procedure selected the models d0 = 3 for the estimation of σ2 and d1 = 3 for the
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estimation of a1. As we can seen from the plot, the quality of the fit is remarkable, while

the estimators are based on T = 128 data only.

In Table 2 we report the results of a Monte-Carlo simulation that aims to study what

model is selected by the procedure, and what is the influence of the sample size T for this

model selection. We consider three different sample sized, T = 64, 128 and 256 and simulate

100 times the TVAR(1) process with nonstationary innovations. The table indicates the

frequency of selection of a given model (d0, d1). The corresponding error associated with

this Monte-Carlo simulation is showed in Figure 3.

0 20 40 60 80 100 120
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0

2
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6

(a) Original time series (T = 128).

0 20 40 60 80 100 120

−0
.5

0.
0

0.
5

1.
0

(b) Time-varying coefficient a1(u) and its

estimator.

0 20 40 60 80 100 120

1
2

3
4

(c) Time-varying variance of the innova-

tions (σ2(u)) and its estimator.

Figure 2: These plots show the result of one simulation of a tvar(1) process

with time-varying innovations. The solid lines show the curves a1(u) and σ2(u).

Estimators based on the sample (a) are superimposed in dotted lines. The models

considered in this estimation procedure are constructed using Legendre polyno-

mials.
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Order of â1(u)

1 2 3 4

1 20 13 21

1 0 7 13 17

0 1 9 14

1 7 8 3

2 0 8 14 10

Order 0 7 14 6

of 1 7 8 3

σ̂2(u) 3 1 7 9 7

0 5 11 15

0 1 0 1

4 0 2 3 2

0 3 10 5

Table 2: The table shows the frequency of selection of a given model from data.

Simulations are based on 100 generations of a tvAR(1) process with nonstationary

innovations. The coefficients of the process are plotted in Figure 2 (b) and (c).

Te three numbers in each cell correspond to three sample size: T = 64 (upper

number), T = 128 or T = 256 (bottom number).
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(a) Mean quadratic error for the estimation of

a1(u).
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(b) Mean absolute deviation for the estima-
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(c) Mean quadratic error for the estimation of

σ
2(u).
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(d) Mean absolute deviation for the estima-

tion of σ
2(u).

Figure 3: Error of estimation from 100 generations of the tvAR(1) process with

nonstationary innovations. The three boxplot in each subfigure correspond to

three different sample sizes (T = 64, 128 and 256).
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5 Proofs

5.1 Proof of Theorem 3.1

As usual in the context of minimum contrast estimation on sieves, the key point is to

establish maximal exponential bounds for the fluctuation of the empirical process. In the

context of locally stationary processes, the empirical spectral process is defined as

ET (φ) =
√

T (FT − F ) (φ)

where

F (φ) =

∫ 1

0
du

∫ π

−π
dλ φ(u, λ)f(u, λ)

and

FT (φ) =
1

T

T
∑

t=1

∫ π

−π
dλ φ

(

t

T
, λ

)

JT

(

t

T
, λ

)

.

The connection between this empirical process and the contrast functions has been derived

by Dahlhaus and Polonik (2003): as fθ̂m
minimizes LT (fθ, JT ) and fθm

minimizes L(fθ, f)

over θ ∈ Fm, we can write

0 6 L
(

fθ̂m
, f
)

− L (fθm
, f)

6 {LT (fθm
, JT ) − L (fθm

, f)} −
{

LT

(

fθ̂m
, JT

)

−L
(

fθ̂m
, f
)}

6
1

4π
√

T
ET

(

1

fθm

− 1

fθ̂m

)

+ R(θm) − R(θ̂m)

where

R(θ) :=
1

4π

∫ π

−π
dλ

{

1

T

T
∑

t=1

log fθ(t/T ) (λ) −
∫ 1

0
du log fθ(u)(λ)

}

.

Assumption 2.1 implies the existence of a positive, finite constant κ1 which is such that

supθ∈Fm
|R(θ)| 6 κ1/(8πT ).We then can write

L
(

fθ̂m
, f
)

6 L (fθm
, f) +

1

4π
√

T
ET

(

1

fθm

− 1

fθ̂m

)

+
κ1

4πT
.

We now decompose the empirical spectral process as ET = ẼT + ET , where ẼT =√
T (FT − EFT ) is a stochastic term while ET =

√
T (EFT − F ) is a deterministic term.

Lemma A.5 of Dahlhaus and Polonik (2003) implies |ET (φ)| 6 KT−1/2(ρ∞(φ) + ṽ(φ)).

Then we get with Assumption 3.1

L
(

fθ̂m
, f
)

6 L (fθm
, f) +

1

4π
√

T
ẼT

(

1

fθm

− 1

fθ̂m

)

+
κ1 + K(k∞ + ṽ)

4πT
.
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Let 1 − p(ω) be the probability of the event A defined by

Aω =

{

∀ν ∈ Fm :
1√
T

ẼT

(

1

fν
− 1

fθm

)

6 k
(

ω2 ∨ ‖ν − θm‖2
2

)

}

where k is a positive constant that will be specified later on. On Aω, we can write with

Assumption 3.2(a):

L
(

fθ̂m
, f
)

−L (fθm
, f) 6

k

4π







ω2 + K ′
2ρ2

(

1

fθm

− 1

fθ̂m

)2






+
κ1 + K(k∞ + ṽ)

4πT
. (5.1)

We now make use of the following lemma, quoted from Dahlhaus and Polonik (2003).

Lemma 5.1. If the class Fm is such that θm exists and is unique, if ρ∞(1/fθ) and ρ2(1/fθ)

are uniformly bounded under θ ∈ Fm, if the set F⋆
m = {1/f ; f ∈ Fm} is convex then there

exists a constant α > 0 such that

ρ2

(

1

fθ
,

1

fθm

)2

6 α {L (fθ, f) − L (fθm
, f)}

for all θ ∈ Fm.

If we choose k = 2π(αK ′
2)

−1 and rearrange the inequality (5.1) to get

L
(

fθ̂m
, f
)

− L (fθm
, f) 6

ω2

K ′
2α

+
κ1 + K(k∞ + ṽ)

2πT

a.s. on Aω. If we denote V = L(fθ̂m
, f)−L (fθm

, f)− (2πT )−1(κ1 + K(k∞ + ṽ)), then V 6

ω2(K ′
2α)−1 a.s. on Aω with Pr(Aω) = 1− p(ω). In consequence, Pr(V > ω2) 6 p(ω

√

K ′
2α)

and we get

E(V ) =

∫ ∞

0
dxPr(V > x) =

∫ ∞

0
dxp

(

√

K ′
2αx

)

=
2

K ′
2α

∫ ∞

0
dy yp(y).

We now make use of a maximal inequality for the empirical process stated in the appendix

(Lemma A.1), which implies, with k = 2π(αK ′
2)

−1,

E(V ) 6
2

K ′
2α

ω2
dm

(k) +
2e2

(e − 1)2
K2

2‖Σ‖2
spec

Tk2K2∞r2
m

where the function ωd(·) is defined in equation (A.1). �

5.2 Proof of Theorem 3.2

Set m⋆ = arg minm∈ND,T
L(fθm

, f) and fix (ν,m′) such that ν ∈ Fm and LT (fν , JT ) +

pen(m′) 6 LT (fθm
, JT ) + pen(m) for all m ∈ ND,T . For all m ∈ ND,T we can write

0 6 L (fν , f) − L
(

fθm⋆ , f
)

6 L (fν , f) − L
(

fθm⋆ , f
)

+ LT (fθm
, JT ) − LT (fν , JT ) + pen(m) − pen(m′)

6
1

4π
√

T
ẼT

(

1

θm
− 1

fν

)

+ RT + Um + pen(m) − pen(m′) (5.2)
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where Um = L(fθm
, f) − L(fθm⋆ , f) > 0 and RT = (4πT )−1(κ1 + K(k∞ + ṽ)), as in the

proof of Theorem 3.1.

Now, we fix m ∈ ND,T . For all m′ ∈ ND,T , define

ω2
m′(y) = ω2

dm
(16π2/τ) ∨ ω2

dm′
(16π2/τ) ∨

(

ζ(Lmdm ∨ Lm′dm′)

T

)

+
y

T

for y > 1, where ωdm
(·) is defined in (A.1), and let p(y) be the probability of the set

Ay =







sup
m′∈ND,T

sup
ν∈Fm′

∣

∣

∣
ẼT

(

1
fθm

− 1
fν

) ∣

∣

∣

‖θm⋆ − θm‖2
2 ∨ ‖θm⋆ − ν‖2

2 ∨ ω2
m′(y)

>
2π

√
T

αK ′
2







.

Using Assumption 3.2(a) and Lemma 5.1, we can write, a.s. on Ac
y,

1

4π
√

T

∣

∣

∣

∣

ẼT

(

1

θm
− 1

fν

)∣

∣

∣

∣

6
1

2
L (fν , f) +

1

2
L (fθm

, f) − L
(

fθm⋆ , f
)

+
1

2αK ′
2

ω2
m′(y)

and, if we rearrange the inequality (5.2), this implies that the minimum penalized likelihood

estimator θ̂m̂ satisfies

L
(

fθ̂m̂
, f
)

6 L (fθm
, f) +

1

2αK ′
2

ω2
m̂(y) + 2RT + 2Um + 2pen(m) − 2 pen(m̂)

a.s. on Ac
y. We choose c3 and c4 in the theorem such that the penalty function fullfils

2 pen(m) > (2αK ′
2)

−1

{

ω2
dm

(

16π2

τ

)

∨ ζLmdm

T

}

+ RT

and we have

L
(

fθ̂m̂
, f
)

6 L (fθm
, f) + 4pen(m) +

y

2αK ′
2T

+ 2Um

a.s. on Ac
y. The random variable

V =
{

L
(

fθ̂m̂
, f
)

− L (fθm
, f) − 2Um − 4 pen(m)

}

∨ 0.

is such that V 6 y/(2αK ′
2T ) a.s. on Ac

y with Pr(Ay) = p(y). Thus, if y > 1, Pr(V >

y/(2αK ′
2T )) 6 p(y) and we can write, for any m ∈ ND,T ,

E(V ) = (2αK ′
2T )−1

(

1 +

∫ ∞

1
dyp(y)

)

.

Lemma A.2 of the appendix and Assumption 3.3 allows to bound p(y) as follows:

p(y) 6 3.6
∑

m′∈ND,T

exp

(

−(ζLm′dm′ + y)

ζ

)

6 3.6Υ exp

(

−y

ζ

)

.

This implies E(V ) 6 (2αK ′
2T )−1(1 + 3.6Υ) and we conclude. �
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APPENDIX

A Auxiliary results

The following lemma is a maximal inequality of the empirical spectral process over a certain

class of functions Fm. Fm is a finite-dimensional linear space of the form Sm1
⊗ . . . ⊗ Smd

such that Assumption 3.1 is fulfilled. We also denote by dm the dimension of Fm.

Lemma A.1 (Maximal Inequality I). Under Assumptions 2.1, 3.1 and 3.2, for all γ ∈ Fm,

Pr







sup
θ∈Fm

∣

∣

∣ẼT

(

1
fθ

− 1
fγ

) ∣

∣

∣

ω2 ∨ ‖θ − γ‖2
2

> τ
√

T







6
e2

(e − 1)2
exp

(

−Tτ2ω2K2
∞r2

m

K2
2‖Σ‖2

spec

)

provided that ω2 > ω2
d(τ) with

ω2
dm

(τ) =
dm

T

{

1 ∨ c7Crm‖Σ‖2
spec

}

(A.1)

where c7 is a positive, finite constance depending on ṽ,K2,K∞.

This key result helps for controlling the fluctuation of the empirical spectral process. It

is a generalisation of Theorem 5 of Birgé and Massart (1998), who proved a similar result

for the empirical process of an i.i.d. sequence.

The next lemma states a maximal exponential inequality when the empirical spectral

process involves vectors in two different sieves Fm and Fm′ .

Lemma A.2 (Maximal inequality II). Define m⋆ = arg minm∈ND,T
D(fθm

, f). Under As-

sumptions 2.1, 3.1 and 3.2, for all indices m,m′ ∈ Np,T and for all θ ∈ Fm, the inequality

Pr







sup
ν∈Fm′

∣

∣

∣ẼT

(

1
fθ

− 1
fν

) ∣

∣

∣

‖θm⋆ − θ‖2
2 ∨ ‖θm⋆ − ν‖2

2 ∨ ω2
> τ

√
T







6 3.6 exp



−1

4
· Tτ ′2ω2

(

K2
2

K2
∞

r2
m
∨ 2πAm,m′

)

‖Σ1/2‖4
spec + κ−2‖Σ1/2‖2

specτ





holds true provided that ω > ωdm
(τ)∨ωdm′

(τ) (where the function ωdm
(·) is defined in (A.1)),

where Am,m′ = K2 + T−1/2KtvK∞(d
3/2
m ṽm ∨ d

3/2
m′ )(dmCrm ∨ dm′Crm′

) and κ is defined in

Assumption 2.1.

The usual way for proving maximal inequalities is to start with a Bernstein inequality

and use the chaining technique, provided that the complexity (entropy) of Fm is well con-

trolled. We follow this scheme in our proof, and start by quoting two useful results. The

first one is a Bernstein inequality derived in Dahlhaus and Polonik (2003) and the second

one allows to control the complexity of the approximation space.
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Lemma A.3 (Dahlhaus and Polonik, 2003). Suppose that {Xt,T } is a locally stationary

process (Definition 2.1) and suppose that the function φ : [0, 1] × [−π, π] → R is such that

ρ∞(φ) < ∞, ρ2(φ) < ∞ and ṽ(φ) < ∞. Set

ρ2,T (φ) =

{

1

T

T
∑

t=1

∫ π

−π
dλ φ

(

t

T
, λ

)

}1/2

and define the process ẼT =
√

T (FT − EFT ) (see Section 5). Then the inequality

Pr
{

|ẼT (φ)| > 2‖Σ1/2‖2
spec

√
T
(

2ξ ρ∞(φ) +
√

2πξ ρ2,T (φ)
)}

6 exp (−Tξ)

holds true for all ξ > 0.

The lemma is actually not exactly formulated as in Dahlhaus and Polonik (2003), but

is a straightforward application of their Theorem 3.4. Note that

ρ2,T (φ) 6 ρ2(φ) +

√

ρ∞(φ)ṽ(φ)

T
, (A.2)

then we can replace ρ2,T (φ) by this upper bound in the Bernstein inequality. In the following,

we also use the following alternative formulation of Lemma A.3:

Pr
(

|ẼT (φ)| > η
)

6 exp



−1

4
· η2

2π‖Σ1/2‖4
specρ

2
2,T (φ) + ‖Σ1/2‖2

spec
ρ∞(φ)η√

T



 (A.3)

for all η > 0.

The next lemma is a straightforward extension of Lemma 9 in Barron et al. (1999).

Lemma A.4. Suppose that Fm is a finite-dimensional linear space of the form Sm1
⊗ . . .⊗

SmD
such that Assumption 3.1 holds and denote by dm the dimension of Fm. Then, for

any positive δ one can find a countable set E(δ) ⊂ Fm and a mapping µ : Fm → E(δ) such

that

(a) For each ball B in R
d with radius ω > 5δ, |E(δ) ∩ B| 6 (5ω/δ)dm ,

(b) ‖θ − µ(θ)‖2 6 δ for all θ ∈ Fm,

(c) supt∈E(δ) ‖t − µ−1(t)‖∞ 6 rmδ for all t ∈ E(δ), where rm is defined in (3.3),

(d) TV(θ − µ(θ)) 6 δṽd
3/2
m ,

where the norms are defined in Section 3.3.

We can now prove the two maximal inequalities. The following proofs use chaining

argument and contains similar techniques than in the proofs of Barron et al. (1999); Birgé

and Massart (1998).
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Proof of Lemma A.1

Fix γ in Fm. We shall first prove a maximal inequality on a ball B(γ, ω) centered in γ with

radius ω > 0, included in Fm. More precisely, our goal now is to derive an exponential

bound for

P := Pr

{

sup
θ∈B(γ,ω)

∣

∣

∣

∣

ẼT

(

1

fθ
− 1

fγ

)∣

∣

∣

∣

>
√

T
K2

K∞rm
‖Σ‖specξω

2

}

.

To this end, we start with the chaining argument. We fix the sequence δk = 2−kδ0,

k = 0, 1, . . . (δ0 will be fixed later on). A straightforward application of Lemma A.4 shows

that there exists a sequence of subsets E(δk) ⊂ Fm such that 5δk 6 ω and

• |E(δk) ∩ B| 6 (5ω/δk)dm ,

• Given θ ∈ B, there exists a sequence (θk) with θk ∈ E(δk) and such that ‖θ−θk‖2 6 δk

and ‖θ − θk‖∞ 6 rmδk hold.

Given some point θ ∈ B(γ, ω), we select an element θk in E(δk) for each k. Then, θk → θ in

the L2 and the L∞ norms, and

θ = θ0 +
∞
∑

k=1

(θk − θk−1) .

Then, if we choose the sequence (ξk)k>0 such that

∞
∑

k=−∞
ξk 6 (K2/K∞rm)‖Σ‖specξω

2, (A.4)

we can write

P 6
∑

θ0∈E(δ0)

Pr

{∣

∣

∣

∣

ẼT

(

1

fθ0

− 1

fγ

)∣

∣

∣

∣

> ξ0

√
T

}

+

∞
∑

k=1

∑

θk∈E(δk)
θk−1∈E(δk−1)

Pr

{∣

∣

∣

∣

ẼT

(

1

fθk

− 1

fθk−1

)∣

∣

∣

∣

> ξk

√
T

}

=: P0 +
∞
∑

k=1

Pk. (A.5)

We now bound P0, Pk, k > 1. Set Hk = ln |E(δk)|. Using the Bernstein inequality (Lemma

A.3), we get P0 6 exp(H0 − Tη0) provided that

ξ0 = 2‖Σ1/2‖2
spec

{

2η0 ρ∞

(

1

fθ0

− 1

fγ

)

+
√

2πη0 ρ2,T

(

1

fθ0

− 1

fγ

)}

,
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where η0 will be chosen later. Using (A.2) with Assumption 3.2, ξ0 is bounded by

2‖Σ1/2‖2
spec

{

2η0K∞‖θ0 − γ‖∞

+
√

2πη0

(

K2‖θ0 − γ‖2 +

√

Ktv TV(θ0 − γ)K∞‖θ0 − γ‖∞
T

)}

.

Similarly, Pk 6 exp(Hk + Hk−1 − Tηk) with

ξk 6 2‖Σ1/2‖2
spec

{

2ηkK∞‖θk − θk−1‖∞ +
√

2πηk×

×
(

K2‖θk − θk−1‖2 +

√

Ktv TV(θ0 − γ)K∞‖θk − θk−1‖∞
T

)}

.

Now, we set L such that the inequality L > ξ2 ∨ 2 ln(5α) holds with

α := 1 + 36
√

2
K∞rm

K2

{

3K∞rm

√

dmL

T
+
√

π

(

K2 +

√

KtvdmṽK∞
T

)}

.

We also choose δ0 = ω/α and assume that the radius of the ball is such that

ξω =
√

dmL/T . (A.6)

Now, we choose η0, ηk such that Tη0 = H0 + dmL and Tηk = Hk + Hk−1 + (k + 1)dmL for

k > 1. From (A.5), this leads to

Pr

{

sup
θ∈B(γ,ω)

∣

∣

∣

∣

ẼT

(

1

fθ
− 1

fγ

)∣

∣

∣

∣

>
√

T
K2

K∞rm
‖Σ‖specξω

2

}

6 exp(−dmL)

{

1 +
∞
∑

k=1

exp(−kdmL)

}

6 exp(−dmL) {1 − exp(−dmL)}−1

6 e(e − 1)−1 exp(−dmL) = e(e − 1)−1 exp(−ω2ξ2T ) (A.7)

which is the maximal exponential inequality on the ball B(γ, ω), for a radius ω such that

(A.6) holds, and provided that (A.4) and dmL/2 > 1 hold true. As dm > 1, the last

constraint holds since α > 1 and then L > 2. Moreover, straightforward (but long) algebra

shows that (A.4) holds true. Then, the maximal inequality on the ball B(γ, ω) is proved

provided that (A.6) holds true, i.e. ω2 > dmT−1{1∨2ξ−2 ln(5α)}. Observe that a sufficient

condition for this inequality is

ω2
>

dm

T

{

1 ∨ 1

ξ2

(

20

e
B +

200dm

e2T
A2

)}

(A.8)

with A = 108
√

2K2
∞r2

m/K2 and B = 1 + 36
√

2K∞K−1
2 rm

√
π(K2 +

√

KtvdmṽK∞/T ) as in

the statement of Lemma A.3 because, with ln |x| 6 |x|/e and (A.8), we have

2dm

T
ln(5α) 6

10dm

eT
(Aξω + B) 6

10dmA

eT
ωξ +

1

2
ξ2ω2 − 100d2D2A2

e2T 2
6 ξ2ω2.
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Then the exponential inequality (A.7) on a ball B(γ, ω) holds provided that ω obeys (A.8).

Also, due to Assumption 3.1, a sufficient condition for (A.8) is given by ω2 > ω2
dm

(τ) where

ω2
dm

(·) is defined in (A.1).

In order to prove the maximal inequality over the whole space Fm, we define ω0 = 0

and ωj = 2jω, j > 0. Then

Pr







sup
θ∈Fm

∣

∣

∣
ẼT

(

1
fθ

− 1
fγ

) ∣

∣

∣

ω2 ∨ ‖θ − γ‖2
2

> τ
√

T







6

∞
∑

j=0

Pr







sup
θ∈Fm;ω2

j 6‖θ−γ‖2
2
<ω2

j+1

∣

∣

∣
ẼT

(

1
fθ

− 1
fγ

) ∣

∣

∣

ω2
j

> τ
√

T







6

∞
∑

j=0

Pr

{

sup
θ∈B(γ,ωj+1)

∣

∣

∣
ẼT

(

1

fθ
− 1

fγ

)

∣

∣

∣
> ω2

j τ
√

T

}

. (A.9)

We can now use the Bernstein inequality on the balls B(γ, ωj+1), with τ = K2‖Σ‖specξ/(K∞rm).

From (A.8), with condition

ω2 >
dm

T

{

1 ∨
K2

2‖Σ‖2
spec

K2∞r2
mτ2

(

20

e
B +

200dm

e2T
A2

)

}

(A.10)

we can bound (A.9) from above by:

e

e − 1

∞
∑

j=0

exp

(

−
Tτ2K2

∞r2
mω2

j

K2
2‖Σ‖2

spec

)

6
e2

(e − 1)2
exp

(

−Tτ2K2
∞r2

mω2

K2
2‖Σ‖2

spec

)

.

since (A.10) with dm > 1 implies that K2
∞r2

mτ2ω2T > K2
2‖Σ‖2

spec. The lemma follows. �

Proof of Lemma A.2

From Lemma A.1, it holds

Pr







sup
ν∈Fm′

∣

∣

∣ẼT

(

1
fν

− 1
fγ

) ∣

∣

∣

ω2 ∨ ‖ν − γ‖2
2

> τ
√

T







6
e2

(e − 1)2
exp

(

−Tτ2ω2K2
∞r2

m

K2
2‖Σ‖2

spec

)

for all γ ∈ Fm′ provided that ω2 > ω2
dm′

(τ). Moreover, the Bernstein inequality (A.3) allows

to write

Pr







∣

∣

∣ẼT

(

1
fθ

− 1
fγ

) ∣

∣

∣

‖θ − γ‖2
2 ∨ ω2

> τ
√

T







6 exp

(

−1

4
· Tτ2(‖θ − γ‖2

2 ∨ ω2)

2A◦
m,m′π‖Σ1/2‖4

spec + B‖Σ1/2‖2
specτ

)

for all γ ∈ Fm′ where, using Assumption 3.2 and (A.2),

A◦
m,m′ :=

ρ2
2,T

(

1
fθ

− 1
fγ

)

‖θ − γ‖2
2 ∨ ω2

6
K2‖θ − γ‖2

2 + T−1KtvK∞‖θ − γ‖∞ TV (θ − γ)

‖θ − γ‖2
2 ∨ ω2
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and with B = ρ∞(1/fγ − 1/fθ) 6 κ−2 by Assumption 2.1. In order to bound A◦
m,m′ ,

we need an upper bound for ‖θ − γ‖∞ and TV(θ − γ). Using Assumption 3.2(c) and

the definition of Φm, we get ‖θ − γ‖∞ 6 ‖θ − γ‖2(d
3/2
m Φm ∨ d

3/2
m′ Φm′) and TV(θ − γ) 6

‖γ−η‖2(d
3/2
m ṽm∨d

3/2
m′ ṽm). Finally, we get A◦

m,m′ 6 Am,m′ because Φm 6 rm 6 Crm

√

T/dm

by Assumption 3.1.

Then, we can write

Pr







∣

∣

∣
ẼT

(

1
fθ

− 1
fγ

) ∣

∣

∣

‖θ − γ‖2
2 ∨ ω2

> τ
√

T







6 exp

(

−1

4
· Tτ2ω2

2πAm,m′‖Σ1/2‖4
spec + B‖Σ1/2‖2

specτ

)

.

With the equality ‖Σ‖spec = ‖Σ1/2‖2
spec, we finally get, for all γ ∈ Fm′ ,

Pr







sup
ν∈Fm′

∣

∣

∣ẼT

(

1
fθ

− 1
fν

) ∣

∣

∣

‖γ − θ‖2
2 ∨ ‖γ − ν‖2

2 ∨ ω2
> τ

√
T







6

(

1 +
e2

(e − 1)2

)

exp



−1

4
· Tτ2ω2

(

K2
2

K2
∞

r2
m
∨ 2πAm,m′

)

‖Σ1/2‖4
spec + B‖Σ1/2‖2

specτ



 .

The result follows since, with ω > 0 and for any ε > 0, there exists γ ∈ Fm′ such that

‖γ − θm⋆‖2 6

(

(1 + ε) inf
ν∈Fm′

‖θm⋆ − ν‖2

)

∨ ω2

and this implies

‖γ − θ‖2
2 ∨ ‖γ − ν‖2

2 6 ‖θm⋆ − γ‖2
2 +

(

‖θm⋆ − ν‖2
2 ∨ ‖θm⋆ − θ‖2

2

)

6
{

(1 + ε)‖θm⋆ − ν‖2
2 ∨ ω2

}

+
{

‖θm⋆ − ν‖2
2 ∨ ‖θm⋆ − θ‖2

2

}

6 (2 + ε)
{

ω2 ∨ ‖θm⋆ − ν‖2
2 ∨ ‖θm⋆ − θ‖2

2

}

and this argument holds for an arbitrary ε > 0. �

References

Baraud, Y., Comte, F. and Viennet, G. (2001). Adaptive estimation in autoregression or

β-mixing regression via model selection. Ann. Statist., 29, 839–875.
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