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1 Introduction

Consider a semiparametric problem that depends on a parameter β0 and an unknown func-

tion θ0(·). The purpose of this paper is to compare backfitting and profiling methods in

semiparametric regression. Our context is quite general and allows for estimation based on

non-smooth criterion functions.

We first introduce the context of the general problem. Assume that the data (Xi, Yi)

(i = 1, . . . , n) are independent replications of a (1 + dy)-dimensional random vector (X, Y ).

Let β denote a q × 1 vector of parameters of interest, with true value β0, belonging to a

compact subset B of IRq. Let θ = θ(·) : IR → IR be an infinite dimensional ‘nuisance’

parameter with true value θ0(·), and let L{Y, β0, θ0(X)} be a real-valued maximizing function

for β0 and θ0, in the sense that E[Lβ{Y, β0, θ0(X)}] = 0 and E[Lθ{Y, β0, θ0(x)}|X = x] = 0

for all x, where Lβ{y, β, θ(x)} denotes the vector of partial derivatives of L{y, β, θ(x)} with

respect to the components of β, and Lθ{y, β, θ(x)} denotes the partial derivative of L(y, β, z)

with respect to z, and evaluated at z = θ(x). Inference for β0 is then carried out by

maximizing

n−1
n∑

i=1

L{Yi, β, θ(Xi)} (1)

with respect to β for some θ(·).
In the semiparametric literature, two approaches have been considered to maximize ex-

pression (1), these approaches differing in the way they treat the unknown function θ0(·).
The backfitting procedure has been investigated by many authors in special contexts,

including Rice (1986), Speckman (1988), Buja et al. (1989), Hastie and Tibshirani (1990),

Opsomer and Ruppert (1997, 1999), Mammen et al. (1999), Wand (1999) and Opsomer

(2000). The basic idea is one of iteration. For any given β, let θ̂(·, β) be an estimate of θ0(·):
the estimator we use is defined in the next section. Then define

mBF {y, β, θ(x)} = Lβ{y, β, θ(x)}.

The backfitting estimator β̂BF is now defined by the value of β that minimizes

‖n−1
n∑

i=1

mBF{Yi, β, θ̂(Xi, β)}‖ (2)
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over B, where ‖ · ‖ is the Euclidean norm in IRq.

The profile method also has a large literature, see for example Severini and Wong (1992),

Severini and Staniswalis (1994), Carroll et al. (1997) and Murphy and van der Vaart (2000),

among many others. This method again starts with θ̂(x, β), which may be different from

that constructed for backfitting, but it obtains the estimate of β differently. Specifically, it

creates an estimating function mPR by differentiating L{y, β, θ(x, β)} with respect to β, i.e.,

mPR{y, β, θ(x, β), θβ(x, β)} =
d

dβ
L{y, β, θ(x, β)}

= Lβ{y, β, θ(x, β)}+ Lθ{y, β, θ(x, β)} ∂
∂β
θ(x, β),

where θβ(x, β) = ∂
∂β
θ(x, β) for any θ(x, β). With these definitions, the profile estimator β̂PR

is the value of β in B for which

‖n−1
n∑

i=1

mPR{Yi, β, θ̂(Xi, β), θ̂β(Xi, β)}‖ (3)

is minimal, where θ̂(·, β) and θ̂β(·, β) are defined in Section 2.

The comparison of backfitting and profiling has been the subject of some limited research.

Consider a Gaussian model with independent data, scalar response Yi and predictors (Zi, Xi),

so that in our context Yi = (Yi, Zi), and suppose that the true mean is ZT
i β0 + θ0(Xi). Op-

somer and Ruppert (1999) showed that under certain conditions, backfitting and profiling

produce asymptotically equivalent estimators, but only when backfitting an estimated func-

tion θ̂(x, β) undersmoothed compared to that used by profiling. In more global contexts,

with correlated data and multiple arguments for the function, backfitting and profiling are

no longer necessarily asymptotically equivalent, see Hu, et al. (2004) for a counterexample.

In this note we study the two methods when the criterion functions mBF (y, β, z) and

mPR(y, β, z1, z2) are not necessarily smooth in β and/or z, and when θ is estimated by

kernel smoothing. We will prove that, under certain regularity conditions, the two methods

are asymptotically equivalent, but only when the driving estimation methods θ̂(x, β) employ

different amounts of smoothness.

The paper is organized as follows. In the next section we introduce notation and develop

the general conditions under which the estimators β̂BF and β̂PR are asymptotically normal.
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We show that under certain primitive conditions, the profile estimator and the backfitting

estimator have the same asymptotic variance. Section 3 gives two applications. The first,

discussed in Section 3.1 deals with an application of the general theory to partial linear

median regression. The second, in Section 3.2, is concerned with a varying coefficient change

point model, motivated by a problem in toxicology. The proofs and the conditions under

which the main results for backfitting and profiling are valid are given in Appendix A and

B, respectively.

2 Main Results

Let Kh(u) = h−1K(u/h), K be a symmetric kernel density function and h be a smooth-

ing parameter. For the backfitting procedure, let θ̂(x, β) be defined by a value of θ that

maximizes

n−1
n∑

i=1

Kh(Xi − x)L(Yi, β, θ), (4)

for fixed values of β and x. In order to focus on the primary issues, we assume the existence

of a well-defined maximizer of (4).

For the profiling estimator, all we need is that θ̂(x, β) and θ̂β(x, β) satisfy assumption

(PR1) given in Appendix B. This implies that the asymptotic distribution of β̂ does not

depend on the estimators of θ0 and θ0β, as long as assumption (PR1) is fullfilled. While

other nonparametric estimators based on e.g. splines or local polynomials can be used, in

particular, θ̂ and θ̂β can be estimated in the following way: let θ̂(x, β) be defined as for the

backfitting procedure and let θ̂β(x, β) be the partial derivative of θ̂(x, β) with respect to β,

or, in case θ̂(x, β) is not differentiable with respect to β, define θ̂β(x, β) by

∂

∂β

∫
θ̂(x, b)Lg(β − b) db

where L is a kernel density function and g is an appropriate bandwidth. Recall that β̂BF

and β̂PR are the estimators of β0 defined in (2) and (3).

Let θ0(x, β) denote a solution of E{Lθ(Y, β, θ)|X = x} = 0 with respect to θ for fixed β

and x, where the expectation is calculated under the distribution induced by {β0, θ0(·)}. We

assume that θ0(x, β) is unique. Clearly, θ0(·, β0) ≡ θ0(·).
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For any function H ≡ {H1(β, θ), . . . , Hd(β, θ)} of (say) dimension d, we use the notation

∂
∂β
H(β, θ) and d

dβ
H(β, θ) to denote the d× q matrix with (i, j)th-element (i = 1, . . . , d, j =

1, . . . , q) given by

∂

∂β
H(β, θ)ij = lim

τ→0

1

τ
[Hi{β + τej, θ(·, β)} −Hi{β, θ(·, β)}] (5)

and

d

dβ
H(β, θ)ij = lim

τ→0

1

τ
[Hi{β + τej, θ(·, β + τej)} −Hi{β, θ(·, β)}] (6)

respectively, where ej = (ej1, . . . , ejq) and ejk = δjk = I(j = k) (k = 1, . . . , q).

We are now ready to state the main result concerning the asymptotic normality of β̂BF

and β̂PR. Let G(β) = d
dβ
E[Lβ{Y, β, θ0(X, β)}] and define

Σ = cov
[
Lβ{Y, β0, θ0(X, β0)}+ Lθ{Y, β0, θ0(X, β0)} ∂

∂β
θ0(X, β0)

]
.

Theorem 2.1 Assume (BF1)–(BF8): in particular, assume that the bandwidth h satisfies

nh4 → 0, and not the usual optimal bandwidth of h ∝ n−1/5. Then,

n1/2(β̂BF − β0)
d→ Normal

{
0,G−1(β0)ΣG−1(β0)T

}
.

Theorem 2.2 Assume (PR1)–(PR4): in particular, we allow that the bandwidth h satisfies

h ∝ n−1/5. Then,

n1/2(β̂PR − β0)
d→ Normal

{
0,G−1(β0)ΣG−1(β0)T

}
.

The proof of these results, as well the assumptions under which they are valid, can be

found in Appendix A for the backfitting method and in Appendix B for the profiling method.

As a consequence, the backfitting and profiling method produce asymptotically equivalent

estimators, also when mBF or mPR are not smooth in β or θ. The backfitting procedure

requires however that undersmoothing be used to estimate θ̂(x, β), whereas the profiling

procedure does not.

Note that, although the asymptotic variance G−1(β0)ΣG−1(β0)T has an explicit formula,

its actual computation might be complicated in certain situations. In such cases, a bootstrap

approximation can be useful. See Theorem B in Chen, Linton and Van Keilegom (2003) for

general conditions under which a naive bootstrap procedure is valid.

4



3 Applications

3.1 Partially Linear Median Regression

Consider the model

Yi = ZT
i β0 + θ0(Xi) + εi (7)

where Zi is a possibly vector-valued covariate of dimension q, Xi is a scalar covariate, and

med(εi|Xi, Zi) = 0. In our general notation, let Y = (Y, Z). The criterion function is

L{Y, β, θ(X)} = −|Y − ZTβ − θ(X)|. (8)

The backfitting estimator β̂BF of β0 has been considered in Chen, Linton and Van Keilegom

(2003), see their Example 2. Here, we consider the profiling estimator.

It is readily seen that for fixed β, θ0(x, β) = med(Y − ZTβ|X = x). Let θ̂(x, β) be the

kernel estimator of the conditional median of Y − ZTβ given X = x. Note that θ̂(x, β) is

not smooth in β, because θ̂(x, β) is piecewise constant as a function of β. Hence we define

θ̂β(x, β) by

θ̂β(x, β) =
∂

∂β

∫
θ̂(x, b)Lg(β − b) db.

Let Θ = {θ : θ(·, β) ∈ Cα
M(RX) for all β} for some α > 1, 0 < M < ∞, and some compact

interval RX , see van der Vaart and Wellner (1996), p. 154 for the definition of the class

Cα
M(RX). Assume that θ0 and the components of θ0β belong to Θ. Then, using kernel theory

for median regression (see e.g. Chaudhuri (1991)), it can be seen that assumption (PR1) is

valid : for θ̂β − θ0β note that

‖θ̂β − θ0β‖∞ ≤
∥∥∥
∂

∂β

∫
{θ̂(x, b)− θ0(x, b)}Lg(β − b) db

∥∥∥
∞

+
∥∥∥
∂

∂β

∫
{θ0(x, b)− θ0(x, β)}Lg(β − b) db

∥∥∥
∞

and this is oP (n−1/4) provided L is a symmetric, compactly supported kernel function, ng8 →
0, nh2g4 →∞, nh8g−4 → 0, ‖θ̂−θ0‖∞ = OP{(nh)−1/2+h2} and θ0 is three times continuously

differentiable with respect to the components of β. For example, take h = C1n
−1/5 and

g = C2n
−1/7 for some C1, C2 > 0. In order to show that ‖θ̂ − θ0‖∞ = OP{(nh)−1/2 + h2},
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note that Chaudhuri (1991) shows that supx |θ̂(x, β)− θ0(x)| = OP{(nh)−1/2 + h2} for fixed

β and for h ∝ n−1/5. It is possible to extend this result to bandwidths h that satisfy the

above constraints and to prove that the given rate holds uniformly over all β. It suffices for

this to replace the supremum over β in an appropriate way by a maximum over a set of grid

points (of size tending to infinity) and to prove the consistency uniformly over the set of grid

points.

Direct calculations show that

E[Lβ{Y, β, θ(X, β)}|X] = −E([2FY|X,Z{ZTβ + θ(X, β)} − 1]Z|X),

E[Lθ{Y, β, θ(X, β)}|X] = −E[2FY|X,Z{ZTβ + θ(X, β)} − 1|X].

In addition,

G(β0) = −2E
[
fY|X,Z{ZTβ0 + θ0(X)}Z

{
Z +

∂

∂β
θ0(X, β0)

}T]
.

Hence, assumption (PR2) is verified under standard smoothness conditions on FY|X,Z . Also,

(PR4) holds under classical identifiability conditions. It is readily seen that (PR3)(i) is valid

for r` = 2 and s` = 1/2. Finally, for assumption (PR3)(ii) we make use of Theorem 2.7.1 in

van der Vaart and Wellner (1996). It is easily checked that

∫ ∞

0

√
logN(ε2, Θ̃, ‖ · ‖∞) dε ≤ C

∫ (2M)1/2

0
ε−1/αdε <∞,

for some C > 0. The asymptotic normality of β̂PR now follows. Note that the matrix Σ

equals

Σ = cov
(
{2I(ε ≥ 0)− 1}

[
Z − E{fε|X,Z(0)Z|X}

fε|X(0)

])
,

since it is easily seen that θ0β(X, β0) = −E{fε|X,Z(0)Z|X}/fε|X(0).

3.2 Varying Coefficient Change Point Model

Consider the following model

Yi = θ01(Xi) + θ02(Xi)|Zi − β0|+ + εi, (9)

6



where E(εi|Xi, Zi) = 0, Xi and Zi are scalar covariates and z+ = zI(z > 0). An interesting

application of this type of model can be found in toxicology, where models of the form

E(Yi|Zi) = θ01 + θ02|Zi − β0|λ0
+ (10)

are compatible with accepted understanding of the basic structure of dose-response curves

for exposure to dioxin. Roberts (1991) states that “new findings suggest that responses

to dioxin increase slowly at first but then shoot up after passing a critical concentration”.

Indeed, researchers have “agreed that before dioxin can cause any of its myriad toxic effects

. . . it must first bind to and then activate a receptor. . . . If receptor binding is indeed the

essential first step . . . then that implies there is a safe dose or practical threshold below which

no toxic effects occur”. Feder (1975) constructs
√
n-consistent and asymptotically normally

distributed estimators for (θ01, θ02, β0) in model (10) when λ0 = 1, see his Example 1 on

p. 77, setting his θ12 = 0. Model (9) goes one step further, in the sense that it allows the

average response before and the slope after critical concentration to depend on e.g. age or

any other individual characteristic.

Let Y = (Y, Z) and define the following criterion function :

L{Y, β, θ(X)} = −{Y − θ1(X)− θ2(X)|Z − β|+}2.

Note that the theory developed in Section 2 can be extended in an obvious way to bivariate

nuisance functions. Straightforward calculations show that for fixed β,

θ02(X, β) = θ02(X)
Cov(|Z − β0|+, |Z − β|+|X)

Var(|Z − β|+|X)
=

Cov(Y, |Z − β|+|X)

Var(|Z − β|+|X)
,

θ01(X, β) = E(Y|X)− θ02(X, β)E(|Z − β|+|X).

Also, let θ̂1(X, β) and θ̂2(X, β) be the estimators obtained by replacing the conditional means,

variances and covariances in the above expressions by the corresponding kernel estimators,

and let θ̂1β(X, β) and θ̂2β(X, β) be obtained by replacing |Zi−β|+ in these kernel estimators

by −I(Zi ≥ β) (i = 1, . . . , n).

As for the example on partial linear median regression, the main assumptions to verify

are (BF7) for the backfitting procedure and (PR1) and (PR3) for the profiling method. We

start with (PR1). Let Θ = {θ : θ(·, β) ∈ Cα
M(RX) for all β} for some α > 1/2, 0 < M <∞
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and some compact interval RX , see van der Vaart and Wellner (1996), page 154. Assume

that θ0 and θ0β belong to Θ. We will show that ‖θ̂jβ − θ0jβ‖∞ = oP (n−1/4) (j = 1, 2): the

other conditions in (PR1) can be proved similarly. Since θ0j(·, β) is composed of variances,

covariances and means, it suffices to consider each of these factors separately. For simplicity,

we restrict attention to the mean, i.e. we consider

sup
x,β

∣∣∣∣∣n
−1

n∑

i=1

Kh(Xi − x)
∑n
j=1Kh(Xj − x)

I(Zi ≥ β)− P (Z ≥ β|X = x)

∣∣∣∣∣ = oP (n−1/4)

provided nh2 → ∞ and nh8 → 0, see e.g. Proposition 4.1 in Akritas and Van Keilegom

(2001).

Part (i) of conditions (BF7) and (PR3) can be easily seen to hold true for s` = 1 and

r` = 2. For part (ii), since N(ε, Cα
M(RX), ‖ · ‖∞) = O{exp(Kε−1/α)}, see Theorem 2.7.1

in van der Vaart and Wellner (1996), it follows that the integral in part (ii) is finite. The

asymptotic normality of both β̂BF and β̂PR now follows. The calculation of the asymptotic

variance is straightforward but leads to lengthy formulas, and is left to the reader.

Appendix A: Proofs for Backfitting

Make the definitions

MnBF (β, θ) = n−1
n∑

i=1

mBF{Yi, β, θ(Xi, β)},

MBF (β, θ) = E[mBF {Y, β, θ(X, β)}],

and define the q × q matrix ΓBF,β(β, θ) = d
dβ
MBF (β, θ) = d

dβ
E[Lβ{Y, β, θ(X, β)}]. Also, for

a function ξ(·) = ξ(X, β), let ΓBF,θ(β, θ)[ξ] denote the Gâteaux-derivative of MBF (β, θ) in

the direction ξ, i.e.,

ΓBF,θ(β, θ)[ξ] = lim
τ→0

1

τ
{MBF (β, θ + τξ)−MBF (β, θ)}

= lim
τ→0

1

τ
E[Lβ{Y, β, (θ + τξ)(X, β)} − Lβ{Y, β, θ(X, β)}]

= E

(
∂

∂θ
E[Lβ{Y, β, θ(X, β)}|X]ξ(X, β)

)
,

where ∂
∂θ
E[Lβ{Y, β, θ(X, β)}|X] = ∂

∂z
E{Lβ(Y, β, z)|X}|z=θ(X,β). Note that MBF (β0, θ0) = 0.
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For any function g = (g1, . . . , gd) of (say) dimension d defined on a set A in IRa,

for any y ∈ A and any k, let ∂k

∂yk
g(y) denote the vector of all partial derivatives of or-

der k of the form ∂k

∂y
k1
1 ...∂ykaa

gj(y), where
∑a
i=1 ki = k and 1 ≤ j ≤ d. Let ‖g‖∞ =

max1≤j≤d supy∈A |gj(y)|. In particular, for a function θ = θ(x, β), ‖θ‖∞ = supx,β |θ(x, β)|,
and ‖ ∂θ

∂β
‖∞ = max1≤`≤q supx,β | ∂θ∂β` (x, β)|.

Further, let Θ be some space of functions θ = θ(x, β) (x ∈ IR, β ∈ B) for which ‖θ‖∞ ≤M

for some M > 0.

The conditions below use the concept of covering number which is defined as follows. For

ε > 0 and any normed space (Θ, ‖ · ‖) of functions, the covering number N(ε,Θ, ‖ · ‖) is the

minimal number of balls {η : ‖η− θ‖ < ε} of radius ε needed to cover Θ. The centers of the

balls need not belong to Θ, but they should have finite norms.

(BF1) The bandwidth h satisfies nh4 → 0 as n tends to infinity.

(BF2) The probability density function K has compact support and
∫
uK(u) du = 0.

(BF3) X is absolutely continuous and has compact support RX , its density fX is twice

continuously differentiable and infx fX(x) > 0.

(BF4) θ0 ∈ Θ, ∂k+`

∂xk∂β`
θ0(x, β) (0 ≤ k+l ≤ 3) exists for almost all x and β and ‖ ∂k+`θ0

∂xk∂β`
‖∞ <∞.

(BF5) (i) P (θ̂ ∈ Θ)→ 1 as n→∞ and ‖θ̂ − θ0‖∞ = oP (n−1/4).

(ii) supx |(θ̂ − θ0)(x, β̂)− (θ̂ − θ0)(x, β0)| = oP (1)‖β̂ − β0‖.
(iii) supx |n−1∑n

i=1 Kh(Xi − x)Lθ{Yi, β0, θ̂(x, β0)}| = oP (n−1/2).

(BF6) (i) For all y, L(y, β, θ) is differentiable with respect to β and θ, for almost all β and

θ.

(ii) ∂
∂θ
E[Lβ{Y, β, θ0(X, β)}|X] and ∂

∂β
E[Lθ{Y, β, θ0(X, β)}|X] exist for all β ∈ B, and they

are equal.

(iii) E
{

sup|θ|≤M |Lθ(Y, β0, θ)|2
}
<∞.

(iv) ∂j+k+`

∂θj∂xk∂β`
E{Lβ(Y, β, θ)|X = x} and ∂j+k+`

∂θj∂xk∂β`
E{Lθ(Y, β, θ)|X = x} exist for 0 ≤ j + k +

` ≤ 2 and for all β, θ and x, and

sup
β∈B,|θ|≤M,x∈RX

∣∣∣
∂j+k+`

∂θj∂xk∂β`
E{Lβ(Y, β, θ)|X = x}

∣∣∣ <∞,
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sup
β∈B,|θ|≤M,x∈RX

∣∣∣
∂j+k+`

∂θj∂xk∂β`
E{Lθ(Y, β, θ)|X = x}

∣∣∣ <∞,

(v) G(β) exists for β in a neighborhood of β0, is continuous at β0 and G(β0) is of full rank.

(BF7) (i)

E

{
sup

(β′,θ′):‖β−β′‖≤δ,‖θ−θ′‖∞≤δ
|Lθ(Y, β, θ)− Lθ(Y, β ′, θ′)|r0

}
≤ K0δ

r0s0,

E

{
sup

(β′,θ′):‖β−β′‖≤δ,‖θ−θ′‖∞≤δ
|Lβ,`(Y, β, θ)− Lβ,`(Y, β ′, θ′)|r`

}
≤ K`δ

r`s`,

for r0 = 2, 2 + η, for some r` ≥ 2 (` = 1, . . . , q), for all (β, θ) ∈ B × Θ, all δ > 0, for some

η > 0, some 0 < s` ≤ 1 and some K` > 0 (` = 0, . . . , q).

(ii)
∫∞
0

√
logN(ε1/s`, Θ̃, ‖ · ‖∞) dε <∞, for ` = 0, . . . , q, where Θ̃ = {θ(·, β) : θ ∈ Θ, β ∈ B}.

(BF8)(i) For all δ > 0, there exists a ε > 0 such that inf‖β−β0‖>δ ‖MBF (β, θ0)‖ ≥ ε.

(ii) Uniformly for all β ∈ B, MBF (β, θ) is continuous in θ at θ0 (with respect to the ‖ · ‖∞
norm).

(iii) ΓBF,θ(β, θ0)[θ − θ0] exists in all directions θ − θ0 ∈ Θ.

Assumption (BF1) requires that undersmoothing is used to estimate the nuisance function

θ0. This will not be required for the profiling method. Conditions (BF2)-(BF6) and (BF8)

are standard regularity conditions that can be easily verified in practical situations. Note

that assumption (BF6) does not impose smoothness conditions on Lβ and Lθ, but requires

instead that E(Lβ) and E(Lθ) are differentiable.

The condition on the covering number in (BF7) can be checked by using e.g. the results

obtained by van der Vaart and Wellner (1996). A common special case is the case where

the class Θ̃ belongs to Cα
M(RX), which is a certain subclass of the space of all functions

that possess partial derivatives up to order α > 0, see page 154 in their book for a precise

definition. Theorem 2.7.1 (page 155) gives a bound on the covering number for this space.

For the proofs below, we restrict attention for simplicity to the case q = 1. The general

case q ≥ 1 can be obtained in a similar way, but requires more complex notation.

We start with a technical lemma.

10



Lemma A.1 Assume (BF1)–(BF8). Then,

n−1
n∑

i=1

EX
(Kh(Xi −X)

fX(X)

∂

∂β
θ0(X, β0)[Lθ{Yi, β0, θ0(Xi)} − Lθ{Yi, β0, θ̂(X, β0)}]

)

= EX1,X2,Y1

(Kh(X1 −X2)

fX(X2)

∂

∂β
θ0(X2, β0)[Lθ{Y1, β0, θ0(X1)} − Lθ{Y1, β0, θ̂(X2, β0)}]

)

+oP (n−1/2),

where the expectations are taken conditionally on the data (Xi, Yi) (i = 1, . . . , n).

Proof. Throughout the proof, C denotes a generic constant, whose value may change

from one line to another. The following abbreviated notations will be used : let H(Y, θ) =

Lθ(Y, β0, θ) and g(X) = ∂
∂β
θ0(X, β0). To prove this result we will make use of modern

empirical process theory see e.g. van der Vaart and Wellner 1996. Consider the process
∑n
i=1 Zni(θ), where

Zni(θ) = n−1/2

{
EX

(Kh(Xi −X)

fX(X)
g(X)[H{Yi, θ0(Xi)} −H{Yi, θ(X)}]

)

− EX1,X2,Y1

(Kh(X1 −X2)

fX(X2)
g(X2)[H{Y1, θ0(X1)} −H{Y1, θ(X2)}]

)}
,

where θ belongs to Θ. For simplicity we suppress the dependence of θ on β0. Note that by

assumption (BF5)(i), P (θ̂ ∈ Θ)→ 1. In order to show the weak convergence of this process

we will verify the conditions of Theorem 2.11.9 in van der Vaart and Wellner (1996):

n∑

i=1

E

[
sup
θ∈Θ
|Zni(θ)|I

{
sup
θ∈Θ
|Zni(θ)| > η

}]
→ 0 for every η > 0; (11)

∫ δn

0

√
logN[ ](ε,Θ, L

n
2)dε→ 0 for every δn ↓ 0; (12)

n∑

i=1

Zni(θ) converges marginally for every θ ∈ Θ, (13)

where N[ ](ε,Θ, L
n
2 ) is the bracketing number, defined as the minimal number of sets Nε in a

partition Θ = ∪Nεj=1Θεj, such that for every j = 1, . . . , Nε:

n∑

i=1

E

{
sup

θ1,θ2∈Θεj

|Zni(θ1)− Zni(θ2)|2
}
≤ ε2. (14)

The first two conditions (11) and (12) imply the asymptotic tightness of the process and

can be proved separately for the four terms in the definition of
∑n
i=1 Zni. We will restrict

11



ourselves to showing (11) and (12) for the second term:

n∑

i=1

Z̃ni(θ) = n−1/2
n∑

i=1

EX
[Kh(Xi −X)

fX(X)
g(X)H{Yi, θ(X)}

]
.

We start with verifying condition (12). Fix ε > 0. From assumption (BF7)(ii) it follows that

there exist functions θ1, . . . , θNε in Θ such that
∫ δn
0

√
logNε dε → 0 and such that the balls

{θ : ‖θ − θj‖∞ ≤ ε1/s0} (j = 1, . . . , Nε) cover Θ. We will show that for any 1 ≤ j ≤ Nε,

n∑

i=1

E



 sup
‖θ−θj‖∞≤ε1/s0

|Z̃ni(θ)− Z̃ni(θj)|2


 ≤ ε2. (15)

The left hand side of (15) equals

E
(

sup
‖θ−θj‖∞≤ε1/s0

|
∫
Kh(X1 − x)g(x)[H{Y1, θ(x)} − H{Y1, θj(x)}]dx|2

)

= E
(

sup
‖θ−θj‖∞≤ε1/s0

|
∫
K(u)g(X1 − hu)[H{Y1, θ(X1 − hu)} − H{Y1, θj(X1 − hu)}]du|2

)

≤ sup
x
|g(x)|2

∫
K(u)E

[
sup

‖θ−θj‖∞≤ε1/s0
|H{Y1, θ(X1 − hu)} − H{Y1, θj(X1 − hu)}|2

]
du

≤ C sup
x
|g(x)|2ε2,

where the last inequality follows from assumption (BF7)(i). This shows (15), up to a universal

constant, and hence, (12) is satisfied for the class
∑n
i=1 Z̃ni(θ). We next verify (11). With

Zni replaced by Z̃ni, the left hand side of (11) is bounded by

n1/2 sup
x
|g(x)|E

(
sup
θ
|Lθ(Y, β0, θ)|I

[
sup
θ
|Lθ(Y, β0, θ)| > ηn1/2{sup

x
|g(x)|}−1

])

= o(1),

where we have used assumption (BF6)(iii). For the convergence of the marginals of
∑n
i=1 Zni(θ), we verify Liapunov’s condition :

∑n
i=1 E|Zni(θ)|2+η

[
∑n
i=1 Var{Zni(θ)}](2+η)/2

→ 0

for some η > 0. First, consider the variance. Using a similar derivation as above, we obtain

for any θ ∈ Θ:

n∑

i=1

Var{Zni(θ)} ≤ sup
x
|g(x)|2

∫
K(u)E|H{Y1, θ0(X1)} − H{Y1, θ(X1 − hu)}|2du

12



≤ C sup
x
|g(x)|2

∫
K(u) sup

x
|θ0(x)− θ(x− hu)|2s0du

≤ Ch2s0 sup
x
|g(x)|2 sup

x
| ∂
∂x
θ0(x)|2s0

∫
K(u)|u|2s0du+ 2CM sup

x
|g(x)|2

= O(1). (16)

In a similar way one can show that
∑n
i=1 E|Zni(θ)|2+η = O(n−η/2), since assumption (BF7)(i)

assures that E|H(Y1, θ0(X1))−H(Y1, θ(X1−hu))|2+η ≤ C supx |θ0(x)−θ(x−hu)|2s0 . Hence,

the Liapunov ratio is O{n−η/2} = o(1). This shows the weak convergence of the process
∑n
i=1 Zni(θ) (θ ∈ Θ). It now follows that supθ∈Θ |

∑n
i=1 Zni(θ)| = OP (1). Finally, arguments

similar to those in (16) show that
∑n
i=1 Var{Zni(θ̂)} = oP (1) (where the variance is calculated

conditionally on the value of θ̂), so that
∑n
i=1 Zni(θ̂) = oP (1), from which the result follows.

Lemma A.2 Assume (BF1)–(BF8). Then,

ΓBF,θ(β0, θ0)[θ̂ − θ0] = n−1
n∑

i=1

Lθ{Yi, β0, θ0(Xi, β0)} ∂
∂β

θ0(Xi, β0) + oP (n−1/2). (17)

Proof. Recall the definitions of ∂
∂β

and d
dβ

given in (5) and (6). First note that

ΓBF,θ(β0, θ0)[θ̂ − θ0]

= lim
τ→0

1

τ
E(Lβ[Y, β0, {θ0 + τ(θ̂ − θ0)}(X, β0)]− Lβ{Y, β0, θ0(X, β0)})

= E
( ∂
∂θ
E[Lβ{Y, β0, θ0(X, β0)}|X](θ̂ − θ0)(X, β0)

)

= E
( ∂
∂β

E[Lθ{Y, β0, θ0(X, β0)}|X](θ̂ − θ0)(X, β0)
)

= −E
( ∂
∂θ
E[Lθ{Y, β0, θ0(X, β0)}|X](θ̂ − θ0)(X, β0)

∂

∂β
θ0(X, β0)

)
, (18)

since E[Lθ{Y, β, θ0(X, β)}|X] = 0 for all β. Next, let g(X) = ∂
∂β
θ0(X, β0) and H(Y, θ) =

Lθ(Y, β0, θ). The right hand side of (17) equals

n−1
n∑

i=1

EX

[
Kh(Xi −X)

fX(X)
g(X)

]
H{Yi, θ0(Xi, β0)}+ oP (n−1/2)

= n−1
n∑

i=1

EX

(
Kh(Xi −X)

fX(X)
g(X)[H{Yi, θ0(Xi, β0)} − H{Yi, θ̂(X, β0)}]

)
+ oP (n−1/2),

since n−1∑n
i=1 Kh(Xi − x)H{Yi, θ̂(x, β0)} = oP (n−1/2) uniformly in x, see assumption

(BF5)(iii). Note that throughout this proof all expectations are conditional on the data

(Xi, Yi), which implies that θ̂ is considered as constant.
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Using Lemma A.1 the latter expression can be written as

EX1,X2,Y1

(
Kh(X1 −X2)

fX(X2)
g(X2)[H{Y1, θ0(X1, β0)} − H{Y1, θ̂(X2, β0)}]

)
+ oP (n−1/2)

= EX1,X2

(
Kh(X1 −X2)

fX(X2)
g(X2)[k{X1, θ0(X1, β0)} − k{X1, θ̂(X2, β0)}]

)
+ oP (n−1/2),

where k(X, θ) = E[H(Y, θ)|X]. Using a Taylor expansion of order two and assumptions

(BF1), (BF3), (BF4) and (BF6)(iv) this can be written as

EX2

(
EX1{Kh(X1 −X2)}

fX(X2)
g(X2)[k{X2, θ0(X2, β0)} − k{X2, θ̂(X2, β0)}]

)

+EX2

(EX1{(X1 −X2)Kh(X1 −X2)}
fX(X2)

g(X2)

× d

dx
[k{x, θ0(x, β0)} − k{x, θ̂(X2, β0)}]x=X2

)
+ oP (n−1/2)

= E(g(X)[k{X, θ0(X, β0)} − k{X, θ̂(X, β0)}]) + oP (n−1/2)

= −E
[
g(X)

∂

∂θ
k{X, θ0(X, β0)}{θ̂(X, β0)− θ0(X, β0)}

]
+ oP (n−1/2),

since supx |θ̂(x, β0) − θ0(x, β0)| = oP (n−1/4). The latter expression equals ΓBF,θ(β0, θ0)[θ̂ −
θ0] + oP (n−1/2), by using (18). Hence, the result follows.

Proof of Theorem 2.1. We will make use of Theorem 2 in Chen, Linton and Van Keilegom

(2003) (CLV hereafter), which states primitive conditions under which β̂BF is asymptotically

normal. First of all, we need to show that β̂BF−β0 = oP (1). For this, we verify the conditions

of Theorem 1 in CLV. Condition (1.1) holds by definition of β̂BF , while the second, third

and fourth condition are guaranteed by assumptions (BF5)(i) and (BF8). Finally, condition

(1.5) is weaker than condition (2.5) of Theorem 2 of CLV, which we will verify below.

So, the conditions of Theorem 1 are verified, up to condition (1.5) which we postpone to

later. Next, we verify conditions (2.1)–(2.6) of Theorem 2 in CLV. Condition (2.1) is, as

for condition (1.1), valid by construction of the estimator β̂BF , while condition (2.2) follows

from assumption (BF6)(v). Since ΓBF,θ(β, θ0)[θ − θ0] = E{ ∂
∂θ
d(X, θ0)(θ − θ0)(X, β)}, where

d(X, θ) = E[Lβ{Y, β, θ(X, β)}|X], we have

MBF (β, θ)−MBF (β, θ0)− ΓBF,θ(β, θ0)[θ − θ0] (19)

= E
{
d(X, θ)− d(X, θ0)− ∂

∂θ
d(X, θ0)(θ − θ0)(X, β)

}

14



=
1

2
E
{ ∂2

∂θ2
d(X, ξ)(θ − θ0)2(X, β)

}
,

where ξ(X) is in between θ(X, β) and θ0(X, β). Hence the norm of (19) is bounded by a

constant times ‖θ − θ0‖2
∞. This shows the first part of condition (2.3). For the second part,

it follows from the proof of Theorem 2 in CLV that it suffices to show that

‖ΓBF,θ(β̂, θ0)[θ̂ − θ0]− ΓBF,θ(β0, θ0)[θ̂ − θ0]‖ = oP (1)‖β̂ − β0‖,

and this in turn follows from (BF4), (BF5)(ii) and (BF6)(iv). Next, condition (2.4) follows

from assumption (BF5)(i), while condition (2.5) is guaranteed by Theorem 3 in CLV together

with assumption (BF7). It remains to verify condition (2.6). Since ΓBF,θ(β0, θ0)[θ̂ − θ0] and

MnBF (β0, θ0) are a sum of iid terms plus negligible terms of lower order (see Lemma A.2),

this follows immediately. The asymptotic normality of β̂BF now follows.

Appendix B: Proofs for Profiling

Similarly as for the backfitting estimator, define for any θ ∈ Θ and η ∈ Θq,

MnPR(β, θ, η) = n−1
n∑

i=1

mPR{Yi, β, θ(Xi, β), η(Xi, β)},

MPR(β, θ, η) = E[mPR{Y, β, θ(X, β), η(X, β)}],

and let ΓPR,β(β, θ, η) = d
dβ
MPR(β, θ, η). Note that MPR(β0, θ0, θ0β) = 0 and that

ΓPR,β(β, θ0, η) =
d

dβ
E[Lβ{Y, β, θ0(X, β)}] +

d

dβ
E
[
Lθ{Y, β, θ0(X, β)}η(X, β)

]

=
d

dβ
E[Lβ{Y, β, θ0(X, β)}],

since E[Lθ{Y, β, θ0(X, β)}|X] = 0. For functions ξ(·) and ζ(·), let

ΓPR,θ,η(β, θ, η)[ξ, ζ] = lim
τ→0

1

τ
{MPR(β, θ + τξ, η + τζ)−MPR(β, θ, η)}.

Recall that Θ is some space of functions θ = θ(x, β) (x ∈ IR, β ∈ B) for which ‖θ‖∞ ≤M

for some M > 0. For any r ≥ 1 and any θ1, . . . , θr ∈ Θ, let ‖(θ1, . . . , θr)‖∞ = max1≤j≤r ‖θj‖∞.

The assumptions we need to impose for the main result, are the followings :
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(PR1) θ0 ∈ Θ, θ0 is partially differentiable with respect to the components of β, ∂θ0
∂β
∈ Θq,

P (θ̂ ∈ Θ) → 1 and P (θ̂β ∈ Θq) → 1 as n → ∞, ‖θ̂ − θ0‖∞ = oP (n−1/4) and ‖θ̂β − θ0β‖∞ =

oP (n−1/4).

(PR2) (i) For all y, L(y, β, θ) is differentiable with respect to β and θ, for almost all β and

θ.

(ii) ∂
∂θ
E[Lβ{Y, β, θ0(X, β)}|X] and ∂

∂β
E[Lθ{Y, β, θ0(X, β)}|X] exist for all β ∈ B, and they

are equal.

(iii) ∂2

∂θ2E{Lβ(Y, β, θ)|X = x} and ∂2

∂θ2E{Lθ(Y, β, θ)|X = x} exist for all β, θ and x, and

sup
β∈B,|θ|≤M,x∈RX

∣∣∣
∂2

∂θ2
E{Lβ(Y, β, θ)|X = x}

∣∣∣ <∞,

sup
β∈B,|θ|≤M,x∈RX

∣∣∣
∂2

∂θ2
E{Lθ(Y, β, θ)|X = x}

∣∣∣ <∞,

where RX is the support of X.

(iv) G(β) exists for β in a neighborhood of β0, is continuous at β0 and G(β0) is of full rank.

(PR3) (i)

E

{
sup

(β′,θ′):‖β−β′‖≤δ,‖θ−θ′‖∞≤δ,‖η−η′‖∞≤δ
|mPR,`(Y, β, θ, η)−mPR,`(Y, β

′, θ′, η′)|r`
}
≤ K`δ

r`s`,

for some r` ≥ 2, for all (β, θ, η) ∈ B ×Θq+1, all δ > 0, for some 0 < s` ≤ 1 and some K` > 0

(` = 1, . . . , q).

(ii)
∫∞
0

√
logN(ε1/s`, Θ̃, ‖ · ‖∞) dε <∞, for ` = 1, . . . , q, where Θ̃ = {θ(·, β) : θ ∈ Θ, β ∈ B}.

(PR4)(i) For all δ > 0, there exists a ε > 0 such that inf‖β−β0‖>δ ‖MPR(β, θ0, θ0β)‖ ≥ ε.

(ii) Uniformly for all β ∈ B, MPR(β, θ, η) is continuous in (θ, η) at (θ0, θ0β) (with respect to

the ‖ · ‖∞ norm).

Lemma B.1 Assume (PR1)–(PR4). Then, for any ξ ∈ Θ, ζ ∈ Θq and β ∈ B,

ΓPR,θ,η(β, θ0, θ0β)[ξ, ζ] = 0.

Proof. Write

ΓPR,θ,η(β, θ0, θ0β)[ξ, ζ]
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= lim
τ→0

1

τ
E[Lβ{Y, β, (θ0 + τξ)(X, β)} − Lβ{Y, β, θ0(X, β)}]

+ lim
τ→0

1

τ
E
{

[Lθ{Y, β, (θ0 + τξ)(X, β)} − Lθ{Y, β, θ0(X, β)}](θ0β + τζ)(X, β)
}

+ lim
τ→0

1

τ
E
[
Lθ{Y, β, θ0(X, β)}τζ(X, β)

]
. (20)

The third term of (20) equals

E
(
E[Lθ{Y, β, θ0(X, β)}|X]ζ(X, β)

)
= 0,

since E[Lθ{Y, β, θ0(X, β)}|X] = 0. The first term of (20) can be written as

E

{(
∂

∂θ
E[Lβ{Y, β, θ0(X, β)}|X]

)
ξ(X, β)

}
,

while the second term equals

E

{(
∂

∂θ
E[Lθ{Y, β, θ0(X, β)}|X]

)
ξ(X, β)

∂

∂β
θ0(X, β)

}
. (21)

Since E[Lθ{Y, β, θ0(X, β)}|X] = 0 for all β, it follows that

∂

∂β
E [Lθ{Y, β, θ0(X, β)}|X] +

∂

∂θ
E[Lθ{Y, β, θ0(X, β)}|X]

∂

∂β
θ0(X, β) = 0,

and hence, plugging in this expression into (21) gives

−E
{
∂

∂β
E[Lθ{Y, β, θ0(X, β)}|X]ξ(X, β)

}
.

Hence, ΓPR,θ,η(β, θ0, θ0β)[ξ, ζ] = 0, since ∂
∂β
E(Lθ) = ∂

∂θ
E(Lβ).

Proof of Theorem 2.2. In a manner similar to the backfitting procedure, we proceed by

checking the primitive conditions of Theorem 2 in Chen, Linton and Van Keilegom (2003)

(CLV hereafter). Note that the results in that paper are valid for one-dimensional nuisance

functions θ, but it is readily seen how to extend their primitive conditions to the current

setup of (q + 1)-dimensional nuisance functions.

The verification of the conditions in that theorem is much the same as for the back-

fitting procedure, except for conditions (2.3) and (2.5). Let us start with verifying (2.3).

Since it follows from the proof of Lemma B.1 that ΓPR,θ,η(β, θ0, θ0β)[θ − θ0, η − θ0β] =
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E{ ∂
∂θ
d1(X, θ0)(θ − θ0)(X, β)} + E{ ∂

∂θ
d2(X, θ0)(θ − θ0)(X, β) ∂

∂β
θ0(X, β)}, where d1(X, θ) =

E[Lβ{Y, β, θ(X, β)}|X] and d2(X, θ) = E[Lθ{Y, β, θ(X, β)}|X], we have

MPR(β, θ, η)−MPR(β, θ0, θ0β)− ΓPR,θ,η(β, θ0, θ0β)[θ − θ0, η − θ0β] (22)

= E
{
d1(X, θ)− d1(X, θ0)− ∂

∂θ
d1(X, θ0)(θ − θ0)(X, β)

}

+E
[
{d2(X, θ)− d2(X, θ0)− ∂

∂θ
d2(X, θ0)(θ − θ0)(X, β)}η(X, β)

]

+E
{
d2(X, θ0)(η − θ0β)(X, β)

}

+E
{ ∂
∂θ
d2(X, θ0)(θ − θ0)(X, β)(η − θ0β)(X, β)

}

=
1

2
E
{ ∂2

∂θ2
d1(X, ξ1)(θ − θ0)2(X, β)

}
+

1

2
E
{ ∂2

∂θ2
d2(X, ξ2)(θ − θ0)2(X, β)

∂

∂β
θ0(X, β)

}

+E
{ ∂
∂θ
d2(X, θ0)(θ − θ0)(X, β)(η − θ0β)(X, β)

}
,

since d2(X, θ0) ≡ 0, where ξ1(X) and ξ2(X) are in between θ(X, β) and θ0(X, β). Hence the

norm of (22) is bounded by a constant times ‖(θ − θ0, η − θ0β)‖2
∞. This shows the first part

of condition (2.3). The second part is obvious by Lemma B.1.

Finally, condition (2.5) is guaranteed by Theorem 3 in CLV together with assumption

(PR3). Note that N(ε1/s` , Θ̃q, ‖ · ‖∞) ≤ N(ε1/s` , Θ̃, ‖ · ‖∞)q and hence the second condition

in Theorem 3 in CLV is implied by (PR3)(ii). The result now follows.
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