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Université Libre de Bruxelles, Brussels, Belgium

Jana Jurečková3
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Abstract

This paper establishes an asymptotic representation for regression and autoregres-
sion rank score statistics of the serial type. Applications include rank-based versions
of the Durbin-Watson test, tests of AR(p) against AR(p + 1) dependence, or detection
of the presence of random components in AR processes.

1 Introduction

1.1 Rank tests

Rank tests are known to be robust, distribution-free yet powerful alternative to Gaussian

testing methods under a broad set of model assumptions. The classical theory of rank tests

was mainly developed in the context of linear models with independent errors, but the domain

of application of this theory naturally extends to the much broader class of semiparametric

models under which the distribution Pn;θ;f of the observation vector Xn := (Xn1, · · · , Xnn)′

belongs to a family Pn := {Pn;θ;f ; θ ∈ Θ, f ∈ F}, where θ ∈ Θ ⊆ Rk is some parameter of

interest, and F is a class of densities f on R. More specifically, rank tests can be constructed

whenever

(A) for all n, there exists a (θ, Xn)-measurable residual function

(θ, Xn) 7→ εn(θ, Xn) := (εn,1(θ, Xn), · · · , εn,n(θ, Xn))′
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such that the distribution of Xn is Pn;θ;f iff the components of the vector εn(θ, Xn) are

i.i.d. with common density f . Henceforth, we shall write εn,t(θ) instead of εn,t(θ, Xn),

t = 1, · · · , n.

Let Rn,t(θ) denote the rank of εn,t(θ) and Rn(θ) := (Rn,1(θ), · · · , Rn,n(θ))′. The rank

tests for the simple null hypothesis H0 : θ = θ0, where θ0 is a given value of θ, are based on

the vector of residual rank vector Rn ≡ Rn(θ0).

The use of the rank tests can be justified by several main arguments.

(a) The vector of ranks is a maximal invariant with respect to the group of order-preserving

transformations of residuals for a broad class of densities (typically, the class of all non-

vanishing densities over the real line, possibly satisfying some regularity assumptions).

In such invariant situations, every invariant statistic and test depend only on the

maximal invariant, and hence are distribution-free under the null hypothesis.

(b) The rank tests are more robust with respect to some outliers than their parametric

counterparts.

(c) Rank-based procedures are asymptotically powerful, as they achieve asymptotic semi-

parametric information lower bounds, which is the best we can hope for when making

inference about θ in the presence of an unknown f , at a prespecified value of f . More-

over, in linear or ARMA models where semiparametric and parametric efficiencies

coincide, there are rank-based tests that yield asymptotically uniformly more powerful

tests than their classical counterparts: for instance, the asymptotic Pitman relative

efficiencies of normal score or van der Waerden rank tests, with respect to the corre-

sponding normal-theory tests, are uniformly larger than one; cf. Chernoff and Savage

(1958), Hallin (1994), Paindaveine (2004, 2005), among others.

A general result by Hallin and Werker (2003) shows that under LAN set up with central

sequences ∆n;f (θ) and under some conditions on F , a semiparametrically efficient inference

about θ, at given (θ0, f), can be based on the distribution-free rank-based efficient central

sequence obtained by conditioning the central sequence ∆n;f (θ0) on the vector of ranks

Rn(θ0), under H0. In linear regression models where for some known non-random p × 1

design vector {cn,t; 1 ≤ t ≤ n}, εn,t(θ) = Xn,t − c′n,tθ are i.i.d., rank-based efficient central

sequences (at least, under “approximate score version”; see Hallin and Werker (2003) for

details) take the form of linear rank statistics vectors Sn,ϕ(θ0), where

Sn,ϕ(θ) :=
n∑

t=1

ϕ
(Rn,t(θ)

n + 1

)
cn,t,
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ϕ is a score-generating function from (0, 1) to R. Classical asymptotic representation results

show that, under some general conditions and under Pn,θ,f ,

Sn,ϕ(θ) =
n∑

t=1

ϕ(F (εt(θ)))cn,t + oP (n1/2), n →∞, ∀ θ ∈ Θ,

where F is the distribution function associated with f .

In ARMA models, rank-based central sequences can be expressed (Hallin, Ingenbleek and

Puri 1985; Hallin and Puri 1988; Bentarzi and Hallin 1996) as linear combinations of serial

linear rank statistics Sn,ϕ1ϕ2(θ0), where

Sn,ϕ1ϕ2(θ) :=
n∑

t=i+1

ϕ1

(Rn,t(θ)

n + 1

)
ϕ2

(Rn,t−i(θ)

n + 1

)
, i = 1, 2, · · · ,(1.2)

where ϕ1 and ϕ2 are adequately centered and scaled score generating functions. In more

general problems– detection of random coefficients (Akharif and Hallin 2003), detection of

nonlinearities (Benghabrit and Hallin 1992; Allal and El-Melhaoui 2005, among others)–

rank-based efficient central sequences involve more complex serial linear rank statistics of

the form

Sn,ϕ1···ϕm(θ) :=
n∑

t=im−1+1

ϕ1

(Rn,t(θ)

n + 1

)
· · ·ϕm

(Rn,t−im−1(θ)

n + 1

)
, 1 ≤ i1 ≤ · · · ≤ im−1,(1.3)

where ϕ1, ϕ2 · · · , ϕm are m score functions. Hallin et al. (1985) show under some general

conditions that for every θ ∈ Θ,

Sn,ϕ1···ϕm(θ) =
n∑

t=im−1+1

ϕ1(F (εt(θ))) · · ·ϕm(F (εt−im−1(θ))) + oP (n1/2), n →∞.

In most problems of practical interest, however, one is interested in testing the composite

null hypothesis H̃0 : θ ∈ Θ0, where Θ0 is a subset of Θ. In this case θ is not completely

specified. It is then natural to first obtain an estimate θ̂ of θ under H̃0 and use the aligned

ranks test statistics Sn,ϕ(θ̂) or Sn,ϕ1···ϕm(θ̂), cf., e.g., Koul (1970) and Jurečková (1971) for

linear regression models; Hallin and Puri (1994) for the ARMA models. Unless adequate

projections that would compensate asymptotically for the standardized differences n1/2(θ̂−θ)

are performed, these statistics typically are not asymptotically distribution-free, and thus

are unsuitable for testing purposes. Once such projections are performed, aligned rank tests

achieve the same asymptotic performances as those (likewise projected) based on exact ranks;

but still, their robustness heavily depends on the robustness of the estimator θ̂ on which the

alignment device is based.
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1.2 Autoregression and Regression Rank Scores

The lack of robustness of aligned rank statistics motivated Gutenbrunner and Jurečkovà

(1992) to introduce regression rank scores in the context of linear regression models with

independent observations, as an alternative to the aligned ranks. The regression rank scores

are n functions ân(u) = (ân,1(u), · · · , an,n(u))′ with ân,t : [0, 1] 7→ [0, 1], t = 1, · · · , n obtained

from the observations as the solution of a linear programming problem itself depending on

H̃0; see Section 2.1 below for details. The regression rank score statistic (RSS) corresponding

to a function ϕ is defined as

S̃n,ϕ := −
n∑

t=1

∫ 1

0

ϕ(u)dân,t(u) cn,t.

Note that this is like Sn,ϕ(θ) but where ϕ(Rn,t(θ)/(n+1)) are replaced by − ∫ 1

0
ϕ(u)dân,t(u).

These scores palliate the lack of invariance of aligned ranks. If not exactly (for fixed n)

distribution-free, S̃n,ϕ, indeed, contrary to Sn,ϕ(θ̂), is asymptotically equivalent to Sn,ϕ(θ)

in probability under Pn,θ,f , for each θ, hence asymptotically invariant with respect to the

group of order-preserving transformations acting on residuals and, therefore, asymptotically

distribution-free. Being moreover regression-invariant over Θ0, it is robust against the in-

fluence of possible outliers—if not against the possible leverage effect of certain regression

constants. And, the asymptotic performance of tests based on S̃n,ϕ is matching that of the

tests based on Sn,ϕ(θ), for all θ ∈ Θ0; see Gutenbrunner et al. (1993).

Koul and Saleh (1995) and Hallin and Jurečková (1999) developed similar ideas for linear

autoregressive models where θ′ = (ρ0, ρ1, · · · , ρp), and εt(θ) = Xi−ρ0−ρ1Xt−1−· · ·−ρpXt−p

are i.i.d. innovations with mean zero. The autoregression rank score statistics these authors

consider are of the form

S̃∗n,ϕ1
:= −

n∑
t=i+1

∫ 1

0

ϕ1(u)dân,t(u)Xt−i,

where ân,t(·) are the autoregression rank scores defined in Section 2.1 below and ϕ1 is a

function like ϕ.

Unlike the linear regression models, in autoregressive models the outliers in the errors

affect the leverage points Xt−i also. This fact renders the statistics S̃∗n,ϕ1
non-robust against

outliers in the errors. Genuine autoregression rank scores statistics are the serial autoregres-

sion rank score statistics obtained from S̃∗n,ϕ1
after replacing Xt−i by − ∫ 1

0
ϕ2(v)dân,t−i(v),

yielding

S̃n,ϕ1ϕ2 :=
n∑

t=i+1

∫ 1

0

∫ 1

0

ϕ1(u)ϕ2(v)dan,t(u) dân,t−i(v),(1.4)
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(when the lag is to be emphasized, we write S̃n,ϕ1ϕ2;i) or, more generally,

S̃n,ϕ1···ϕm := (−1)m

n∑
t=im−1+1

∫ 1

0

· · ·
∫ 1

0

ϕ1(u1) · · ·ϕm(um)dân,t(u1) · · · dân,t−im−1(um),(1.5)

analogous to the serial rank statistics (1.2) and (1.3). Here ϕj; 1 ≤ j ≤ m are m functions

from (0, 1) to R.

The main objective of this paper is to obtain an asymptotic representation of these serial

regression or autoregression rank score statistics for possibly unbounded functions ϕj’s, which

so far have not been considered in the literature, but can be expected to enjoy the same nice

properties (asymptotic invariance, distribution-freeness, and robustness) as their non-serial

counterparts S̃∗n,ϕ(θ)’s.

1.3 Outline of the paper

Section 2 provides the precise conditions under which serial regression or autoregression rank

score statistics can be used in hypothesis testing. Section 2.2 describes three potential ap-

plications: a version of the classical Durbin-Watson test based on regression rank scores, a

test of AR(p) against AR(p+1) dependence based on autoregression rank scores, and a test,

based on serial autoregression rank scores, detecting the presence of a random component in

the autoregressive coefficient of an AR(1) model. Technical assumptions are collected in Sec-

tion 2.3. The main result of this paper is Proposition 3.1 giving an asymptotic representation

result for a class of serial autoregression rank score statistics.

2 Notation and basic assumptions

2.1 Autoregression and regression quantiles and rank scores

We shall now recall the definition of autoregression and regression quantiles and rank scores.

First consider the stationary linear autoregressive time series model, where starting with an

observable p-vector X1−p, · · · , X0, one observes the process

Xt = ρ0 +

p∑
j=1

ρjXt−j + εt, (ρ0, ρ1, · · · , ρp)
′ ∈ R1+p.(2.1)

The errors εt are assumed to be i.i.d. with zero mean and variance σ2. The parameters

ρ∗ := (ρ1, · · · , ρp)
′ are such that all solutions of the equation 1 −∑p

t=1 ρiz
i = 0 lie outside

the unit sphere and for each t, εt is independent of the vector y∗t−1 := (Xt−1, · · · , Xt−p)
′.

Note that this model satisfies the assumption (A) with k = 1 + p, θ′ = (ρ0, ρ
∗′), X ′

n =
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(y∗′0 , X1, X2, · · · , Xn), and εn,t(θ) = Xt − ρ0 − ρ′y∗t−1. Now, let y′t−1 := (1, y∗′t−1), and

hα(z) := |z|
(
αI[z > 0] + (1− α)I[z ≤ 0]

)
, z ∈ R, α ∈ (0, 1).

Then αth autoregression quantiles ρn(α)′ = (ρn0(α), ρ∗n(α)′), for an 0 < α < 1, are defined

as an

argminr0∈R, r∈Rp

n∑
t=1

hα

(
Xt − r0 − y∗′t−1r

)
.

The corresponding autoregression rank scores are defined to be an n-vector ân(α) := (ân,1(α),

· · · , ân,n(α))′ in [0, 1]n maximizing
∑n

t=1 Xtat with respect to vectors a ∈ [0, 1]n, subject to

the conditions

Y ′
n(a− (1− α)1n) = 0,(2.2)

where Yn is the n × (1 + p) matrix whose tth row is y′t−1, t = 1, · · · , n, 1n := (1, · · · , 1)′, an

n× 1 vector of 1’s, and 0 in the right hand side is the (1 + p)× 1 vector of zeros.

These autoregression quantiles and rank scores are the analogues of their counterparts

in linear regression models of Koenker and Bassett (1978) and Gutenbrunner and Jurečková

(1992), respectively, defined as follows. In linear regression models the observations Xn,t and

the p× 1 non-random design vectors cn,t obey the relation

Xn,t = β0 + c′n,tβ + εt, β0 ∈ R, β ∈ Rp.(2.3)

Note that this model satisfies the assumption (A) with k = 1 + p, θ′ = (β0, β
′), X ′

n =

{(c′n,t, Xn,t); 1 ≤ t ≤ n}, and εn,t(θ) = Xn,t − β0 − β′cn,t. Now, let Cn denote the n× (1 + p)

matrix whose tth row consists of (1, c′n,t), 1 ≤ t ≤ n. An αth regression quantile vector

θ̂n(α) := (β̂0n(α), β̂n(α)′), for an α ∈ (0, 1), is defined as an

argminb0∈R, b∈Rp

n∑
t=1

hα

(
Xn,t − b0 − c′n,tb

)
.

The corresponding regression rank scores are defined to be an n-vector ân(α) := (ân,1(α),

· · · , ân,n(α))′ in [0, 1]n maximizing
∑n

t=1 Xtat with respect to vectors a ∈ [0, 1]n, subject to

the conditions C ′
n(a− (1− α)1n) = 0.

2.2 Examples

2.2.1 The Durbin-Watson problem

The objective of the classical Durbin-Watson test is the detection of first-order autocorrela-

tion in the noise of a traditional regression model; its extension to higher-order dependencies

is straightforward.
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The general overarching model is a linear regression with AR(1) errors

Xt = β0 + c′n,tβ + et, et = ρet−1 + εt, t = 1, · · ·n,

where ρ ∈ [0, 1), β0 ∈ R, β′ := (β1, · · · , βp) ∈ Rp, and ε1, · · · , εn are i.i.d. with density f . The

null hypothesis of interest here is H0 : ρ = 0, against the alternatives of the form H1 : ρ > 0.

Thus, here Θ = R1+p × [0, 1) and Θ0 = R1+p × {0}. The regression parameters β0, β play

the role of nuisance parameters.

Let θ̂′ := (β̂0, β̂
′) be the least square estimators of (β0, β

′) under the above null hypothesis,

and let ε̂t := εt(β̂0, β̂) = Xt− β̂0− c′n,tβ̂. The traditional Durbin-Watson test is based on the

first-order residual autocorrelation

r̂n1 :=
n∑

t=2

ε̂tε̂t−1

/ n∑
t=1

ε̂2
t .

When the errors are Gaussian with mean zero and variance σ2, i.e. when F (x) ≡ Φ(x/σ),

nr̂n1 coincides with

σ2
∑n

t=2 Φ−1(F (ε̂t))Φ
−1(F (ε̂t−1))

n−1
∑n

t=1 ε̂2
t

=
n∑

t=2

Φ−1(F (ε̂t))Φ
−1(F (ε̂t−1)) + oP (n1/2)

=
n∑

t=2

ϕ1(F (εt))ϕ2(F (εt−1)) + oP (n−1/2).

where the last claim readily follows from Le Cam’s Third Lemma with ϕ1 = ϕ2 = Φ−1.

The aligned rank based version of nr̂n1 is the serial statistic Sn,ϕ1ϕ2(θ̂) defined in (1.2), with

i = 1 and the van der Waerden scores ϕ1 = ϕ2 = Φ−1; an asymptotic representation result of

Hallin, Ingenbleek and Puri (1985) establishes the equivalence Sn,ϕ1ϕ2(θ̂) = Tn,ϕ1ϕ2+oP (n1/2),

where

Tn,ϕ1ϕ2 :=
n∑

t=2

ϕ1(F (εt))ϕ2(F (εt−1)).

By Proposition 3.1 below it follows that the autoregression rank score statistic S̃n,ϕ1ϕ2 of

(1.4) is also asymptotically equivalent in probability to Tn,ϕ1ϕ2 , under the above H0. An

advantage of using S̃n,ϕ1ϕ2 is that one does not need any preliminary estimates of the nuisance

parameters.

In the case of non-Gaussian errors one uses the above serial autoregression rank score

statistics with ϕ2(v) = F−1(v) and ϕ1(u) = −ḟ(F−1(u))/f(F−1(u)), to perform an asymp-

totically optimal test of H̃0, see, e.g., Hallin and Werker (1998).
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2.2.2 AR order identification

The objective here is to test AR(p) against AR(p + 1) dependence. The overarching model

is thus the AR(p + 1) model, where

Xt = ρ0 +

p+1∑
i=1

ρiXt−i + εt,

with ρ1, · · · , ρp+1 being such that the corresponding characteristic polynomial has all its roots

outside the unit disc, ρp 6= 0, and ε1, · · · , εn are i.i.d. with density f . The null hypothesis

of interest here is H0 : ρp+1 = 0, against the alternatives of the form H1 : ρp+1 6= 0. The

autoregressive parameters ρ1, · · · , ρp play the role of nuisance parameters.

The classical Gaussian test for this problem is based on a Lagrange multiplier type

statistic, which is a quadratic form in the residual autocorrelations

r̂ni :=
n∑

t=i+1

ε̂tε̂t−i

/ n∑
t=1

ε̂2
t , i = 1, 2, · · · ,

where the estimated residuals ε̂t are computed from fitting an AR(p) model to the data:

see Garel and Hallin (1999) for details. Arguing as in the previous example, a rank-based

version of this test statistic is obtained by substituting the aligned serial rank statistics (n−
i)−1Sn,ϕ1ϕ2;i(θ̂)’s of (1.2) for the residual autocorrelations r̂ni into the quadratic test statistic.

But such tests are not asymptotically distribution-free, while by Proposition 3.1, the tests

based on the analogous quadratic form using serial autoregression rank score statistic S̃n,ϕ1ϕ2;i

will be asymptotically distribution-free. Here again, asymptotically optimal tests at non-

Gaussian errors case can be handled by an adequate choice of the scores ϕ1 and ϕ2.

Contrary to the previous case, Sn,ϕ1ϕ2(θ̂) and S̃n,ϕ1ϕ2 are no longer asymptotically equiv-

alent: Sn,ϕ1ϕ2(θ̂) suffers from an alignment effect (which is not distribution-free), whereas

S̃n,ϕ1ϕ2 remains unaffected. Hallin and Jurečková (1999) constructed asymptotically distri-

butionfree tests of H0 against H1 based on non-serial autoregression rank score statistics of

the type S̃∗n,ϕ(θ)’s. A simulation study of these tests can be found in Hallin et al. (1997)

and an application to meteorological data in Kalvová et al. (2000).

2.2.3 Detection of random coefficients in AR models

The general overarching model is the autoregressive model (for simplicity, a first-order one)

with random coefficients, of the form

Xt = (ρ + τut)Xt−1 + εt,

where ρ ∈ (0, 1), τ ≥ 0, u1, · · · , un are i.i.d. standardized r.v.’s with density g, and ε1, · · · , εn

are i.i.d. with density f , independent of the ut’s. The null hypothesis of interest here is
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H0 : τ = 0 (ordinary AR(1) dependence), against the alternatives of the form H1 : τ > 0.

The autoregression parameter ρ and the densities g and f are nuisance parameters. Here

Θ = {θ = (ρ, τ)′ ∈ (0, 1) × [0, 1); ρ2 + τ 2 < 1}, Θ0 = {θ = (ρ, 0)′; 0 < ρ < 1}, and

ε(θ) = Xt − ρXt−1, for a θ ∈ Θ0.

This problem has been studied (in the more general AR(p) case) by Akharif and Hallin

(2003), from a pseudo-Gaussian point of view. The locally asymptotically optimal Gaussian

test statistic for this problem is the combination

n−1∑

k=1

ρ̂2(k−1)(n− k)−1/2

n∑

t=k+1

(
1− ε̂2

t

σ̂2

)( ε̂t−k

σ̂

)2

(2.4)

+2
∑

1≤k

∑

<`≤n−1

ρ̂k−1ρ̂`−1(n− `)−1/2

n∑

t=`+1

(
1− ε̂2

t

σ̂2

)( ε̂t−k

σ̂

)( ε̂t−`

σ̂

)

of the statistics of the form

(n− k)−1/2

n∑

t=k+1

(
1− ε̂2

t

σ̂2

)( ε̂t−k

σ̂

)2

and (n− `)−1/2

n∑

t=`+1

(
1− ε̂2

t

σ̂2

)( ε̂t−k

σ̂

)( ε̂t−`

σ̂

)
,(2.5)

where ρ̂ is an arbitrary root-n consistent (under H0) of ρ, ε̂t := Xt − ρ̂Xt−1, and σ̂2 :=

n−1
∑n

t=1 ε̂2
t . Just as in the Durbin-Watson case, the diagonality of the information matrix

(relative to ρ and σ2) implies, via Le Cam’s Third Lemma, that the impact of the estimation

of ρ in (2.4) and (2.5) is oP (1) under H0. These statistics, under Gaussian assumptions

(F (x) = Φ(x/σ)) thus coincide, up to oP (1) terms, with

(n− k)−1/2Tϕ1,ϕk;1
:= (n− k)−1/2

n∑

t=k+1

(
1− (Φ−1(F (εt)))

2
)(

Φ−1(F (εt−k))
)2

and

(n− `)−1/2Tn,ϕ1,ϕk;2,ϕ`
:= (n− `)−1/2

n∑

t=`+1

(
1− (Φ−1(F (εt)))

2
)
Φ−1(F (εt−k))Φ

−1(F (εt−`),

respectively, with ϕ1(u) := 1 − (Φ−1(u))2, ϕk;1(u) := (Φ−1(u))2, and ϕk;2(u) = ϕ`(u) :=

Φ−1(u). Asymptotic representation results for serial aligned rank statistics again imply the

asymptotic equivalence, up to oP (n1/2), of Tn,ϕ1,ϕk;1
and Tn,ϕ1,ϕk;2,ϕ`

with the serial rank

statistics (of the van der Waerden type)

Sn,ϕ1,ϕk;1
(ρ) :=

n∑

t=k+1

(
1−

(
Φ−1

(Rn,t(ρ)

n + 1

))2)(
Φ−1

(Rn,t−k(ρ)

n + 1

))2

,

Sn,ϕ1,ϕk;2,ϕ`
(ρ) :=

n∑

t=`+1

(
1−

(
Φ−1

(Rn,t(ρ)

n + 1

))2)
Φ−1

(Rn,t−k(ρ)

n + 1

)
Φ−1

(Rn,t−`(ρ)

n + 1

)
,
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respectively, where Rt(ρ) is the rank of εt(ρ) = Xt− ρXt−1. These statistics, based on exact

residual ranks, cannot be computed from the observations. However, in view of Propo-

sition 3.1 below, Snϕ1,ϕk;1
and Sn,ϕ1,ϕk;2,ϕ`

in turn are asymptotically equivalent to their

autoregression rank score counterparts S̃n,ϕ1,ϕk;1
and S̃n,ϕ1,ϕk;2,ϕ`

, which are measurable with

respect to the observations.

Perhaps it should be emphasized that serial autoregression rank scores based tests for

a given choice of ϕj’s can be always implemented regardless of the knowledge of the error

density.

2.3 Assumptions on f and the score functions

We shall now state additional assumptions needed for obtaining the asymptotic representa-

tion result for serial autoregression rank scores. Besides the structural assumption (A), we

also need some technical assumptions on the density f and the score functions ϕ1, · · · , ϕm.

As usual, these assumptions cannot be separated: stronger assumptions on ϕ’s allow for

weaker assumptions on the densities, and vice-versa. Therefore, we formulate two sets of

assumptions, (F1)-(F4), (ϕ-1) and (F1), (F5) and (ϕ-2), that can be used equivalently.

We assume that all densities f in the class F are such that

(F1)
∫∞
−∞ xdF (x) = 0, 0 <

∫∞
−∞ x2dF (x) = σ2 < ∞;

(F2) The density f is positive on R and absolutely continuous, with a.e. derivative ḟ ,

satisfying If :=
∫∞
−∞(ḟ(x)/f(x))2f(x)dx < ∞.

(F3) There exists a constant K = Kf ≥ 0 such that, for |x| ≥ K, f has two bounded

derivatives, f ′ and f ′′, respectively.

(F4) As x −→ ±∞, f(x) is monotonically decreasing to 0 and,

lim
x−→−∞

− log F (x)

b|x|r = 1 = lim
x−→∞

− log(1− F (x))

b|x|r

for some b = bf > 0 and r = rf ≥ 1.

As for the functions ϕ1, · · · , ϕm, we assume the following:

(ϕ-1) The functions ϕ1, · · · , ϕm from (0, 1) to R are square integrable, nondecreasing, differ-

entiable, with respective derivatives ϕ̇1, · · · , ϕ̇m, and satisfy

∫ 1

0

ϕj(u)du = 0, for at least one j = 1, · · · ,m,

|ϕ̇j| ≤ C(u(1− u))−1−δ, ∀ j = 1, · · · ,m, for some 0 < C < ∞ and 0 < δ < 1/4.

The second set of assumptions consists of (F1) and the following two assumptions.
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(F5) f is uniformly continuous and a.e. positive on R.

(ϕ-2) The functions ϕ1, · · · , ϕm from (0, 1) to R are nondecreasing bounded and
∫ 1

0
ϕj(u)du =

0, for some j = 1, · · · ,m.

The assumption (ϕ-2) rules out, for instance, the Wilcoxon and van der Waerden scores, as

well as the so-called rank-based f -autocorrelation coefficients (Hallin and Puri 1994).

3 Asymptotic representation

The following main result of the paper gives the asymptotic representation of the serial

autoregression rank score statistics. It enables one to construct the asymptotic rejection re-

gions of the pertaining tests and their asymptotic powers against the Pitman alternatives. A

similar result holds for serial regression rank scores of linear regression models with bounded

designs.

Proposition 3.1 Suppose the linear AR(p) model (2.1) holds. Suppose additionally either

(F1)-(F4) and (ϕ-1) or (F1), (F5) and ( ϕ-2) hold. Then, under Pn,θ;f , as n →∞,

S̃n,ϕ1···ϕm = Tn,ϕ1···ϕm + oP (n1/2) = Sn,ϕ1···ϕm(θ) + oP (n1/2),(3.1)

where S̃n,ϕ1···ϕm is the serial autoregression rank score statistic (1.5), Sn,ϕ1···ϕm(θ) the serial

rank statistic (1.3), and

Tn,ϕ1···ϕm :=
n∑

t=im−1+1

ϕ1(F (εn,t)) · · ·ϕm(F (εn,t−im−1)).

Proof. Without loss of generality, we restrict the proof to the autoregressive case for m = 2

and i1 = 1, hence to statistics of the form S̃n,ϕ1ϕ2 , Tn,ϕ1ϕ2 and Sn,ϕ1ϕ2 . Additionally, we

shall assume the first set of conditions (F1)-(F4) and (ϕ-1) with the proviso that
∫

ϕj = 0,

for both j = 1, 2. See Remark 3.1 below for the case when one of the ϕ’s is not centered.

The proof is much simpler under the second set of assumptions. We systematically drop

subscripts n in the proof.

Let 0 < α0 < 1/2 be a fixed number, αn := n−1(log n)2(log log n)2, and take n large

enough so that αn < α0. Define, for a 0 < u < 1,

ρ(u) := ρ + F−1(u)e1, with e′1 := (1, 0, · · · , 0),

where ρ := (1, ρ1, · · · , ρp)
′ of the model (2.1). For all 0 < u < 1, put

Dt(u) := I(Xt ≤ y′t−1ρ̂(u))− I(Xt ≤ y′t−1ρ(u)),

ãt(u) := I(εt > F−1(u))− (1− u),

ât(u)− (1− u) := ãt(u)−Dt(u) + ât(u)I(Xt = y′t−1ρ̂(u)).(3.2)
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Also, let

b̂j,t := −
∫ 1

0

ϕj(u)dât(u), b̂n;j,t :=

∫ 1−αn

αn

[ât(u)− (1− u)]dϕj(u), j = 1, 2.

Note that
∫ 1

0
ϕj(u)du = 0 and integration by parts yield that, for all t,

b̂j,t = −
∫ 1

0

ϕj(u)d[ât(u)− (1− u)] =

∫ 1

0

[ât(u)− (1− u)]dϕj(u).

Decomposing this further gives, with āt(u) := ât(u)− (1− u),

b̂j,t =

∫ αn

0

āt(u)dϕj(u) + b̂n;j,t +

∫ 1

1−αn

āt(u)dϕj(u),

b̂n;j,t =

∫ α0

αn

āt(u)dϕj(u) +

∫ 1−α0

α0

āt(u)dϕj(u) +

∫ 1−αn

1−α0

āt(u)dϕj(u)

= ĉn1;j,t + ĉn2;j,t + ĉn3;j,t, say.

We start with analyzing the sum n−1/2
∑n

t=2 ĉn1;1,tĉn1;2,t−1. The analysis of the similar sum

involving ĉn3;j,t’s is exactly similar, while the similar sum corresponding to the ĉn2;j,t terms

can be analyzed using the results for bounded scores. The analysis of the cross product sums

is also similar and relatively less involved. For the ease of writing, let ϕjn(u) := ϕj(u)I(αn <

u ≤ α0). Using (3.2), rewrite

ĉn1;j,t =

∫
ãtdϕjn −

∫
Dtdϕjn +

∫
ât(u)I(Xt = y′t−1ρ̂(u))dϕjn(u).

Letting Aj,t :=
∫

ãtdϕjn, we thus obtain

n−1/2

n∑
t=2

ĉn1;j,tĉn1;j,t−1(3.3)

= n−1/2

n∑
t=2

[
A1,tA2,t −

∫
Dtdϕ1nA2,t +

∫
ât(u)I

(
Xt = y′t−1ρ̂(u)

)
dϕ1n(u)A2,t

−A1,t

∫
Dt−1dϕ2n +

∫
Dtdϕ1n

∫
Dt−1dϕ2n

−
∫

ât(u)I(Xt = y′t−1ρ̂(u))dϕ1n(u)

∫
Dt−1dϕ2n

+A1,t

∫
ât−1(u)I

(
Xt−1 = y′t−2ρ̂(u)

)
dϕ2n(u)

−
∫

Dtdϕ1n

∫
ât−1(u)I

(
Xt−1 = y′t−2ρ̂(u)

)
dϕ2n(u)

+

∫
ât(u)I

(
Xt = y′t−1ρ̂(u)

)
dϕ1n(u)

∫
ât−1(u)I

(
Xt−1 = y′t−2ρ̂(u)

)
dϕ2n(u)

]

= C1 − C2 + C3 − C4 + C5 − C6 + C7 − C8 + C9, say.
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In order to show that the first term C1 := n−1/2
∑n

t=2 A1,tA2,t provides the approximating

terms to the left hand side above, we shall verify that all of the remaining terms tend to

zero in probability. Let djn := ϕj(α0) − ϕj(αn), j = 1, 2, and dn := max(d1n, d2n). From

the linear programming definition of ât(u)’s, see e.g., Hallin and Jurčková (1999), we obtain

that for all 0 < u < 1,

n∑
t=2

ât(u)I
(
Xt = y′t−1ρ̂(u)

)
≤ (p + 1), a.s.(3.4)

This in turn implies

n−1/2

n∑
t=2

∫
ât(u)I

(
Xt = y′t−1ρ̂(u)

)
dϕ1n(u) ≤ n−1/2(p + 1)dn, a.s(3.5)

n−1/2

n∑
t=2

∫
ât−1(u)I

(
Xt−1 = y′t−2ρ̂(u)

)
dϕ2n(u) ≤ n−1/2(p + 1)dn, a.s.

Now, consider the term C9. The fact that ât ≤ 1 and (3.5) imply

C9 ≤ d2
nn

−1/2(p + 1), a.s.(3.6)

Similarly using the fact that |Dt| ≤ 1, for all t and (3.5), we obtain

|C8| ≤ d2
nn

−1/2(p + 1), a.s.(3.7)

The same argument and the fact that |Aj,t| ≤ dn, for all t, imply that

max{|C3|, |C6|, |C7|} ≤ d2
nn

−1/2(p + 1), a.s.(3.8)

The assumption (ϕ-1) on ϕ1, ϕ2 and the definition of αn imply that

dn ≤
∫ α0

αn

(u(1− u))−1−δdu ≤
∫ α0

αn

u−1−δdu

≤ C

δ
(α−δ

n − α−δ
0 ) = O(nδ(log n)−2δ(log log n)−2δ),

so that, because 0 < δ < 1/4, d2
nn

−1/2 = o(1). Hence,

max{|C3|, |C6|, |C7|, |C8|, |C9|} = o(1), a.s.(3.9)

Note also that, because of the n−1/2 factor, the same conclusions hold if ϕj, j = 1, 2, is

replaced by ϕ̃jn := ϕjI
[
[αn, αn(1 + ε)]

]
.

To deal with C4, we need to center the factor involving Dt−1 properly. For this the

r.v.’s involved in the indicators need to be suitably standardized. This standardization

is done differently for the u-quantiles in the tail and in the middle, because in the tail the
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consistency rate of ρ̂(u) is different from n−1/2 and also depends on u, as was shown in Hallin

and Jurečková (1999). We need to use these facts in the following analysis. Accordingly, let

q(u) := f(F−1(u)), σu := (u(1− u))1/2/q(u), ∆(u) := σ−1
u n1/2(ρ̂(u)− ρ(u)).

Rewrite

Dt(u) = I(εt ≤ F−1(u) + n−1/2σuy
′
t−1∆(u))− I(εt ≤ F−1(u)).

Its centering involves

µt(u) := F
(
F−1(u) + σun

−1/2y′t−1∆(u)
)
− F

(
F−1(u)

)
,

νt(u) := µt(u)− σun
−1/2y′t−1∆(u) q(u).

Then,

C4 := n−1/2

n∑
t=2

A1,t

∫
Dt−1dϕ2n

= n−1/2

n∑
t=2

A1,t

∫
[Dt−1 − µt−1]dϕ2n + n−1/2

n∑
t=2

A1,t

∫
νt−1dϕ2n

+n−1

n∑
t=2

A1,ty
′
t−2

∫
∆(u) σuq(u)dϕ2n(u)

= C41 + C42 + C43, say.(3.10)

But, because σuq(u) = (u(1− u))1/2,

|C43| ≤ ‖n−1

n∑
t=2

A1,tyt−2‖ ‖
∫

∆(u)σuq(u)dϕ2n(u)‖

= OP (n−1/2) sup
αn<u≤α0

‖∆(u)‖
∫

(u(1− u))1/2dϕ2n(u).

The first factor of OP (n−1/2) comes from the fact that
∑n

t=2 A1,tyt−2 is a vector of zero mean

martingales, and hence

E‖n−1

n∑
t=2

A1,tyt−2‖2 = n−2

n∑
t=2

Ey′t−2yt−2 EA2
1,t = O(n−1).(3.11)

Also, by (ϕ-1),
∫

(u(1− u))1/2dϕjn(u) ≤ ∫ α0

0
u−1/2−δdu < ∞, j = 1, 2. Moreover, recall from

Hallin and Jurečková (1999) that under (F1)-(F4),

sup
αn≤u≤1−αn

‖∆(u)‖ = OP (log log n)1/2.(3.12)
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Upon combining these observations we obtain

|C43| = OP (n−1/2(log log n)1/2) = oP (1).(3.13)

Next consider C42. Let δn,t,u := n−1/2σu y′t−2∆(u), εn := C (log n)2/r−2 (log log n)−1/4,

r ≥ 1, and Kn := C (log log n)1/2. We need the following results from Hallin and Jurečková

(1999) obtained under (F1)-(F4). By (A.5) and (A.9) in there, for any r ≥ 1,

max
1≤t≤n,αn≤u≤1−αn

|δn,t,u| = OP (εn),(3.14)

|ḟ(x)|
f(x)

|x|1−r = O(1), as x → ±∞.(3.15)

Let

τy = σF (y), ∆̃y = ∆(F (y)), δ̃n,t,y = δn,t,F (y), xn = F−1(αn), x0 = F−1(α0).

Since αn < α0 < 1/2, we have xn < x0 < 0. Also, in the left tail |dϕj(F )| ≤ C F−1−δdF .

Let An := {supαn≤u≤1−αn
‖∆(u)‖ ≤ Kn}. For xn ≤ y ≤ x0 < 0, on the event An,

|δ̃n,t,y| ≤ n−1/2F 1/2(y)

f(y)
‖yt−2‖Kn,

and

|C42| = |n−1/2

n∑
t=2

A1,t

∫
νt−1(u)dϕ2n(u)|

≤ n−1/2

n∑
t=2

|A1,t|
∣∣∣
∫

[F (y +
τyy

′
t−2∆̃y√

n
)− F (y)− τyy

′
t−2∆̃y√

n
f(y)]dϕ2n(F (y))

∣∣∣

≤ n−1

n∑
t=2

|A1,t|‖yt−2‖Kn

∫ x0

xn

∫ 1

0

|f(y + v δ̃n,t,y)− f(y)|
f(y)

dvF− 1
2
−δ(y)dF (y).

But, on the event max1≤t≤n,xn≤y≤x0 |δ̃n,t,y| ≤ Cεn, see (3.14), the double integral in this bound

is further bounded above by Cεn times the integral

max
1≤t≤n

∫ x0

xn

∫ 1

0

∫ 1

0

v
|ḟ(y + δ̃n,t,yvz)|

f(y)
dvdzF− 1

2
−δ(y)dF (y)(3.16)

≤ max
1≤t≤n

∫ 1

0

v

∫ 1

0

∫ x0

xn

|ḟ(y + δ̃n,t,yvz)|
f(y)

F− 1
2
−δ(y)dF (y) dzdv

−→P (1/2)

∫ x0

−∞

|ḟ(y)|
f(y)

F− 1
2
−δ(y)dF (y)

≤ C

∫ x0

−∞
|y|r−1F− 1

2
−δ(y)dF (y) (by (3.15)

≤ C
( ∫

|y|p(r−1)dF (y)
)1/p( ∫

F−q( 1
2
+δ)(y)dF (y)

)1/q

,
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where p, q are positive integers such that 1/p+1/q = 1, and such that 1 > q(1/2+ δ) so that

the second integral in the above bound is finite. Such a q always exists since δ < 1. Also

note that because r > 1, we have (2/r)− 2 < 0, and hence

Knεn = C (log n)
2
r
−2(log log n)1/4 = o(1), n−1

n∑
t=2

|A1,t|‖yt−2‖ = OP (1),

and, in view of (3.14) and (3.15),

|C42| = OP (Knεn) = oP (1).(3.17)

Next, we treat the C41 term. Let an = n−1/2Kn. Define, for y, a ∈ R and s ∈ Rm+1 such

that ‖s‖ ≤ 1,

mt−1(y, s, a) := [F (y + anτy(y
′
t−2s + ‖yt−2‖a))− F (y)],

C±
41(y, s, a) := n−1/2

n∑
t=2

A±
1,t[I(εt−1 ≤ y + anτy(y

′
t−2s + ‖yt−2‖a))− I(εt−1 ≤ y)

−mt−1(y, s, a)],

where At± stand for the positive and negative parts of At. Write C±
41(y, s) for C±

41(y, s, 0)

and let

C41(y, s) := C+
41(y, s)− C−

41(y, s)

= n−1/2

n∑
t=2

A1,t[I(εt−1 ≤ y + anτyy
′
t−2s)− I(εt−1 ≤ y)− µt−1(F (y), s)].

Note that on the event An,

|C41| ≤
∫

sup
‖s‖≤1

|C41(y, s)|dψ2n(y)

≤
∫

sup
‖s‖≤1

|C+
41(y, s)|dψ2n(y) +

∫
sup
‖s‖≤1

|C−
41(y, s)|dψ2n(y),

with ψjn(y) := ϕjn(F (y)). We shall show that
∫

sup
‖s‖≤1

|C±
41(y, s)|dψ2n(y) = oP (1),(3.18)

which obviously will imply

|C41| = oP (1).(3.19)

Let

`n(y, s, a) :=

∫ 1

0

E{‖y0‖f(y + z τyan(y′0s + ‖y0‖a))}
f(y)

dz,

γn(y, s, a) :=

∫ 1

0

E{‖y0‖f(y + τyan(y′0s− 2‖y0‖a z))}
f(y)

dz, s ∈ Rm+1, a, y ∈ R.
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Arguing as above and conditionally, we have for all y ∈ R, with b = EA2
1,t,

E|C±
41(y, s, a)|2 = E(A±

1,t)
2E

[
I(ε1 ≤ y + anτy(y

′
0s + ‖y0‖a))− I(ε1 ≤ y)(3.20)

−F (y + anτy(y
′
0s + ‖y0‖a)) + F (y)

]2

≤ bE|F (y + anτy(y
′
0s + ‖y0‖a))− F (y)|

≤ b anτy(‖s‖+ a)

∫ 1

0

E{‖y0‖f(y + z τyan(y′0s + ‖y0‖a))}dz

= b n−1/2Kn (‖s‖+ |a|) [F (y)(1− F (y))]1/2 `n(y, s, a).

Similarly, for any s, t ∈ Rp, and y, a ∈ R,

E|C±
41(y, t, a)− C±

41(y, s, a)|2
≤ b ‖t− s‖n−1/2Kn [F (y)(1− F (y))]1/2 `n(y, s, a),

E|C±
41(y, t, a)− C±

41(y, t, 0)|2
≤ b |a|n−1/2Kn [F (y)(1− F (y))]1/2 γn(y, t, a).(3.21)

Since the unit ball is compact, there is an η > 0 and a finite number k of points s1, · · · , sk

in the unit ball such that for any ‖s‖ ≤ 1, there is an sj in the unit ball with ‖s− sj‖ ≤ η.

We will need to choose η to depend on n and hence so also k. Now,

sup
‖s‖≤1

|C±
41(y, s)| ≤ max

1≤j≤k
sup

‖s−sj‖≤η

|C±
41(y, s)− C±

41(y, sj)|+ max
1≤j≤k

|C±
41(y, sj)|.(3.22)

Now, ‖s− sj‖ ≤ η implies that for all y ∈ R, 1 ≤ j ≤ k, n ≥ 1, 1 ≤ t ≤ n,

anτy(y
′
t−2sj − ‖yt−2‖η) ≤ anτyy

′
t−2s ≤ anτy(y

′
t−2sj + ‖yt−2‖η).

This and the monotonicity of the indicators and nonnegativity of A±
1,t’s, imply

|C±
41(y, s)− C±

41(y, sj)|
≤ |C±

41(y, sj, η)− C±
41(y, sj, 0)|+ |C±

41(y, sj,−η)− C±
41(y, sj, 0)|

+2n−1/2

n∑
t=2

A±
1,t[mt−1(y, sj, η)−mt−1(y, sj,−η)](3.23)

Moreover, by (3.21), and the Cauchy-Schwarz inequality,

E
(

max
1≤j≤k

|C±
41(y, sj,±η)− C±

41(y, sj, 0)|
)

≤ k {2b η n−1/2Kn [F (y)(1− F (y))]1/2 max
1≤j≤k

γn(y, sj, η)}1/2.
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Let gn(y, η) := max1≤j≤k γn(y, sj, η). Consider the measure ν(y) :=
∫ y

−∞ F−3/4−δdF . Note

that for δ < 1/4 this is a finite measure. Also note that gn(y, η) → E‖y0‖ < ∞. Arguing as

for (3.16), we thus obtain for all η,

Bn :=

∫
[F (y)(1− F (y))]1/4 gn(y, η)dψn(y) ≤

∫ x0

xn

F (y)−3/4−δg1/2
n (y, η)dF (y)

≤
∫

g1/2
n (y, η)dν(y) = O(1).

Thus,
∫

E
(

max
1≤j≤k

|C±
41(y, sj,±η)− C±

41(y, sj, 0)|
)
dψ2n(y) ≤ Bn k η1/2 (n−1/2Kn)1/2.(3.24)

Next, let dn,t,y,s := anτyy
′
t−1s. The third term in the upper bound of (3.23) is bounded

above by

1√
n

n∑
t=2

A±
1,t

{
F (y + dn,t−1,y,sj

+ anτy‖yt−2‖η)− F (y)− [dn,t−1,y,sj
+ anτy‖yt−2‖η]f(y)

}

− 1√
n

n∑
t=2

A±
1,t

{
F (y + dn,t−1,y,sj

− anτy‖yt−2‖η)− F (y)− [dn,t−1,y,sj
− anτy‖yt−2‖η]f(y)

}

+2η
1√
n

anτy

n∑
t=2

A±
1,t‖yt−2‖f(y)

= M1,j(y)−M2,j(y) + 2ηKn[F (y(1− F (y)]1/2n−1

n∑
t=2

A±
1,t‖yt−2‖.

Note that for all ‖sj‖ ≤ 1, and all t, and all y with F (y) close to αn, on the event {‖yt−2‖ ≤
C(log n)1/r(log log n)1/4),

[dn,t−1,y,sj
+ anτy‖yt−2‖η] ≤ anτy‖yt−2‖(1 + η) ≤ εn(1 + η).

Hence, by arguing as for (3.16),
∫

max
1≤j≤k

|M1,j(y)|dψ2n(y)

≤
∫

n−1/2

n∑
t=2

|A1,t|[dn,t−1,y,sj
+ anτy‖yt−2‖η]

× max
1≤j≤k

∫ 1

0

|f(y + [dn,t−1,y,sj
+ anτy‖yt−2‖η]z)− f(y)|dz dψ2n(y)

≤ Knn−1

n∑
t=2

|A1,t|‖yt−2‖(1 + η)

×
∫

max
1≤j≤k

[dn,t−1,y,sj
+ anτy‖yt−2‖η]
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×
∫ 1

0

z

∫ 1

0

|ḟ(y + [dn,t−1,y,sj
+ anτy‖yt−2‖η]z v)|dvdz

f(y)
F−1/2−δdF (y)

≤ Knεn (1 + η)2 n−1

n∑
t=2

|A1,t|‖yt−2‖2

×
∫

max1≤j≤k

∫ 1

0
z

∫ 1

0
|ḟ(y + [dn,t−1,y,sj

+ anτy‖yt−2‖η]z v)|dvdz

f(y)
F−1/2−δdF (y)

= OP (Knεn) = oP (1), ∀ η > 0.

Similarly,
∫

max
1≤j≤k

|M2,j(y)|dψ2n(y) = OP (Knεn) = oP (1), ∀ η > 0.

Thus we obtain that the integral of the maximum over 1 ≤ j ≤ k of the third term in the

bound (3.23) is bounded above by

OP (Knεn(1 + η)2) + 2Knηn−1

n∑
t=2

|A1,t|‖yt−2‖
∫

F (y)−1/2−δdF (y)(3.25)

= OP (η Kn) + OP (Knεn).

Next, let Ln(y) := max1≤j≤k `n(y, sj, 0). By (3.20) applied with a = 0, and by the

Cauchy-Schwarz inequality

E
(

max
1≤j≤k

|C±
41(y, sj)|

)
≤

k∑
j=1

E
∣∣∣C±

41(y, sj)
∣∣∣

≤ k
{

b n−1/2Kn [F (y)(1− F (y))]1/2

k∑
j=1

‖sj‖`n(y, sj, 0)
}1/2

≤ k
{

b n−1/2Kn [F (y)(1− F (y))]1/2 Ln(y)
}1/2

,

so that
∫

E
(

max
1≤j≤k

|C±
41(y, sj)|

)
dψ2n(y) ≤ C k n−1/4C1/2

n

∫
Ln(y)F−3/4−δ(y)dF (y).

Putting all these bounds together with (3.22), (3.23) and (3.24), we obtain that
∫

sup
‖s‖≤1

|C±
41(y, s)|dψ2n(y) = OP (k η1/2 n−1/4K1/2

n ) + OP (η Kn) + OP (εn Kn),

= OP (η1/2−pn−1/4K1/2
n ) + OP (η Kn).

This in turn implies (3.18), by choosing η suitably. For example η = K−a
n , a > 1, will suffice.

The results (3.19), (3.17) and (3.13) together imply

C4 = oP (1).(3.26)
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Similarly one can prove

C2 = oP (1).(3.27)

Next, consider

|C5| := n−1/2
∣∣∣

n∑
t=2

∫
Dtdϕ1n

∫
Dt−1dϕ2n

∣∣∣

≤
∫ ∫

sup
‖s‖≤1

n−1/2

n∑
t=2

{
|I(εt ≤ x + τxany

′
t−1s)− I(εt ≤ x)|

×|I(εt−1 ≤ y + τyany′t−2s)− I(εt−1 ≤ y)|
}

dψ1n(x)dψ2n(y)

≤
∫ ∫

n−1/2

n∑
t=2

{
I(x− τxan‖yt−1‖ < εt ≤ x + τxan‖yt−1‖)

×I(y − τyan‖yt−2‖ < εt−1 ≤ y + τyan‖yt−2‖)
}

dψ1n(x)dψ2n(y)

so that, by a conditioning argument,

E|C5| ≤
∫ ∫

n1/2E{I(y − τyan‖y0‖ < ε1 ≤ y + τyan‖y0‖)
×|F (x + τxan‖Y1‖)− F (x− τxan‖Y1‖)|}dψ1n(x)dψ2n(y)

≤ Kn

∫ ∫ y=x0

y=xn

E
{

I(y − τyan‖y0‖ < ε1 ≤ y + τyan‖y0‖)

×‖Y1‖
∫ 1

−1
f(x + τxan‖Y1‖ v)dv

f(x)

}
F−1/2−δ(x)dF (x)dψ2n(y)

≤ Kn

∫ ∫ y=x0

y=xn

E1/2|F (y + τyan‖y0‖)− F (y − τyan‖y0‖)|

×E1/2
{
‖Y1‖

∫ 1

−1
f(x + τxan‖Y1‖ v)dv

f(x)

}2

F−1/2−δ(x)dF (x)dψ2n(y)

≤ Kn

∫ ∫ y=x0

y=xn

E1/2τyan‖y0‖
∫ 1

−1

f(y + τyan‖y0‖v)dv

×E1/2
{
‖Y1‖

∫ 1

−1
f(x + τxan‖Y1‖ v)dv

f(x)

}2

F−1/2−δ(x)dF (x)dψ2n(y)

≤ n−1/4C2
n

∫ y=x0

y=xn

E1/2
{
‖y0‖

∫ 1

−1
f(y + τyan‖y0‖v)dv

f(y)

}
F−1/2−δ(y)dF (y)

×
∫ x0

xn

E1/2
{
‖Y1‖

∫ 1

−1
f(x + τxan‖Y1‖ v)dv

f(x)

}2

F−1/2−δ(x)dF (x)

= o(1).

The above bounds clearly prove the following
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Lemma 3.1 Under the conditions of Proposition 3.1, we have

n−1/2

n∑
t=2

ĉn1;1,tĉn1;2,t−1

= n−1/2

n∑
t=2

∫ [
I

(
εt > F−1(u)

)− (1− u)
]
dϕn1(u)

×
∫ [

I
(
εt−1 > F−1(v)

)− (1− v)
]
dϕn2(v) + oP (1).

Next, consider the sum n−1/2
∑n

t=2 ĉn2;1,tĉn2;2,t−1. Note that this is similar to the above

sum with ϕjn replaced with ϕ0
j := ϕj(u)I(α0 ≤ u ≤ 1 − α0). Thus several calculations

are similar to those in the case considered in the proof of Lemma 3.1. To begin with,

the decomposition (3.3) remains valid with ϕjn replaced by ϕ0
j . Denote these terms by

C0
i , i = 1, · · · , 9. That is, C0

i is the Ci of (3.3) with ϕ0
j substituted for ϕjn. The bounds

(3.6), (3.7), (3.8) now hold with djn replaced by d0
j := ϕj(1−α0)−ϕj(α0), so that the analog

of (3.9) clearly holds here. The places where one uses a different argument is in the handling

of the remaining terms C0
1 , C

0
2 , C

0
4 and C0

5 .

To begin with consider C0
4 . As mentioned earlier, here one needs to standardize the

random variables involved in the indicators of Dt differently. Accordingly, now let γ(u) :=

n1/2(ρ̂(u)− ρ(u)), and rewrite

µt(u) := F
(
F−1(u) + n−1/2y′t−1γ(u)

)
− F

(
F−1(u)

)
,

νt(u) := µt(u)− n−1/2y′t−1γ(u) q(u).

Then,

C0
4 := n−1/2

n∑
t=2

A1,t

∫
Dt−1dϕ0

2

= n−1/2

n∑
t=2

A1,t

[ ∫
[Dt−1 − µt−1]dϕ0

2 +

∫
νt−1dϕ0

2 +

∫
n−1/2y′t−2γ(u) dϕ0

2(u)

]

= C0
41 + C0

42 + C0
43, say.

Now recall from Koul and Saleh (1995) that

sup
α0≤u≤1−α0

‖γ(u)‖ = OP (1).(3.28)

Using this, the fact ϕ0
2 is bounded and arguing as for (3.13), we have

|C0
43| ≤ ‖n−1

n∑
t=2

A1,tyt−2‖ sup
α0≤u≤1−α0

‖γ(u)‖ = OP (n−1/2) = oP (1).
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Next, consider C0
42. Let

ψ0
j (y) := ϕ0

j(F (y)), a0 = F−1(α0), a1 = F−1(1− α0), γ̃y = γ(F (y)), y ∈ R,

ζn := sup
1≤t≤n,a0≤y≤a1

n−1/2|y′t−2γ̃y|.

The stationarity of the time series, E‖y0‖2 < ∞ and (3.28) imply that ζn = oP (1), and

n−1
∑n

t=2 |A1,t|‖yt−2‖ = OP (1). Hence,

|C0
42| = |n−1/2

n∑
t=2

A1,t

∫
νt−1(u)dϕ0

2(u)|

≤ n−1/2

n∑
t=2

|A1,t|
∫ ∣∣∣F (y + n−1/2y′t−2γ̃y)− F (y)− n−1/2y′t−2γ̃yf(y)

∣∣∣dψ0
2(y)

≤ n−1

n∑
t=2

|A1,t|‖yt−2‖ sup
|y−x|≤ζn

|f(y)− f(x)| = oP (1).

Next, we treat the C0
41 term. Define, for s ∈ Rp+1, y, a ∈ R,

mt−1(y, s, a) := [F (y + n−1/2(y′t−2s + ‖yt−2‖a))− F (y)]

C0±
41 (y, s, a) := n−1/2

n∑
t=2

A±
1,t[I(εt−1 ≤ y + n−1/2(y′t−2s + ‖yt−2‖a))− I(εt−1 ≤ y)

−mt−1(y, s, a)],

C0
41(y, s) := C0,+

41 (y, s)− C0,−
41 (y, s)

:= n−1/2

n∑
t=2

A1,t[I(εt−1 ≤ y + n−1/2y′t−2s)− I(εt−1 ≤ y)− µt−1(F (y), s)],

where C0,+
41 (y, s) = C0,±

41 (y, s, 0). Note that on the event supα0≤u≤1−α0
‖γ(u)‖ ≤ b,

|C0
41| ≤

∫
sup
‖s‖≤b

|C41(y, s)|dψ0
2(y)

≤
∫

sup
‖s‖≤b

|C0,+
41 (y, s)|dψ0

2(y) +

∫
sup
‖s‖≤b

|C0,−
41 (y, s)|dψ0

2(y).

We shall show that for every 0 < b < ∞,
∫

sup
‖s‖≤b

|C±
41(y, s)|dψ0

2(y) = oP (1)(3.29)

which together with (3.28) will imply |C0
41| = oP (1).

Let c = EA2
1,t. By a conditioning argument and the boundedness of f , we obtain that

for all y ∈ R, 0 ≤ b < ∞, s ∈ Rp+1 with ‖s‖ ≤ b and for all a ∈ R,

E|C0±
41 (y, s, a)|2 = E(A±

1,2)
2E

[
I(ε1 ≤ y + n−1/2(y′0s + ‖y0‖a))− I(ε1 ≤ y)(3.30)
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−F (y + n−1/2(y′0s + ‖y0‖a)) + F (y)
]2

≤ cE|F (y + n−1/2(y′0s + ‖y0‖a))− F (y)|
≤ C n−1/2(b + a)E‖y0‖.

Similarly, and for any s, t ∈ Rp+1, and y, a ∈ R,

E|C0±
41 (y, t, a)− C0±

41 (y, s, a)|2 ≤ c ‖t− s‖n−1/2 E‖y0‖,
E|C0±

41 (y, t, a)− C0±
41 (y, t, 0)|2 ≤ c |a|n−1/2 E‖y0‖.(3.31)

Since the ball {‖s‖ ≤ b‖} is compact, there is an η > 0 and a finite number of points

s1, · · · , sk in the unit ball such that for any ‖s‖ ≤ b, there is an sj with ‖sj‖ ≤ b, ‖s−sj‖ ≤ η.

Now,

sup
‖s‖≤b

|C0±
41 (y, s)| ≤ max

1≤j≤k
sup

‖s−sj‖≤η

|C0±
41 (y, s)− C0±

41 (y, sj)|+ max
1≤j≤k

|C0±
41 (y, sj)|;(3.32)

‖s− sj‖ ≤ η implies that for all y ∈ R, 1 ≤ j ≤ k, n ≥ 1, 1 ≤ t ≤ n,

y′t−2sj − ‖yt−2‖η ≤ y′t−2s ≤ y′t−2sj + ‖yt−2‖η.

This, the monotonicity of the indicators, and nonnegativity of A±
1,t’s, imply

|C0±
41 (y, s)− C0±

41 (y, sj)|(3.33)

≤ |C0±
41 (y, sj, η)− C0±

41 (y, sj, 0)|+ |C0±
41 (y, sj,−η)− C0±

41 (y, sj, 0)|
+2n−1/2{sumn

t=2A
±
1,t[mt−1(y, sj, η)−mt−1(y, sj,−η)].

Moreover, by (3.31), and the Cauchy-Schwarz inequality,

E
(

max
1≤j≤k

|C0±
41 (y, sj,±η)− C0±

41 (y, sj, 0)|
)

≤ C k η1/2 n−1/4.

Because f is bounded, the third term in the upper bound of (3.33) is bounded above by

max
1≤j≤k

n−1/2

n∑
t=2

|A1,t|
∣∣∣F (y + n−1/2y′t−2sj + n−1/2‖yt−2‖η)

−F (y + n−1/2y′t−2sj − n−1/2‖yt−2‖η)
∣∣∣

≤ Cη n−1

n∑
t=2

|A1,t|‖yt−2‖ = OP (η).

Finally, by (3.30) applied with a = 0, and by the Cauchy-Schwarz inequality,
∫

E
(

max
1≤j≤k

|C0±
41 (y, sj)|

)
dψ0

2(y)

≤ d0
2 sup

y
E

(
max
1≤j≤k

|C0±
41 (y, sj)|

)
≤ d0

2

k∑
j=1

E
∣∣∣C0±

41 (y, sj)
∣∣∣ ≤ C k n−1/4,
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Putting all these bounds together with (3.30) (3.32) and (3.33, we obtain that

∫
sup
‖s‖≤b

|C0±
41 (y, s)|dψ0

2(y) = OP (k η1/2 n−1/4) + OP (k n−1/4) + OP (η)

= OP (η−p n−1/4) ∀ η > 0.

Letting η → 0 at a suitable rate (such as, for instance, η = n−a, with ap < 1/4), this in turn

implies (3.29), and completes the proof of C0
4 = oP (1). Similarly one can prove C0

2 = oP (1).

Next, note that for ‖s‖ ≤ b, −‖yt−2‖b ≤ y′t−2s ≤ ‖yt−2‖b. Therefore,

|C0
5 | :=

∣∣∣n−1/2

n∑
t=2

∫
Dtdϕ0

1

∫
Dt−1dϕ0

2

∣∣∣

≤
∫ ∫

sup
‖s‖≤b

n−1/2

n∑
t=2

{
|I(εt ≤ x + n−1/2y′t−1s)− I(εt ≤ x)|

×|I(εt−1 ≤ y + n−1/2y′t−2s)− I(εt−1 ≤ y)|
}

dψ0
1(x)dψ0

2(y)

≤
∫ ∫

n−1/2

n∑
t=2

{
I(x− n−1/2‖yt−1‖b < εt ≤ x + n−1/2‖yt−1‖b)

×I(y − n−1/2‖yt−2‖b < εt−1 ≤ y + n−1/2‖yt−2‖b)
}

dψ0
1(x)dψ0

2(y)

so that, by a conditioning argument, using ‖f‖∞ < ∞ and the fact that ψ0
j , j = 1, 2 are

finite measures on R, we obtain

E|C0
5 | ≤

∫ ∫
n1/2E{|F (x + n−1/2‖Y1‖b)− F (x− n−1/2‖Y1‖b)|

×I(y − n−1/2‖y0‖b < ε1 ≤ y + n−1/2‖y0‖b)}dψ0
1(x)dψ0

2(y)

≤ C

∫
E

{
I(y − n−1/2‖y0‖b < ε1 ≤ y + n−1/2‖y0‖b)‖Y1‖

}
dψ0

2(y)

≤ C

∫
E1/2|F (y + n−1/2‖y0‖b)− F (y − n−1/2‖y0‖b)|dψ0

2(y)

≤ C n−1/4 = o(1).

To summarize, we have proved the following

n−1/2

n∑
t=2

ĉn2;1,tĉn2;2,t−1

= n−1/2

n∑
t=2

∫
[I(εt > F−1(u)− (1− u)]dϕ0

1(u)

∫
[I(εt−1 > F−1(v)− (1− v)]dϕ0

2(v)

+oP (1).
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Along the same lines as on page 1412 of Hallin and Jurečková (1999), one can show that

the remaining cross-product terms are negligible. For example consider

Tn := n−1/2

n∑
t=2

∫ αn

0

ātdϕ1

∫ αn

0

āt−1dϕ2.

The Cauchy-Schwarz inequality, the facts that |u − (1 − ât(u)|2 ≤ u + (1 − ât(u)), and∑n
t=1(1− ât(u)) = nu, ∀ 0 ≤ u ≤ 1, imply

n−1/2

n∑
t=2

∣∣∣[ât(u)− (1− u)][ât−1(v)− (1− v)]
∣∣∣

≤ n−1/2
{ n∑

t=2

[u− (1− ât(u)]2
}1/2{ n∑

t=2

[v − (1− ât−1(v)]2
}1/2

≤ n−1/2{2nu}1/2{2n v}1/2 = 2n1/2u1/2v1/2.

Thus,

|Tn| ≤
∫ αn

0

∫ αn

0

n−1/2

n∑
t=2

∣∣∣[ât(u)− (1− u)][ât−1(v)− (1− v)]
∣∣∣dϕ1(u)dϕ2(v)

≤ 2n1/2
( ∫ αn

0

u−1/2−δdu
)2

= O(n−1/2+δ) = o(1).

The next one is even easier because | ∫ ātdϕ0
j | ≤ ϕj(1− α0))− ϕj(α0), j = 1, 2, so that

∣∣∣n−1/2

n∑
t=2

∫
ātdϕ0

1

∫ αn

0

āt−1dϕ0
2

∣∣∣ ≤
∫ αn

0

n−1/2

n∑
t=2

|u− (1− ât−1(u)|dϕ2

≤ 2n1/2

∫ αn

0

u−δdu = O(n−1/2+δ).

Exactly similar arguments can be used to show that the cross-product terms involving the

right tail integrals are also negligible. Putting all these conclusions together implies

n−1/2

n∑
t=2

b̂tb̂t−1

= n−1/2

n∑
t=2

∫
[I(εt > F−1(u)− (1− u)]dϕ1(u)

∫
[I(εt−1 > F−1(v)− (1− v)]dϕ2(v)

+oP (1)

= n−1/2

n∑
t=2

ϕ1(F (εt)) ϕ2(F (εt−1)) + oP (1).

This proves the left hand side of the claim (3.1) while the right hand side of the claim

follows from Hallin and Puri (1988) and Hallin and Werker (1998). 2
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Remark 3.1 Here we indicate the proof when not all ϕ’s are centered at the origin. For

example consider the case m = 2. Assume that µ1 :=
∫

ϕ1(u)du = 0 and
∫

ϕ2(u)du =: µ2 6=
0. Put ϕ0

2 = ϕ2 − µ2. Let āt(u) := ât(u) − (1 − u) and note that integration by parts and

µ1 = 0 yields that
∫

ϕ1(u)dât(u)

∫
ϕ0

2(v)dât−1(v) =

∫
ϕ1(u)dāt(u)

∫
ϕ0

2(v)dāt−1(v)

=

∫
āt(u)dϕ1(u)

∫
āt−1(v)dϕ2(v), ∀ t.

Hence S̃n,ϕ1ϕ0
2

= S̃n,ϕ1ϕ2 , and S̃n,ϕ1ϕ2 = S̃n,ϕ1ϕ0
2

= Sn,ϕ1ϕ0
2
(θ) + oP (n1/2), by Proposition 3.1.

But,

n−1/2Sn,ϕ1ϕ0
2
(θ) = n−1/2

n∑
t=1

ϕ1

(Rt(θ)

n + 1

)[
ϕ2

(Rt−1(θ)

n + 1

)
−m2

]

= n−1/2Sϕ1ϕ2(θ)− n1/2m2[n
−1

n∑
i=1

ϕ1(i/(n + 1)],

where n−1
∑n

i=1 ϕ1(i/(n + 1) is a Rieman sum for the
∫

ϕ1(u)du = 0. Moreover, since ϕ1 is

square integrable, the difference between this Rieman sum and its limit is o(n−1/2). so that

centering ϕ2 has asymptotically negligible influence on n−1/2Snϕ1ϕ2 , and the conclusion of

Proposition 3.1 continues to hold.
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Gutenbrunner, C., J. Jurečková, R. Koenker, and S. Portnoy (1993). Tests of linear hypotheses
based on regression rank scores. J. Nonparametric Statist. 2, 307-331.



Serial ARRS 27

Hallin, M. (1994). On the Pitman non-admissibility of correlogram based methods. J. Time Ser.
Anal. 15, 607-612.

Hallin, M., J.-Fr. Ingenbleek, and M.L. Puri. (1985). Linear serial rank tests for randomness
against ARMA alternatives. Ann. Statist. 13, 1156-1181.
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