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Abstract

We propose new optimal estimators for the Lipschitz frontier of a set of points. They are
defined as kernel estimators being sufficiently regular, covering all the points and whose
associated support is of smallest surface. The estimators are written as linear combina-
tions of kernel functions applied to the points of the sample. The coefficients of the linear
combination are then computed by solving related linear programming problem. The
L1 error between the estimated and the true frontier function with a known Lipschitz
constant is shown to be almost surely converging to zero, and the rate of convergence is
proved to be optimal.
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1 Introduction

Many proposals are given in the literature for estimating a set S given a finite random
set of points drawn from the interior. This problem of edge or support estimation arises
in classification (Hardy & Rasson [20]), clustering problems (Hartigan [21]), discrim-
inant analysis (Baufays & Rasson [2]), and outliers detection (Devroye & Wise [8]).
Applications are found in medical diagnosis (Tarassenko et al [26]) as well as in condi-
tion monitoring of machines (Devroye & Wise [8]). In image analysis, the segmentation
problem can be considered under the support estimation point of view, where the support
is a convex bounded set in R

2 (Korostelev & Tsybakov [24]). We also point out
some applications in econometrics (e.g. Deprins, et al [7]). In such cases, the unknown
support can be written

S , {(x, y) : 0 ≤ x ≤ 1 ; 0 ≤ y ≤ f(x)}, (1)

where f is an unknown function. Here, the problem reduces to estimating f , called the
production frontier (see for instance Härdle et al [18]). The data consist of pair (X, Y )
where X represents the input (labor, energy or capital) used to produce an output Y in a
given firm. In such a framework, the value f(x) can be interpreted as the maximum level
of output which is attainable for the level of input x.

An early paper was written by Geffroy [10] for independent identically distributed ob-
servations from a density φ. The proposed estimator is a kind of histogram based on the
extreme values of the sample. This work was extended in two main directions.

On the one hand, piecewise polynomials estimators were introduced. They are defined
locally on a given slice as the lowest polynomial of fixed degree covering all the points in
the considered slice. Their optimality in an asymptotic minimax sense is proved under
weak assumptions on the rate of decrease α of the density φ towards 0 by Korostelev

& Tsybakov [24] and by Härdle et al [19]. Extreme values methods are then proposed
by Hall et al [16] and by Gijbels & Peng [11] to estimate the parameter α. Estimating
f can also been considered as a regression problem Y = f(X) + ε with negative noise ε.
In this context, local polynomial estimates are introduced, see Knight [23], or Hall et
al [17] for a similar approach.

On the other hand, different propositions for smoothing Geffroy’s estimator were made in
the case of a Poisson point process. Girard & Jacob [14] introduced estimators based on
kernel regressions and orthogonal series method [12, 13]. In the same spirit, Gardes [9]
proposed a Faber-Shauder estimator. Girard & Menneteau [15] introduced a general
framework for studying estimators of this type and generalized them to supports writing

S = {(x, y) : x ∈ E ; 0 ≤ y ≤ f(x)},

where f is an unknown function and E an arbitrary set. In each case, the limit distribution
of the estimator is established. We also refer to Abbar [1] and Jacob & Suquet [22]
who used a similar smoothing approach, although their estimators are not based on the
extreme values of the Poisson process.

The estimator proposed in Bouchard et al [6] can be considered to belong to the inter-
sect of these two directions. From the practical point of view, it is defined as a kernel



estimator obtained by smoothing some selected points of the sample. These points are
chosen automatically by solving a linear programming problem to obtain an estimated
support covering all the points and with smallest surface. From the theoretical point of
view, this estimator is shown to be consistent for the L1 norm.

In this paper, we propose several modifications of the above method. First, a bias cor-
rected kernel is proposed. Second, some regularity constraints are introduced in the
optimization problem. We show that the resulting estimator reaches the optimal mini-
max L1 rate (up to a logarithmic factor). The estimator is defined in Section 2. Some
preliminary properties are established in Section 3, and the main result is presented in
Section 4. Proofs are postponed to Section 5.

2 Boundary estimator

Let all the random variables be defined on a probability space (Ω,F , P ). The problem
under consideration is to estimate an unknown positive function f : [0, 1] → (0,∞) on
the basis of observations (Xi, Yi)i=1,...,N with independent pairs (Xi, Yi) being uniformly
distributed in the set S defined as

S , {(x, y) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ f(x)} . (2)

Letting

Cf ,

∫ 1

0

f(u) du , (3)

each variable Xi is distributed in [0, 1] with p.d.f. f(·)/Cf while Yi has the uniform
conditional distribution with respect to Xi in the interval [0, f(Xi)]. In what follows we
assume f ∈ Σ[0,1](β, Lf,β ), 0 < β ≤ 1 that is function f : [0, 1] → (0,∞) is β-Lipschitz
with constant Lf,β :

|f(x) − f(u)| ≤ Lf,β |x− u|β ∀x, u ∈ [0, 1] . (4)

The considered estimator f̂N : [0, 1] → [0,∞) of the frontier is chosen from the family of
functions:





f̂N(x) =
N∑

i=1

αiKh(x,Xi) , Kh(x, t) =
g(x)

h
K

(
x− t

h

)
,

αi ≥ 0, i = 1, . . . , N,

(5)

where K is a sufficiently smooth basic kernel function K : R → [0,∞) integrating to
one and having the interval [−1, 1] as its support; the bandwidth parameter h ∈ (0, 1/2)
depends on N such that h→ 0 as N → ∞; and the function

g(x) =

(∫ x/h

(x−1)/h

K(t) dt

)−1

, x ∈ [0, 1] , (6)

corrects the basic kernel K at the boundaries, i.e., when x ∈ [0, h) or x ∈ (1 − h, 1].
Indeed, g(x) ≡ 1 on x ∈ [h, 1 − h], while g(x) > 1 when x ∈ [0, h) or x ∈ (1 − h, 1].
One may easily observe that

∫ 1

0

Kh(x, u) du = 1 ∀x ∈ [0, 1] (7)



and, consequently, due to interplacing the integral and the derivative,
∫ 1

0

∂

∂x
Kh(x, u) du = 0 ∀x ∈ [0, 1] . (8)

Note, that equation (8) may be verified directly, as it is demonstrated in the Appendix,
Subsection 6.1.
Denote Kmax , maxK(t), gmax , max g(x), as well as functionals

Cβ(ϕ) ,

∫ 1

−1

|t|β|ϕ(t)| dt , ϕ ∈ C 0([−1, 1]) , (9)

Cβ(K,K ′) , gmaxKmaxCβ(K) + Cβ(K ′) . (10)

We also denote by Lϕ a Lipschitz constant for function ϕ : R → R, that is

|ϕ(s) − ϕ(t)| ≤ Lϕ|s− t| with Lϕ <∞. (11)

The indicator function is denoted by 1{·} which equals 1 if the argument condition holds
true, and 0 otherwise.
As it is proved below in Lemma 1 the surface of the estimated support

ŜN , {(x, y) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ f̂N (x)} (12)

may be approximated as follows:

∫ 1

0

f̂N(x) dx =

N∑

i=1

αi +O(h) . (13)

This suggests to define the parameter vector α = (α1, . . . , αN)T as a solution to the
following optimization problem

J∗
P , min

α

N∑

i=1

αi (14)

subject to

f̂N (Xi) ≥ Yi , i = 1, . . . , N , (15)

|f̂ ′
N(Xi)| ≤ Lf,β gmaxCβ(K,K ′)

logN

Nh2
, i = 0, . . . , N + 1 , (16)

N∑

i=1

αi 1{(j − 1)/mh ≤ Xi < j/mh} ≤ Cαh , j = 1, . . . , mh , (17)

0 ≤ αi , i = 1, . . . , N, (18)

where parameter mh is defined to be the integer part of 1/h . This optimization problem
may be formally written as linear program (LP)

J∗
P , min

α
1T

Nα (19)

subject to

Y ≤ Aα , (20)

−Lf,β gmaxCβ(K,K ′)
logN

Nh2
1N ≤ Bα ≤ Lf,β gmaxCβ(K,K ′)

logN

Nh2
1N , (21)

DTα ≤ Cαh1mh
, (22)

0 ≤ α . (23)



There is one positive parameter Cα in the constraints (17) and (22): its value will be
discussed in Section 4. Moreover, the following notations have been introduced:

X0 , 0, XN+1 , 1, (24)

1N , (1, 1, . . . , 1)T ∈ R
N (25)

A , ‖Kh(Xi , Xj)‖i,j=1,...,N (26)

B ,

∥∥∥∥∥
d

dx
Kh(x,Xj)

∣∣∣∣
x=Xi

∥∥∥∥∥
i,j=1,...,N

(27)

D , ‖1{(j − 1)/mh ≤ Xi < j/mh}‖i=1,...,N ; j=1,...,mh
(28)

Y , (Y1, . . . , YN)T . (29)

3 Preliminary results

The basic assumptions on the unknown boundary function are:

A1. 0 < fmin ≤ f(x) ≤ fmax <∞, for all x ∈ [0, 1],

A2. |f(x) − f(y)| ≤ Lf,β |x− y|β, for all x, y ∈ [0, 1], with Lf,β <∞ and 0 < β ≤ 1.

The following assumptions on the kernel function are introduced:

B1. K : R → [0,∞) has a compact support: suppt∈R
K(t) = [−1, 1],

B2.

∫ 1

−1

K(t) dt = 1,

B3. K is three times continuously differentiable.

Note, that gmax = 2 for any unimodal even kernel K(·) meeting conditions B1–B2. We

quote two preliminary results on the estimator f̂N . First, the surface of the related
estimated support ŜN is approximatively

∑N
i=1 αi. Second, the function f̂N is Lispchitzian.

Proofs are postponed to Subsection 5.1.

Lemma 1 Suppose B1, B2 are verified and 0 < h < 1/4. Moreover, let conditions (17)
and (18) hold true for mh = ⌊h−1⌋. Then the surface of the estimated support (12) meets
the following inequality:

−2CαKmaxh ≤

∫ 1

0

f̂N(x) dx−

N∑

i=1

αi ≤ 4Cα(gmax − 1)Kmaxh . (30)

Remark 1 In fact, only one part of Lemma 1 is used in what follows, that is the upper
bound for the estimator surface given by the right hand side (30).

Remark 2 Lemma 1 as well as the further results may be easily extended to basic kernels
K(·) having also negative values: then Kmax , max |K(t)|, and g(x) > 0 ∀x ∈ [0, 1]
should be additionally assumed.



Lemma 2 Suppose A1 and B1–B3 are verified. Let estimator f̂N be defined by LP (19)–
(23). Moreover, let h→ 0 as N → ∞ such that

lim
N→∞

logN

Nh
= 0 . (31)

Then, there exists almost surely finite N4 = N4(ω) such that for any N ≥ N4 the Lipschitz

constant for the estimator f̂N over the interval [0, 1] is bounded as follows:

L bfN
, max

x∈[0,1]
|f̂ ′

N(x)| (32)

≤ 2Lf,β gmaxCβ(K,K ′)
logN

Nh2
. (33)

Remark 3 As it can be seen from the proof of Lemma 2, namely from (56)–(57), one
might slightly decrease the number of constraints (16) on the estimator derivative (14)–
(18). In fact, one could impose those type of constraints not at each point Xi, i = 1, . . . , N :
It would be enough to do at the points with the distance O

(
(h logN/N)1/2

)
between them,

or at least o
(
(h logN/N)1/2

)
in order to keep the same Lipschitz constant for f̂N as is

given by Lemma 2.

It appears that the estimator f̂N being the solution to the optimization problem (14)–
(18) or to its equivalent LP version (19)–(23) defines the kernel estimator of the support
covering all the points (Xi, Yi) and, approximately, having the smallest surface, up to the
term O(h) specified in Lemma 1. Moreover, constraints (16)–(17) or (21)–(22) ensure

f̂N ∈ Σ[0,1](1, L bfN
) with a particular Lipschitz constant L bfN

given in Lemma 2. The

constraint αi ≥ 0 for all i = 1, . . . , N ensures that f̂N(x) ≥ 0 for all x ∈ [0, 1] since the
basic kernel K is chosen to be non-negative; this seems to be natural for function f(·) is
positive. Finally, note that the above described estimator (5), (19)–(23) may be treated as
the approximation to Maximum Likelihood Estimate related to the estimation family (5);
see Bouchard et al [6, 5] for the demonstration.

4 Main results

In the following theorem, the consistency and the convergence rate of the estimator to-
wards the true frontier is established with respect to the L1 norm on the [0, 1] interval.

Theorem 1 Let the above mentioned assumptions A1, A2 and B1–B3 hold true and the
estimator parameter Cα > 6fmax. Moreover, let h→ 0 as N → ∞ such that

lim inf
N→∞

logN

Nh1+β
> ρ > 0 , lim

N→∞

logN

Nh1+β/2
= 0 . (34)

Then estimator (5)–(23) has the following asymptotic properties:

‖f̂N − f‖1 ≤
(
C12(β)hβ + 2C4(β)h−2(logN/N)

2+β
1+β

)
(1 + o(1)) a.s. (35)

with
C12(β) , 2Lf,β gmaxCβ(K,K ′) + 4Cα(gmax − 1)Kmax1{β = 1} (36)

and

C4(β) , 2Lf,β



(

2Cf

Lf,β

) β
1+β (

1

ρ

) 2

1+β

+ gmaxCβ(K,K ′)

(
2Cf

Lf,β

) 1

1+β


 . (37)



Corollary 1 The maximum rate of convergence which is guaranteed by Theorem 1

‖f̂N − f‖1 = O
(
(logN/N)

β
1+β

)
a.s.

is attained for h meeting the following asymptotics:

h ∼ ρ̃

(
logN

N

) 1

1+β

, 0 < ρ̃ < ρ−
1

1+β , (38)

which reduces the upper bound (35) to

lim sup
N→∞

(
logN

N

)−
β

1+β

‖f̂N − f‖1 ≤ C12(β)ρ̃β + 2C4(β)ρ̃−2 a.s. (39)

Let us highlight that (39) shows that f̂N reaches (up to a logarithmic factor) the minimax
L1 rate for Lipschitz frontier f , see Korostelev & Tsybakov [24], Theorem 4.1.1.

Remark 4 The second condition in (34) may be extended to

lim
N→∞

logN

Nh1+β/2
<∞ (40)

which leads to another, more general formula for constants in (35)–(37).

5 Proofs

The proof of Theorem 1 which is given in Subsection 5.4 is based on both upper and
lower bounds derived in Subsection 5.2 and Subsection 5.3 respectively. When proving
these bounds, we assume that the sequence of the sample X-points (Xi)i=1,...,N is already
increase ordered, without changing notation from Xi to X(i) for the sake of simplicity,
that is

Xi ≤ Xi+1 , ∀ i . (41)

We essentially apply the uniform asymptotic bound O(logN/N) on ∆Xi , Xi − Xi−1

proved in auxiliary Lemma 6. Before that, we prove in Subsection 5.1 the two preliminary
results.

5.1 Proof of preliminary results

Proof of Lemma 1. Note that definitions (5)–(6) imply the following decomposition.

1∫

0

f̂N (x) dx =




h∫

0

+

1−h∫

h

+

1∫

1−h


 f̂N(x) dx (42)

=

1∫

0

N∑

i=1

αi
1

h
K

(
x−Xi

h

)
dx (43)

+
N∑

i=1

αi

(∫ h

0

+

∫ 1

1−h

)
g(x) − 1

h
K

(
x−Xi

h

)
dx . (44)



Since αi and kernel K are non-negative, it follows that

1∫

0

N∑

i=1

αi
1

h
K

(
x−Xi

h

)
dx ≤

N∑

i=1

αi

∫

R

1

h
K

(
x−Xi

h

)
dx =

N∑

i=1

αi (45)

and therefore,

1∫

0

f̂N(x) dx−

N∑

i=1

αi ≤
gmax − 1

h
Kmax

N∑

i=1

αi




h∫

0

+

1∫

1−h



1{|x−Xi| ≤ h}dx (46)

≤ (gmax − 1)Kmax

(
N∑

i=1

αi 1{0 ≤ Xi ≤ 2h} (47)

+
N∑

i=1

αi 1{1 − 2h ≤ Xi ≤ 1}

)
(48)

≤ (gmax − 1)Kmax4Cαh . (49)

The inequality (49) follows from (17) since both intervals in (47)–(48) are of the length 2h
and thus may be covered by two related intervals of the form [(j − 1)/mh, j/mh] in (17).
Consequently, we have proved the upper bound for the difference in the left hand side (46).
The lower bound is proved in the same manner. Indeed, decomposition (42)–(44) implies,
since the term (44) is non-negative,

1∫

0

f̂N(x) dx−

N∑

i=1

αi ≥ −

N∑

i=1

αi




0∫

−h

+

1+h∫

1



 1

h
K

(
x−Xi

h

)
dx (50)

≥ −Kmax

(
N∑

i=1

αi 1{0 ≤ Xi ≤ h} (51)

+
N∑

i=1

αi 1{1 − h ≤ Xi ≤ 1}

)
(52)

≥ −Kmax 2Cαh . (53)

This completes the proof of Lemma 1.

Proof of Lemma 2. Remind that we assume (41). By applying auxiliary Lemma 6 and
Lemma 8 we first arrive at

max
x∈[0,1]

|f̂ ′
N(x)| (54)

= max
1≤i≤N+1

max
x∈[Xi−1,Xi]

|f̂ ′
N(x)| (55)

≤ Lf,β gmaxCβ(K,K ′)
logN

Nh2
+

1

8
max

1≤i≤N+1

[
(Xi −Xi−1)

2 max
x∈[Xi−1,Xi]

|f̂ ′′′
N (x)|

]
(56)

≤ Lf,β gmaxCβ(K,K ′)
logN

Nh2
+

1

8

(
CX

logN

N

)2

max
x∈[0,1]

|f̂ ′′′
N (x)| , (57)



with CX > 4Cf/fmin. The maximum term in (57) is bounded as follows: for any x ∈ [0, 1]

|f̂ ′′′
N (x)| ≤

N∑

i=1

αi

∣∣∣∣
d3

dx3
Kh(x,Xi)

∣∣∣∣ (58)

≤ sup
u,v

∣∣∣∣
∂3

∂v3
Kh(v, u)

∣∣∣∣ ·
N∑

i=1

αi 1{|x−Xi| ≤ h} (59)

≤ gmaxL eK ′′h
−4 · 3Cαh , (60)

since (see Lemma 5 for the detailed demonstration)

sup
u,v

∣∣∣∣
∂3

∂v3
Kh(v, u)

∣∣∣∣ ≤ gmaxL eK ′′h
−4 (61)

where

L eK ′′ , LK ′′ + 3LK ′Kmaxgmax + LKgmax

(
3LK + 10K2

maxgmax

)
+ 6K4

maxg
3
max . (62)

Substituting (58), (60) into (57) yields

max
x∈[0,1]

|f̂ ′
N(x)| ≤ Lf,β gmaxCβ(K,K ′)

logN

Nh2
+

3

8
gmaxL eK ′′Cα

(
CX

logN

Nh2

)2

h (63)

≤ 2Lf,β gmaxCβ(K,K
′)

logN

Nh2
(64)

under additional assumption (which hold true for all sufficiently large N):

h ≥
3C 2

XCα L eK ′′ logN

8Lf,β Cβ(K,K ′)N
. (65)

The result follows.

5.2 Upper bound for f̂N in terms of J∗
P

Lemma 3 Let the assumptions of Theorem 1 hold true. Then for any finite

γ > Lf,β gmaxCβ(K) (66)

and almost all ω ∈ Ω there exist finite numbers N1 = N1(ω, γ) such that for all N ≥ N1

the LP (19)–(23) is solvable and

J∗
P ≤ Cf + γhβ . (67)

Proof of Lemma 3. Consider arbitrary N ≥ N0(ω) with N0(ω) from Lemma 6. Intro-
duce function fγ(u) = f(u) + γhβ and pseudo-estimators

α̃i =
1 + δi1

2

∫ Xi

Xi−1

fγ(u) du+
1 + δiN

2

∫ Xi+1

Xi

fγ(u) du , i = 1, . . . , N (68)



where δij stands for Kronecker symbol. Below we demonstrate that condition (66) ensures
the vector of pseudo-estimators α̃ = (α̃1 . . . , α̃N)T to be an admissible point for the LP
(19)–(23), for any sufficiently large N . This implies solvability of the LP (19)– (23) and

J∗
P ≤

N∑

i=1

α̃i =

∫ 1

0

(f(u) + γhβ) du = Cf + γhβ . (69)

Let CX > 4Cf/fmin. For the sake of simplicity, we impose the additional assumptions

hβ ≤
logN

ρNh
≤ min

{
fmax

γ
,

1

ρCX

}
, (70)

which hold true for all N large enough.
1. First, we prove constraints (15) under αi = α̃i, i = 1, . . . , N . For arbitrary x ∈ [0, 1],

f̃N(x) ,

N∑

i=1

α̃iKh(x,Xi) (71)

=

N+1∑

i=1

∫ Xi

Xi−1

fγ(u) du
Kh(x,Xi) +Kh(x,Xi−1)

2
(72)

+
1

2

∫ X1

0

fγ(u) du (Kh(x,X1) −Kh(x, 0)) (73)

+
1

2

∫ 1

XN

fγ(u) du (Kh(x,XN ) −Kh(x, 1)) (74)

=

∫ 1

0

fγ(u)Kh(x, u) du (75)

+

N+1∑

i=1

Xi∫

Xi−1

fγ(u)

(
Kh(x,Xi)+Kh(x,Xi−1)

2
−Kh(x, u)

)
du (76)

+
1

2

∫ X1

0

fγ(u) du (Kh(x,X1) −Kh(x, 0)) (77)

+
1

2

∫ 1

XN

fγ(u) du (Kh(x,XN ) −Kh(x, 1)) . (78)

Now we separately bound each of the summands (75)–(78) from below. Due to (7), the
main term (75) is bounded as follows:

∫ 1

0

fγ(u)Kh(x, u) du = f(x) + γhβ +

∫ 1

0

(f(u) − f(x))Kh(x, u) du (79)

≥ f(x) + (γ − Lf,β gmaxCβ(K))hβ . (80)

The i-th summand from (76) is decomposed and then bounded basing on trapezium



formula error as follows:
∫ Xi

Xi−1

fγ(u)

(
Kh(x,Xi) +Kh(x,Xi−1)

2
−Kh(x, u)

)
du (81)

≥ fγ(x)

∫ Xi

Xi−1

(
Kh(x,Xi) +Kh(x,Xi−1)

2
−Kh(x, u)

)
du (82)

−

Xi∫

Xi−1

|fγ(u) − fγ(x)|

∣∣∣∣
Kh(x,Xi) +Kh(x,Xi−1)

2
−Kh(x, u)

∣∣∣∣ du (83)

≥ −(fmax + γhβ)
(Xi −Xi−1)

3

12
max
u∈[0,1]

∣∣∣∣
∂2Kh(x, u)

∂u2

∣∣∣∣ 1{|x−Xi| ≤ 2h} (84)

−Lf,β

∫ Xi

Xi−1

|u− x|β 1{|x−Xi| ≤ 2h}
gmaxLK

2h2
[(u−Xi−1) + (Xi − u)] du. (85)

By applying Lemma 6, the first term is bounded as follows

(84) ≥ −

(
CX

logN

N

)2
fmax gmaxLK ′

6h3
(Xi −Xi−1) 1{|x−Xi| ≤ 2h}, (86)

and the second one is bounded by:

(85) ≥ −
gmaxLf,β LK

2h2
CX

logN

N
1{|x−Xi| ≤ 2h}

∫ Xi

Xi−1

|u− x|βdu . (87)

Moreover, from Lemma 6, one can show first that

N+1∑

i=1

1{|x−Xi| ≤ 2h}(Xi −Xi−1) ≤ 4h+
CX logN

N
,

and second that
N+1∑

i=1

1{|x−Xi| ≤ 2h}

∫ Xi

Xi−1

|u− x|βdu (88)

≤

∫ x+2h

x−2h−CX(log N)/N

|u− x|βdu (89)

≤

(
4h+ CX

logN

N

)
max

v∈[−2h−CX (log N)/N,2h]
|v|β (90)

≤

(
4h+ CX

logN

N

)(
2h+ CX

logN

N

)β

. (91)

Thus, we arrive at the bound for the sum (76) as follows:

N+1∑

i=1

∫ Xi

Xi−1

fγ(u)

(
Kh(x,Xi) +Kh(x,Xi−1)

2
−Kh(x, u)

)
du (92)

≥ −gmaxCX
logN

Nh

(
4 + CX

logN

Nh

)(
CXfmaxLK ′

6

logN

Nh
(93)

+
Lf,β LK

2
hβ

(
2 + CX

logN

Nh

)β
)

(94)

≥ −
5

6
gmaxCX

(
logN

Nh

)2 (
CXfmaxLK ′ + 3β+1ρ−1Lf,β LK

)
. (95)



At last, it is similarly demonstrated that both summands (77) and (78) are bounded above
by O((logN/(Nh))2). For instance, for (77), one obtains

∣∣∣∣
∫ X1

0

fγ(u) du (Kh(x,X1) −Kh(x, 0))

∣∣∣∣ ≤ (fmax + γhβ)X1 |Kh(x,X1) −Kh(x, 0)|

≤ 2fmax gmaxLK

(
CX

logN

Nh

)2

. (96)

Thus, from (71)–(96) it follows for each j = 1, . . . , N that

f̃N(Xj) ≥ f(Xj) + (γ − Lf,β gmaxCβ(K))hβ +O

((
logN

Nh

)2
)

≥ Yj (97)

for sufficiently large N ≥ N0(ω) when both inequalities (70) and the following one hold
true:

γ−Lf,β gmaxCβ(K) ≥
5

6
gmaxCX

(
logN

Nh1+β/2

)2(
CXfmax

(
LK ′ +

12LK

5

)
+ 3β+1

Lf,β LK

ρ

)
.

(98)

2. Similarly, constraints (16) hold true under αi = α̃i, i = 1, . . . , N . Indeed, for arbitrary
x ∈ [0, 1], we now have to bound the absolute value of

f̃ ′
N(x) =

N∑

i=1

α̃i
d

dx
Kh(x,Xi) =

N∑

i=1

α̃i K̃h(x,Xi) (99)

instead of (71). Here

K̃h(x, u) ,
∂

∂x
Kh(x, u) (100)

(see Subsection 6.1) with the following upper bound

∣∣∣K̃h(x, u)
∣∣∣ ≤ h−2gmax

{∣∣∣∣K
′

(
x− u

h

)∣∣∣∣+ gmaxKmax

∣∣∣∣K
(
x− u

h

)∣∣∣∣
}
. (101)

deduced form (145), (146). Hence, one may repeat the arguments of (72)–(78) by changing

Kh for K̃h. Therefore, all the rates from (81)–(97) should be divided by h, while the
absolute value of the main term of decomposition, due to (8), is bounded as follows:

∣∣∣∣
∫ 1

0

fγ(u) K̃h(x, u) du

∣∣∣∣ =

∣∣∣∣
∫ 1

0

(f(u) − f(x))
∂

∂x
Kh(x, u) du

∣∣∣∣ (102)

≤ Lf,β gmaxCβ(K,K ′)hβ−1 , (103)

instead of (79)–(80). Remind the definition (9)–(10) for Cβ(K,K ′) which follows from
(101). Thus, for sufficiently large N ≥ N0(ω) and for each Xj we arrive at

∣∣∣f̃ ′
N (Xj)

∣∣∣ ≤ Lf,β gmaxCβ(K,K ′)hβ−1 +O

(
log2N

N2h3

)
≤ Lf,β gmaxCβ(K,K ′)

logN

ρNh2
. (104)



Namely, inequality (104) holds true almost surely for all those N ≥ N0(ω) such that (70)
is verified and

Lf,β Cβ(K,K ′)

(
logN

hβ+1N
− 1

)
≥

5

6
gmaxCX

(
logN

Nh1+β/2

)2

(105)

·

(
CXfmax

(
L eK ′ +

12L eK
5

)
+ 3β+1

Lf,β L eK
ρ

)
(106)

where (see Lemma 5 for the detailed demonstration)

L eK , LK ′ + LK gmaxKmax , L eK ′ , LK ′′ + LK ′ gmaxKmax . (107)

3. Finally, the constraints (17) with

Cα ≥ 6fmax (108)

also hold true under αi = α̃i, i = 1, . . . , N . Indeed, by Lemma 6 the following inequalities
hold a.s. for all N ≥ N0(ω) and for each j = 1, . . . , mh, where mh = ⌊h−1⌋ :

N∑

i=1

α̃i 1{(j − 1)/mh ≤ Xi < j/mh} ≤ (fmax + γhβ)

(
1/mh + 2CX

logN

N

)
(109)

≤ 6fmaxh, (110)

under additional assumptions (70). Thus, constraints (17) are fulfilled under (108) almost
sure, for any sufficiently large N .

4. Since all α̃i ≥ 0, constraints (18) hold true, and Lemma 3 is proved.

Remark 5 By applying Lemma 9, under additional assumptions (219) on h, one may
ameliorate the related bounds in (92)–(98) and (105)–(106). Indeed, Lemma 9, being
applied with its parameter ν ∈ (1, 2), states that

N+1∑

i=1

1{|x−Xi| ≤ 2h}(Xi −Xi−1)
3 = o

(
h logν N

N2

)
(111)

hence, the sum of the term (84) is negligible with respect to that of (85). It means, roughly
speaking, that we may remove the term LK ′ from (95), (98) as well as L eK ′ from (106).
However, it does not change much in the main result of the Theorem. That is why we
restrict ourselves to the pointing out this possibility here.

5.3 Lower bound for f̂N

Lemma 4 Under the assumptions of Theorem 1, for almost all ω ∈ Ω there exist finite
numbers N2(ω) such that for any x ∈ [0, 1] and for all N ≥ N2(ω)

f̂N (x) ≥ f(x) −
C4(β)

h2

(
logN

N

) 2+β
1+β

(112)

with constant C4(β) defined in (37).



Proof of Lemma 4. Let us take use of Lemma 7 and its Corollary 2 introducing

δy = Lf,β δ
β
x , δx ,

(
2Cf logN

fminLf,β N

) 1

1+β

. (113)

Thus, for any N ≥ N6(ω) and any x ∈ [0, 1] there exists (with probability one) an integer
ik ∈ {1, . . . , N} such that

|x−Xik | ≤ δx (114)

and
Yik ≥ f(Xik) − δy . (115)

Now, the estimation error at a point x can be expanded as

f(x) − f̂N (x) = [f(x) − f(Xik)] (116)

+
[
f(Xik) − f̂N(Xik)

]
(117)

+
[
f̂N(Xik) − f̂N (x)

]
. (118)

The term in the right hand side (116) may be bounded as follows

|f(x) − f(Xik)| ≤ Lf,β |x−Xik |
β ≤ Lf,β δ

β
x , (119)

as well as the term (118)

∣∣∣f̂N (Xik) − f̂N (x)
∣∣∣ ≤ L bfN

|x−Xik | ≤ L bfN
δx, (120)

with a Lipschitz constant L bfN
for the function estimator f̂N(x). Remind that f̂N (Xik) ≥

Yik due to (15) or (20). Thus, (115) implies

f(Xik) − f̂N(Xik) ≤ (Yik + δy) − Yik = δy . (121)

Combining all these bounds we obtain from (116) that for all N ≥ N6(ω),

f(x) − f̂N(x) ≤ δy + Lf,β δ
β
x + L bfN

δx . (122)

Therefore, applying Lemma 2 and substituting expressions (113) for δx and δy into (122)
lead to the lower bound

f̂N(x) ≥ f(x) −
(
2Lf,β δ

β
x + L bfN

δx

)
(123)

≥ f(x) −
C4(β)

h2

(
logN

N

) 2+β
1+β

(124)

for any sufficiently large N (starting from random a.s. finite integer, which does not
depend on x). The first inequality in (34) has been applied here in order to simplify the
lower bound. Lemma 4 is proved.



5.4 Proof of Theorem 1

1. Since |u| = u− 2u1{u < 0}, the L1-norm of estimation error can be expanded as

‖f̂N − f‖1 =

∫ 1

0

[
f̂N(x) − f(x)

]
dx (125)

+ 2

∫ 1

0

[
f(x) − f̂N(x)

]
1
{
f̂N(x) < f(x)

}
dx. (126)

2. Applying Lemmas 1 and 3 to the right hand side (125) yields

lim sup
N→∞

h−β

(∫ 1

0

[
f̂N(x) − f(x)

]
dx

)
≤ γ + 4Cα(gmax − 1)Kmax1{β = 1} a.s. (127)

Note, that one may fix γ = 2Lf,β gmaxCβ(K), for instance.

3. In order to obtain a similar result for the term (126), note that Lemma 4 implies

ζN(x, ω) , ε−1
LB(N)

[
f(x) − f̂N (x)

]
≤ C4(β) <∞ a.s.

uniformly with respect to both x ∈ [0, 1] and N ≥ N2(ω), with

εLB(N) ,
1

h2

(
logN

N

) 2+β
1+β

. (128)

Hence, one may apply Fatou lemma, taking into account that u1{u > 0} is a continuous,
monotone function:

lim sup
N→∞

ε−1
LB(N)

∫ 1

0

[
f(x) − f̂N(x)

]
1
{
f̂N(x) < f(x)

}
dx (129)

≤

∫ 1

0

lim sup
N→∞

ζN(x, ω) 1{ζN(x, ω) > 0} dx (130)

≤ C4(β) <∞ a.s. (131)

4. Thus, the obtained relations together with (125) and (126) imply (35). Theorem 1 is
proved.

6 Appendix

In Subsection 6.1 we establish some properties related to the corrected kernel. Sub-
section 6.2 presents some auxiliary lemmas which have been used to prove Theorem 1.
Finally, we collect in Subsection 6.3 some lemmas dedicated to the proof of Remark 5.

6.1 Corrected kernel

Let the basic kernel function K be defined as in Section 4, and the bandwidth h ∈ (0, 1/2).

Remind the estimator f̂N defined in (5) as follows:




f̂N (x) =

N∑

i=1

αiKh(x,Xi)

αi ≥ 0, i = 1, . . . , N,

(132)



where the kernel function

Kh(x, t) = h−1K((x− t)/h) ∀x ∈ (h, 1 − h) (133)

while

Kh(x, t) = h−1K((x− t)/h)

(∫ x/h

−1

K(t) dt

)−1

∀x ∈ [0, h] (134)

and

Kh(x, t) = h−1K((x− t)/h)

(∫ 1

(x−1)/h

K(t) dt

)−1

∀x ∈ [1 − h, 1] . (135)

Thus, the kernel function Kh(x, t) is defined for any (x, t) ∈ [0, 1] × R, and the estimator
(132) is defined for any x ∈ [0, 1] via the kernel Kh(x, t) corrected at the “boundaries”.
One may easily observe that

∫ 1

0

Kh(x, u) du = 1 ∀x ∈ [0, 1] (136)

and, consequently, due to exchanging the integral and the derivative,

∫ 1

0

∂

∂x
Kh(x, u) du = 0 ∀x ∈ [0, 1] (137)

Note, that equation (137) may also be verified directly. For instance, on the left boundary,
i.e. for x ∈ [0, h], we have

Kh(x, t) = h−1K((x− t)/h)g(x) , g(x) =

(∫ x/h

−1

K(t) dt

)−1

. (138)

Denoting

K̃h(x, u) =
∂

∂x
Kh(x, u) , (139)

we thus have

g′(x) = −

(∫ x/h

−1

K(t) dt

)−2

h−1K(x/h) = −g2(x)h−1K(x/h) (140)

and

K̃h(x, u) = h−1K((x− u)/h)g′(x) + g(x)h−2K ′((x− u)/h) (141)

= g(x)h−1

(
h−1K ′

(
x− u

h

)
−K

(
x− u

h

)
Kh(x, 0)

)
. (142)

Hence, the integral

∫ 1

0

K̃h(x, u) du = −
g2(x)

h2
K
(x
h

)∫ 1

0

K

(
x− u

h

)
du+

g(x)

h

[
−K

(
x− u

h

)]u=1

u=0

(143)

equals zero for x ∈ [0, h]. A similar proof might be repeated for x ∈ [1 − h, 1]. Finally,
equality (136) holds true for all x ∈ (h, 1 − h) too, since g(x) ≡ 1 over this interval.



In what follows, we use more general formulas (5)–(6) instead of (138), that is

Kh(x, t) = h−1K((x− t)/h) g(x) , g(x) =

(∫ x/h

(x−1)/h

K(t) dt

)−1

, x ∈ [0, 1] . (144)

Therefore, as follows from (139), (144) for any x ∈ [0, 1],

K̃h(x, u) = h−1K((x− u)/h)g′(x) + g(x)h−2K ′((x− u)/h) (145)

=
g(x)

h

(
1

h
K ′

(
x− u

h

)
+K

(
x− u

h

)
(Kh(x, 1) −Kh(x, 0))

)
. (146)

The following Lemma proves Lipschitz-like constants in (107) and (61)–(62).

Lemma 5 Let kernel Kh defined in (5)–(6) meets the assumptions B1–B3, and the band-

width h ∈ (0, 1/2). Let K̃n be defined by (139). Then the following upper bounds hold
true: ∣∣∣K̃h(x, u)

∣∣∣ ≤ gmaxh
−2
(
LK + gmaxK

2
max

)
, (147)

∣∣∣∣
∂

∂u
K̃h(x, u)

∣∣∣∣ ≤ gmaxh
−3L eK ,

∣∣∣∣
∂2

∂u2
K̃h(x, u)

∣∣∣∣ ≤ gmaxh
−4L eK ′ , (148)

where L eK = LK ′ + LK gmaxKmax and L eK ′ = LK ′′ + LK ′ gmaxKmax . Moreover,
∣∣∣∣
∂3

∂x3
Kh(x, u)

∣∣∣∣ ≤ gmaxL eK ′′h
−4 (149)

where

L eK ′′ = gmax

[
LK ′′ + 3LK ′Kmaxgmax + 3LKgmaxK

2
max (1 + 3gmax) (150)

+ (L2
K + 2g2

maxK
4
max)(1 + 2gmax)

]
. (151)

Proof of Lemma 5. The upper bound (147) follows directly from (145)–(146). Further-
more, taking (145), (146) into account, one easily may come to (107) since

∣∣∣∣
∂

∂u
K̃h(x, u)

∣∣∣∣ ≤ gmaxh
−3 (LK ′ + LK gmaxKmax) = gmaxh

−3L eK , (152)

and, similarly,
∣∣∣∣
∂2

∂u2
K̃h(x, u)

∣∣∣∣ ≤ gmaxh
−4 (LK ′′ + LK ′ gmaxKmax) = gmaxh

−4L eK ′ . (153)

Moreover, one may continue calculation of further derivatives from (139)–(146) as follows:

∂2

∂x2
Kh(x, u) = g′(x)h−1

(
h−1K ′

(
x− u

h

)
(154)

+K

(
x− u

h

)
(Kh(x, 1) −Kh(x, 0))

)
(155)

+ g(x)h−1

(
h−2K ′′

(
x− u

h

)
(156)

+ h−1K ′

(
x− u

h

)
(Kh(x, 1) −Kh(x, 0)) (157)

+K

(
x− u

h

)(
∂

∂x
Kh(x, 1) −

∂

∂x
Kh(x, 0)

))
(158)



and

∂3

∂x3
Kh(x, u) = g′′(x)h−1

(
h−1K ′

(
x− u

h

)
(159)

+K

(
x− u

h

)
(Kh(x, 1) −Kh(x, 0))

)
(160)

+ 2g′(x)h−1

(
h−2K ′′

(
x− u

h

)
(161)

+ h−1K ′

(
x− u

h

)
(Kh(x, 1) −Kh(x, 0)) (162)

+K

(
x− u

h

)(
∂

∂x
Kh(x, 1) −

∂

∂x
Kh(x, 0)

))
(163)

+ g(x)h−1

(
h−3K ′′′

(
x− u

h

)
(164)

+ h−2K ′′

(
x− u

h

)
(Kh(x, 1) −Kh(x, 0)) (165)

+ 2h−1K ′

(
x− u

h

)(
∂

∂x
Kh(x, 1) −

∂

∂x
Kh(x, 0)

)
(166)

+K

(
x− u

h

)(
∂2

∂x2
Kh(x, 1) −

∂2

∂x2
Kh(x, 0)

))
. (167)

Moreover, from (144) the derivatives follow

g′(x) = g2(x)h−1

(
K

(
x− 1

h

)
−K

( x
h

))
, (168)

g′′(x) = 2g(x)g′(x)h−1

(
K

(
x− 1

h

)
−K

( x
h

))
(169)

+ g2(x)h−2

(
K ′

(
x− 1

h

)
−K ′

( x
h

))
, (170)

therefore,

|g′(x)| ≤ g2
maxKmaxh

−1 , (171)

|g′′(x)| ≤ g2
max

(
LK + 2gmaxK

2
max

)
h−2 . (172)

Finally, using the bounds (171)–(172) in (159)–(167) and the definition of K̃h (144) we



arrive at the bound (61)–(62):

h4

∣∣∣∣
∂3

∂x3
Kh(x, u)

∣∣∣∣ ≤ g2
max

(
LK + 2gmaxK

2
max

) (
LK + gmaxK

2
max

)
(173)

+ 2g2
maxKmax (LK ′ + LKgmaxKmax (174)

+ Kmaxh
2 max

x,u
|K̃h(x, u)| ) (175)

+ gmax(LK ′′ + LK ′gmaxKmax + 2LKh
2 max

x,u
|K̃h(x, u)| (176)

+ Kmaxh
3 max

x,u
|∂ K̃h(x, u)/∂x| ) (177)

≤ gmax [LK ′′ + 3LK ′gmaxKmax (178)

+ 3LKgmax

(
LK +K2

maxgmax

)
(179)

+ Kmaxg
2
max

(
3KmaxLK + 2K3

maxg
2
max

)]
(180)

= gmax

[
LK ′′ + 3LK ′Kmaxgmax + 3LKgmaxK

2
max (1 + 3gmax) (181)

+ (L2
K + 2g2

maxK
4
max)(1 + 2gmax)

]
. (182)

Here we applied the upper bound (147) as well as the one, followed from (145)–(146) and
(154)–(158):

h3 max
x,u

∣∣∣∣
∂

∂x
K̃h(x, u)

∣∣∣∣ ≤ g2
maxKmax

(
LK + gmaxK

2
max

)
(183)

+ gmaxh
−3 (LK ′ + LKgmaxKmax (184)

+Kmaxgmax

(
LK +K2

maxgmax

))
. (185)

Lemma 5 is proved.

6.2 Auxiliary lemmas. I

The following results are proved here for the sake of completeness.

Lemma 6 Let function f : [0, 1] → R meets the assumption A1 and sequence (Xi)i=1,...,N

be obtained from an independent sample with p.d.f. f(x)/Cf by increase ordering (41),
where Cf is defined by (3). Denote X0 = 0 and XN+1 = 1. Then for any finite constant
CX > 4Cf/fmin there exist almost surely finite number N0 = N0(ω) such that

max
i=1,...,N+1

∆Xi ≤ CX
logN

N
∀ N ≥ N0 (186)

with probability 1. For instance, one may fix constant CX as follows:

CX = 5fmax/fmin . (187)

Proof of Lemma 6. Introduce a uniform partition of the interval [0, 1] onto mN subin-
tervals ∆k with equal Lebesgue measures

ℓ(∆k) , 1/mN ≤ CX logN/(2N) , k = 1, . . . , mN , (188)

where size of partition

mN , min{integer m : m ≥ 2N/(CX logN)} (189)

≤ 1 +
2N

CX logN
≤

(2 + ε)N

CX logN
(190)



for an arbitrary ε > 0 and for any sufficiently large N . Hence, the event

AN , {ω : max
i=1,...,N+1

∆Xi ≤ CX logN/N} (191)

⊇

m
N⋂

k=1

[
N⋃

i=1

{Xi ∈ ∆k}

]
. (192)

Basing on Borel–Cantelli lemma we prove that the complementary event Ac
N , Ω \ AN

may occur only finite number of times (with probability 1). Evidently,

P (Ac
N ) ≤

m
N∑

k=1

P

(
N⋂

i=1

{Xi /∈ ∆k}

)
(193)

=

m
N∑

k=1

N∏

i=1

(
1 −

∫

∆k

C−1
f f(u) du

)
(194)

≤ mN

(
1 −

fmin

Cf

· ℓ(∆1)

)N

(195)

≤
(2 + ε)N

CX logN
exp

{
−

fminCX

(2 + ε)Cf

· logN

}
(196)

= O
(
N1−fminCX/((2+ε)C

f
)
)
. (197)

Hence, condition CX > 4Cf/fmin implies the existence of positive ε ensuring the conver-
gence of series

∞∑

N=1

P (Ac
N ) <∞ , (198)

and the Borel–Cantelli lemma applies. Note, that events
⋂N

i=1 {Xi /∈ ∆k} do not depend
on renumbering of (Xi)i=1,...,N which lead to (194) from (193); moreover, we have used
both definition (189) and inequality 1−x ≤ e−x there in (195)–(196). Lemma 6 is proved.

Lemma 7 Let random sample {(Xi, Yi) | i = 1, . . . , N} be defined as in Section 2. Let
sequence δx = δx(N) be positive, and for some ε > 0

lim inf
N→∞

N1−εδx > 0 . (199)

Define
mδ , min{integer m : m ≥ δ−1

x } (200)

and assume a positive sequence δy = δy(N) < fmin meeting for all sufficiently large N the
inequality

δy ≥ κmδ

logN

N
, with κ >

(2 − ε)Cf

fmin
. (201)

Then, under the assumptions of Lemma 6, with probability 1, there exists finite number
N6(ω) such that for any N ≥ N6(ω) there is such a subset of points {(Xik , Yik) , k = 1, . . . , mδ}
in the sample {(Xi, Yi) , i = 1, . . . , N}, that the following inequalities hold:

(k − 1)/mδ ≤ Xik < k/mδ , f(Xik) − δy ≤ Yik ≤ f(Xik) . (202)



Proof of Lemma 7. It is similar to that of Lemma 6. Introduce an equidistant partition
of the interval [0, 1] onto subintervals [(k − 1)/mδ, k/mδ], k = 1, . . . , mδ . Moreover,
introduce the related subsets in R

2

∆k , {(u, v) : (k − 1)/mδ ≤ u ≤ k/mδ , f(u) − δy ≤ v ≤ f(u)} , k = 1, . . . , mδ . (203)

Hence, the event

AN , {ω : ∀ k = 1, . . . , mδ ∃ i = 1, . . . , N : (Xi, Yi) ∈ ∆k} (204)

=

m
δ⋂

k=1

[
N⋃

i=1

{(Xi, Yi) ∈ ∆k}

]
. (205)

Basing on Borel–Cantelli lemma we prove that the complementary event Ac
N , Ω \ AN

may occur only finite number of times (with probability 1). Evidently,

P (Ac
N) ≤

m
δ∑

k=1

P

(
N⋂

i=1

{(Xi, Yi) /∈ ∆k}

)
(206)

=

m
δ∑

k=1

N∏

i=1

(
1 −

∫

∆k

C−1
f f(u) du dv

)
(207)

≤ mδ

(
1 −

fmin

Cf

·
δy
mδ

)N

(208)

≤
(
1 + δ−1

x

)
exp

{
−
fminκ

Cf

· logN

}
(209)

= O
(
N1−ε−fminκ/C

f

)
. (210)

Hence, condition κ > (2 − ε)Cf/fmin implies

∞∑

N=1

P (Ac
N ) <∞ , (211)

and one may apply Borel–Cantelli lemma. Lemma 7 is proved.

Corollary 2 Let δx and δy meet the conditions of Lemma 7. Then, with probability 1,
for any N ≥ N6(ω) and any x ∈ [0, 1] there exists integer ik ∈ {1, . . . , N} such that
|x−Xik | ≤ δx and f(Xik) − δy ≤ Yik ≤ f(Xik) .

Lemma 8 Let function g : [0,∆] → R be twice continuous differentiable, ∆ > 0. Then

max
x∈[0,∆]

|g(x)| ≤ max{|g(0)|, |g(∆)|}+
∆2

8
max

x∈[0,∆]
|g ′′(x)| . (212)

Proof of Lemma 8. Denote ḡb = max{|g(0)|, |g(∆)|}. It suffices to prove the case where
a point x1 ∈ (0,∆) exists with

|g(x1)| = max
x∈[0,∆]

|g(x)| > ḡb . (213)



Then g ′(x1) = 0, and for any x ∈ [0,∆]

g(x1) = g(x) −

∫ x

x1

dt

∫ t

x1

g ′′(u) du . (214)

Therefore, putting x = ∆ one obtains from (214)

|g(x1)| ≤ |g(∆)| +

∫ ∆

x1

dt

∫ t

x1

|g ′′(u)| du ≤ ḡb +
(∆ − x1)

2

2
max

x∈[0,∆]
|g ′′(x)| . (215)

Similarly, fixing x = 0 there in (214) leads to

|g(x1)| ≤ |g(0)|+

∫ x1

0

dt

∫ t

x1

|g ′′(u)| du ≤ ḡb +
x2

1

2
max

x∈[0,∆]
|g ′′(x)| . (216)

Thus, combining (215) and (216) we arrive at

|g(x1)| ≤ ḡb +
1

2
min{(∆ − x1)

2, x2
1} max

x∈[0,∆]
|g ′′(x)| . (217)

Since

max
x∈[0,∆]

min{(∆ − x)2, x2} =
∆2

4
, (218)

the desired inequality (212) follows immediately from (213), (217)–(218).

6.3 Auxiliary lemmas. II

Lemma 9 states the results announced in the Remark 5, Subsection 5.2.

Lemma 9 Let numbers hN form a positive sequence, non-increasing for N ≥ N1 and
meeting condition

hN−1

hN
≤ 1 +

κ

N
∀N ≥ N1 (219)

with finite, positive constants κ and N1 and such that

lim
N→∞

logN

NhN
= 0 . (220)

Then, under the assumptions of Lemma 6, as N → ∞, for an arbitrary ν > 1 and for
any x ∈ [0, 1]

SN ,

N+1∑

i=1

(∆Xi)
3 1{|x−Xi| ≤ 2hN} = o

(
hN logν N

N2

)
a.s. (221)

where o(·) does not depend on x.

Proof of Lemma 9.

1. Remind that the sequence of random points (Xi) is obtained from that of i.i.d. with
the p.d.f. f(·)/Cf for Xi by their increase ordering. Furthermore, ∆Xi , Xi − Xi−1,
X0 = 0, and XN ≡ 1. Introduce σ-algebras FN , σ{X1, . . . , XN}. Thus, (SN ,FN) is a
non-negative stochastic sequence. Let us denote X the new point (hence, independent



of FN) when passing from SN to SN+1. With these notations and due to the evident
inequality

1{|x−Xi| ≤ 2hN+1} ≤ 1{|x−Xi| ≤ 2hN}

one may write

E(SN+1|FN) ≤ E

{
N+1∑

j=1

1{X ∈ [Xj−1, Xj)} ·

[
N+1∑

i6=j

(∆Xi)
31{|x−Xi| ≤ 2hN} (222)

+
(
(X −Xj−1)

31{|x−X| ≤ 2hN} (223)

+(Xj −X)31{|x−Xj | ≤ 2hN}
)
]
|FN

}
(224)

≤ SN −
N+1∑

j=1

1{|x−Xj | ≤ 2hN}E {1{X ∈ [Xj−1, Xj)} (225)

·
[
(∆Xj)

3 − (X −Xj−1)
3 − (Xj −X)3

]
|FN

}
(226)

+
N+1∑

j=1

E
{
(X −Xj−1)

31{X ∈ [Xj−1, Xj)} (1{|x−X| ≤ 2hN}(227)

−1{|x−Xj| ≤ 2hN}) |FN

}
. (228)

2. The first need now is to evaluate the conditional expectation in (225)–(226). A simple

algebras imply

(∆Xj)
3 − (X −Xj−1)

3 − (Xj −X)3 = 3(X(Xj +Xj−1) −X2 −XjXj−1)∆Xj

which is non-negative for any X ∈ [Xj−1, Xj). Therefore, the bounding from below leads
to

E
{
1{X ∈ [Xj−1, Xj)}

[
(∆Xj)

3 − (X −Xj−1)
3 − (Xj −X)3

]
|FN

}
(229)

= 3∆Xj

∫ Xj

Xj−1

f(x)

Cf

(x(Xj +Xj−1) − x2 −XjXj−1) dx (230)

≥
fmin

2Cf
(∆Xj)

4 . (231)

Substituting to (225)–(226) and applying Iensen’s inequality for the convex function
ψ(s) , s4/3,

(
SN

#{|x−Xj | ≤ 2hN}

)4/3

≤

∑N+1
j=1 1{|x−Xj | ≤ 2hN} (∆Xj)

4

#{|x−Xj | ≤ 2hN}
, (232)

lead to

E(SN |FN−1) ≤ SN−1 −
fmin

2Cf

S
4/3
N−1

(NqN )1/3
+ rN (233)

where

qN ,
1

N

N∑

j=1

1{|x−Xj | ≤ 2hN−1} = O(hN−1) , (234)



and rN denotes the related sum in (227)–(228), that is

rN ,

N∑

j=1

E
{
(X −Xj−1)

31{X ∈ [Xj−1, Xj)} (1{|x−X| ≤ 2hN−1} (235)

−1{|x−Xj | ≤ 2hN−1}) |FN−1

}
. (236)

Note, that one may define 0/0 , 0 to treat the case of zero denominators there in (232),
for instance.

The bound O(hN) for qN stated in (234) is proved below in Lemma 11. In order to
bound rN from above one may easily see that the difference between the two indicators
in (235)–(236) is positive iff the first of them equals 1 while the second does 0. Due to
Lemma 6 and the property (220), i.e. logN/(NhN ) → 0, this may almost surely arise
only for the following event (for any sufficiently large N): x − 2hN−1 ≤ Xj−1 < X ≤
x + 2hN−1 < Xj . Given a sequence (Xi), this event arises only for one j, say j = j0,
which depends on x . Thus,

rN ≤

∫ Xj
0

Xj
0
−1

(u−Xj
0
−1)

3 f(u)

Cf

du ≤
fmax

Cf

max
i=1,...,N+1

(Xi −Xi−1)
4 (237)

= O
(
(logN/N)4) , (238)

with non-random O(·) being independent of x, from Lemma 6.

3. The next step is to come from the nonlinear inequality (233) to a linear one. The
convexity of function ψ(s) = s4/3 gives, for an arbitrary aN > 0, the lower bound as
follows:

ψ(SN) ≥ ψ(aN ) + ψ′(aN)(SN − aN ) =
4

3
a

1/3
N SN −

1

3
a

4/3
N .

Thus, inequality (233) and the choice aN−1 , a3qN/N
2 with a > 0 lead to

E(SN |FN−1) ≤ SN−1 −
2fmin

3Cf

(
aN−1

NqN

)1/3

SN−1 +
fmin

6Cf

(
a4

N−1

NqN

)1/3

+ rN (239)

≤ SN−1 −
µ

N
SN−1 +

µa3

4N3
qN + rN (240)

where

µ ,
2afmin

3Cf
> 2 + κ (241)

for sufficiently large a.

4. Finally, using relations (234)–(236) in (239)–(240) and applying Lemma 10 we arrive
at the result of Lemma 9.

Lemma 10 Let (wN ,FN) be non-negative stochastic sequence meeting the inequality

E(wN |FN−1) ≤
(
1 −

µ

N

)
wN−1 +

dNhN

N1+p
a.s. ∀N ≥ N1 (242)

where µ > p + κ, hN and κ meet conditions of Lemma 9, dN is FN−1-measurable, non-
negative and bounded a.s., and N1 <∞. Then, as N → ∞, for any ν > 1

wN = o

(
logν N

Np
hN

)
a.s. (243)



Proof of Lemma 10. Introduce

vN ,
Np

hN logν N
wN a.s. (244)

The inequalities logN > log(N − 1), hN−1 ≥ hN , and (242) imply

E(vN |FN−1) ≤
(
1 −

µ

N

)( N

N − 1

)p
hN−1

hN
vN−1 +

dN

N logν N
(245)

≤

(
1 −

µ− p− κ

N
+ o

(
1

N

))
vN−1 +

d

N logν N
(246)

Since
∞∑ µ− p− κ

N
= ∞ and

∞∑ dN

N logν N
<∞ a.s. , (247)

one may apply Robbins–Siegmund almost supermartingale convergence theorem Robbins

& Siegmund [25] which implies vN → 0 as N → ∞. Lemma 10 is proved.

Lemma 11 Let h = hN → 0 as N → ∞. Then, under the assumptions of Lemma 6 and
Lemma 9, the bound (234) holds true for any x ∈ [0, 1], that is

qN ,
1

N

N∑

j=1

1{|x−Xj | ≤ 2hN−1} = O(hN) (248)

where O(·) does not depend on x.

Proof of Lemma 11. Introduce

ζi , 1{|x−Xi| ≤ 2hN−1} − P{|x−Xi| ≤ 2hN−1} (249)

leading to the decomposition

qN = P{|x−X1| ≤ 2hN−1} +
1

N

N∑

j=1

ζi . (250)

Since Xi are i.i.d. with the bounded p.d.f. f(·)/Cf , the probability

P{|x−Xi| ≤ 2hN−1} ≤

∫ x+2hN−1

x−2hN−1

f(u)

Cf
du = O(hN−1) (251)

with O(·) being independent of x and of i. Furthermore, observe that |ζi| ≤ 1 a.s., and

Eζi = 0 , Eζ2
i ≤ P{|x−Xi| ≤ 2hN−1} = O(hN−1) . (252)

Thus, in order to bound the stochastic term in the right hand side (250) one may apply
the Bernstein inequality (see, e.g., Birgé & Massart [3] or Bosq [4], Theorem 2.6)
with the standard treatment via Borel–Cantelli lemma (e.g., as in Bouchard et al [5],
Appendix, Lemma 5). This directly yields

qN = O(hN) +O

((
hN logN

N

)1/2
)

= O(hN) a.s. (253)

Lemma 11 is proved.
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aléatoire. Statistique et analyse des données, 15(3), 1–19.

[2] Baufays, P. and Rasson, J.P. (1985) A new geometric discriminant rule. Computa-
tional Statistics Quaterly, 2, 15–30.
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