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Summary. We consider power and sample size calculations for a randomized controlled

clinical trial with a bounded outcome score as primary response adjusted for a priori

chosen covariates. A bounded outcome score (BOS) is a random variable that is restricted

to a finite interval. Examples of a BOS are found in health-related quality of life research,

e.g., the SF-36 being the most commonly used score or the Barthel-index often used in

stroke trials. There are two popular ways to analyze such data: as a numeric score or as

an ordinal variable. We will take the first approach here, and treat it as a special case of

grouped or coarse data. Often such scores have J- or U -shaped distributions hindering

traditional parametric methods of analysis. When no adjustment for covariates is needed,

a non-parametric test could be chosen. However, there is still a problem with calculating

the power and sample size with classical approaches since the common location-shift

alternative does not hold in general for a BOS. In this paper, we consider a parametric

approach and assume that the observed BOS is a coarsened version of a true BOS, which

has a logit-normal distribution in each treatment group allowing correction for covariates.

A two-step procedure is used to calculate the power function. First, the power function is

calculated conditionally on the realized covariate values. Secondly, the marginal power is

obtained by averaging the conditional power with respect to an assumed distribution for

the covariates using Monte Carlo integration. This procedure provides also a practical

method for sample size calculations. A simulation study evaluates the performance of
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our method. When the BOS is regarded as ordinal, ordinal logistic regression (OLR) is a

valid and popular approach to compare the efficacy of two treatments while accounting

for covariates. We will indicate briefly the connection between our approach and OLR.

But, more importantly we will indicate that our approach can also be implemented

with some minor modifications to calculate the power and sample size for OLR when

continuous covariates are involved. Finally, as an illustration of our method, we perform

a re-sample size calculation on the primary outcome (Barthel index) of the ECASS-1

study, a stroke trial designed to compare the effect of placebo and a thrombolytic drug

on patients with an acute ischemic stroke.

Key words: bounded outcome scores; grouped data; Barthel index; power; sample

size calculations; Wald statistic

1. Introduction

A bounded outcome score (BOS) is a random variable that is restricted to a finite interval

and can be continuous, discrete or a mix of a continuous and a discrete variable. In this

paper we will concentrate on discrete bounded outcome scores and treat them as a special

case of the grouped or coarse data framework as it has been formalized by (Heitjan, 1989;

Heitjan and Rubin, 1991; Heitjan, 1993). Grouped data arise from a variable whose

true values are known only up to subsets of the sample space and this can happen in

many ways, e.g., rounding, interval censoring or censoring of continuous variables into

categories. We note, in passing, that the coarsening mechanism not only can be quite

general but can also differ between subjects. Examples of discrete BOSs include the

various Quality of Life indexes like the Barthel-index, the SF-36 score, etc. Here we

will exemplify our approach on the Barthel-index, which is an Activity on Daily Living

(ADL) scale with (in one version) a minimal value of 0 (death or completely immobilized)

and a maximal value of 100 (able to perform all daily activities independent) jumping

with steps of 5. This scale is often used in stroke trials to measure the recovery of a

patient in practical terms after an acute stroke. The visual analogue scale is another

important example of a BOS. Formally, it is a continuous variable on (0,1) which attains
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the boundary values 0 and 1 with non-zero probability. However, coarsened or rounded

versions of this scale are often reported and in this case our proposal for power and sample

size calculations for discrete BOSs will also be adequate. For reasons of simplicity we

will assume that a discrete BOS takes values in the closed interval [0, 1].

An important aspect in setting up a clinical trial is the estimation of the power (and

sample size) to detect a clinically relevant treatment effect. A BOS can have a peculiar

shape of distribution, i.e., J- or U -shaped and thus non-parametric tests such as the

Wilcoxon test are likely to be used in this context. If covariate adjustment is aimed

at and the covariate is categorical, then the van Elteren test (van Elteren, 1960) could

be used, but for a continuous covariate it is not clear how to handle adjustment in a

non-parametric way. In addition, when pilot data are available the bootstrap method

(Efron and Tibshirani, 1993) provides a valuable non-parametric alternative that easily

allows for covariate adjustments (Collings and Hamilton, 1988; Hamilton and Collings,

1991; Walters and Campbell, 2005). Moreover, for large sample sizes the Central Limit

Theorem can be used and the power calculations can be performed with conventional

methods (Walters and Campbell, 2005). However, in the BOS context and for skewed

distributions the boundaries might be crossed under the alternative and thus the ap-

propriateness of the conventional methods might be questionable. Recently, (Lesaffre

et al., 2006) have proposed to use the logistic transformation to model BOSs and assume

a parametric expression for the distribution of a latent BOS on (0,1) which is coarsely

measured giving rise to the observed BOS on [0,1]. This approach allows easily for co-

variate adjustment. This is important as the power of detecting a treatment effect will

be increased considerably if the baseline covariates are well chosen, i.e., correlate well

with the response.

One of the traditional methods for calculating the power of a statistical test assume

the location shift alternative (LSA). LSA assumes that under the alternative hypothesis

the distribution of the primary endpoint is shifted with a fixed amount ∆ for, say, the

active treatment with respect to the control treatment. However, the LSA assumption

is not very appealing for a BOS. Indeed, since the score is restricted to, say, the interval
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[0, 1], the LSA assumption could imply that under the alternative hypothesis one of

the distributions has to cross the boundaries which is not valid. This has also been

recognized by (Lesaffre et al., 1993; Lesaffre and de Klerk, 2000; Tsodikov et al., 1998)

who proposed alternative approaches for power and sample size calculations but none of

the proposed methods accounts for covariate adjustment. A typical alternative to the

LSA is to assume that the values of one group tend to be larger than the other, such as in

the Wilcoxon test (Noether, 1987; Walters and Campbell, 2005). However, quantifying

such an alternative may not often be a trivial task.

In this paper we propose a parametric method for power and sample size calculations

under LSA, in a transformed scale, in discrete bounded responses when baseline covari-

ates are included in the model. The paper is organized as follows. In Section 2 we briefly

review the idea of using the logistic transformation to model a BOS. In Section 3 we ex-

amine the properties of the Wald test for detecting a treatment effect in this context. In

Section 4 we present formulas for power and sample size calculation. The power function

is calculated in two steps: in the first step the power function is calculated conditionally

on the covariate values and in the second stage this power function is averaged over

an assumed distribution for the covariates using Monte Carlo integration. For sample

size calculations, Monte Carlo sampling may render the computations time consuming.

Thus, an approximate method is proposed using a Taylor series expansion to get a good

initial estimate for the sample size. This initial estimate is then used to provide a more

narrower search area to the algorithm used resulting in this way to much faster sample

size calculations. In Section 5 a few simulation studies are described, which were set up

to (i) explore the distributional properties for the Wald statistic; (ii) demonstrate the

increase in power by adjusting for covariates; (iii) show the sensitivity of the marginal

power calculations to mis-specification of the covariate distribution and (iv) evaluate the

proposed methods under a number of scenarios. In Section 6 we relate our approach to

OLR and show that, while based on a slightly different philosophy, our method of power

and sample size calculation can easily be adapted to OLR. Moreover, we illustrate that

the current approach already gives a precise estimate of the power and sample size for
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OLR when allowing for covariates. In Section 7 we apply our approach to the ECASS-1

study, which is an early placebo-controlled randomized clinical trial evaluating the effect

of a thrombolytic drug on patients with an acute ischemic stroke. Finally, in Section 8

we summarize our findings and discuss further research in calculating power (and sample

size) with bounded outcomes.

2. The logistic transformation for discrete bounded scores

The logistic transformation to handle a discrete BOS Y ∈ [0, 1] was suggested by (Lesaffre

et al., 2006) following the approach of (Aitchison and Shen, 1980). The advantage of this

approach is its flexibility in capturing various shapes of the distribution of the observed

data (unimodal, J- or U -shaped) while allowing the incorporation of baseline covariates.

The key idea is that a continuous latent variable U on (0, 1) is coarsely measured giving

rise to the observed discrete outcomes Y on [0, 1]. This latent variable is assumed to

have, on the logit scale, a classical distribution; that is Z = logit(U) can be normal,

Student’s-t or a logistic distribution. Here we focus on the normal case and in particular

we assume that logit(U) ∼ N (µ, σ2) and denote that U ∼ LN (µ, σ2), where LN (µ, σ2)

is the logit-normal distribution with parameters µ and σ2. Depending on the choice of

µ, σ2 we achieve different shapes of the distribution.

More specifically, the observed Y arises when the continuous latent variable U lies in

one of the disjoint intervals of the form [(al, bl)] (al, bl are real numbers in [0, 1] and [(., .)]

denotes the four possible kinds of intervals) with
⋃

l[(al, bl)] = [0, 1]. Different procedures

generating the subintervals [(al, bl)] imply different types of coarsening mechanisms (see

e.g., (Heitjan, 1993)). Hence, the probability for the ith individual (i = 1, . . . , n) to have

a score yi equals:

P (Yi = yi; θ) =

∫ bi

ai

g (ui; θ) dui = Φ

(
z

(u)
i − µ

σ

)
− Φ

(
z

(l)
i − µ

σ

)
(1)

where g(.; θ) is the probability density function of the logit-normal distribution with

parameters θ = (µ, σ)T , Φ(.) is the distribution function of the standard normal distrib-

ution and z
(l)
i = logit(ai), z

(u)
i = logit(bi). For more details on this approach for analyzing

a BOS we refer to (Lesaffre et al., 2006). Moreover, it is obvious that (1) is in fact a
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special case of a grouped data likelihood where g(.; θ) can be any density function and

z
(l)
i = hi(ai) and z

(u)
i = hi(bi) with hi(.) any monotonic differential function. As a result,

our proposals described in detail in Section 4 are still valid under different coarsening

mechanisms for the different subjects in the same study.

Under this framework, the LSA assumption can be applied on the logit scale by as-

suming that the distribution of logit (U) under H0 is N(µ, σ2), while under the alternative

it is N(µ + ∆, σ2) (see Figure 1). Thereby, the boundary restriction of the Y responses

can be effectively handled. If logit (U) follows a logistic distribution, this assumption

implies that the log-odds ratio in the original u-scale is constant and equal to the effect

size ∆/σ (for more on the assumption of the logistic distribution see Section 6). In the

other cases we can at least say that ∆1 < ∆2 implies that on the original scale the dis-

tribution under the first alternative hypothesis is stochastically smaller than under the

second alternative hypothesis. Additionally, for the transformed normal distributions,

the proportion of individuals better off with the new treatment than with the control

treatment is equal to P∆ = Φ
(

∆
σ
√

2

)
and because the logistic transformation is monotone

the same property holds on the original scale.

[Figure 1 about here.]

Finally, when covariate adjustment is envisaged, the mean parameter µ can be re-

placed by the linear predictor

ηi = γ0 + ∆ti + γT
1 xi, (2)

where γ0 denotes the intercept, ti the treatment indicator with treatment effect measured

by ∆ and xi the extra baseline covariates with corresponding coefficients γ1.

3. Test Statistic

Under model (1) and assuming the linear predictor (2), the Wald test is used to detect

a relevant treatment effect while correcting for the covariates xi. The Wald statistic to

test the null hypothesis H0 : ∆ = ∆0(= 0) versus the alternative hypothesis Ha : ∆ =
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∆a, where ∆a is the hypothesized value of the treatment effect under the alternative

hypothesis, is defined as:

W =
∆̂−∆0

σ̂∆̂

, (3)

where ∆̂ is the MLE of the treatment effect and σ̂∆̂ is an estimate of the standard error

of ∆̂ (based on either the observed information or Fisher information matrix of model

(1)). Usually, the asymptotic normality of the MLEs is used to claim the normality of

the Wald statistic. However, since in model (1) the scale parameter σ is unknown, we

assume a Student’s-t approximation for W . A simulation study (described in Section

5.1) indicates that, even for relatively small sample sizes, W is well approximated by a

Student’s-t distribution with n− p degrees of freedom under the null hypothesis (where

n = n1 + n2 is the sample size and p is the rank of the design matrix under the assumed

linear predictor), while under the alternative, the distribution of W is often well ap-

proximated by a non-central Student’s-t distribution with n− p degrees of freedom and

non-centrality parameter δ = ∆a/σ∆̂, where σ∆̂ is the standard error of ∆̂. In addition,

the properties and the robustness of the Wald test has been explored in the context

of ordinal responses arising from quality of life indexes (Heeren and D’Agostino, 1987;

Sullivan and D’Agostino, 2003). Moreover, the beneficial effect of covariate adjustments

on the power of the Wald statistic is explored in Section 5.2. Finally, the method pro-

posed in this paper can be easily applied for statistics other than the Wald (i.e., score,

likelihood ratio statistic, etc.) with small modifications.

4. Calculating power and sample size

4.1 Conditional power

A two-stage procedure is used to derive the (marginal) power function of the Wald

statistic defined in Section 3 under model (1). Initially we calculate the conditional

power of the statistic, namely the power of the statistic given the realized values of the

covariates. Thus we first assume that the design matrix X = (1, t, x1, . . . , xp−2), where

x1, . . . , xp−2 are possibly additional baseline covariates, is known. This corresponds to
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a randomized experiment where the results are known and interest lies in the power of

detecting a treatment effect of known magnitude given the realized covariate values. The

calculation of the conditional power serves as a basis for the calculation of the marginal

power in Section 4.2. For notational simplicity we consider here, in addition to the

treatment indicator, only one covariate x (i.e., X = (1, t, x) is of rank p = 3). However,

the inclusion of more than one baseline covariate is straightforward.

Under the Student’s-t approximation discussed in Section 3, the power of the Wald

test for detecting a treatment effect equal to ∆a while taking into account additional

baseline covariates is calculated by the expression (Armitage and Berry, 1987):

1− βC ≡ 1− βC(X) = P (|W | > tν,1−α/2 | Ha; X)

= 1− Ftν,δ
(tν,1−α/2 | Ha; X) + Ftν,δ

(tν,α/2 | Ha; X), (4)

where Ftν,δ
is the distribution function of the non-central Student’s-t distribution with

ν = n− p degrees of freedom and non-centrality parameter δ = ∆a/σ∆̂, tν,α/2 is the α/2

quantile of the central Student’s-t distribution with ν degrees of freedom, α is the two-

sided type I error and βC is the conditional (on the observed covariate values) probability

of making a type II error.

The Fisher Information matrix of the logit-normal model (1) delivers an estimate of

σ∆̂. For alternatives that do not differ too much from the null hypothesis, σ∆̂ is assumed

to be practically the same under the null and the alternative hypothesis (Noether, 1987).

The Fisher Information matrix is needed here since we have to average over the possible

response values. Lengthy calculations lead to the following compact expression for the

Fisher Information matrix under model (1):

I = EY |X


−




∂2`
∂γ∂γ

∂2`
∂γ∂σ

∂2`
∂σ∂γ

∂2`
∂σ∂σ





 =


 XT W (1)X XT W (2)

XT W (2)
∑n

i=1 w
(3)
i


 ,

where W (1), w(2) and w
(3)
i are defined in Appendix A, and XT denotes the transpose of

X.
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4.2 Marginal power

At the design stage of a study the values of the independent variables are usually

not available. Only pilot or historical data may be available from which reasonable

distributional assumptions for the covariates can be made. In this case, we suggest

to calculate the marginal power as the expected conditional power with respect to the

distribution of the baseline covariates (i.e., here the treatment indicator and one extra

baseline covariate). Thus the marginal power is given by:

1− βM = 1−
∑
T

∫

X

βC(X)dH(X), (5)

with H(X) denoting the cdf of the joint distribution of the covariates. Under the setup

considered here the density h(X) of H(X) is written as h(X) = p(t)f(x) where f(x) is

the density function of the covariate x, p(t) is a Bernoulli(π) representing the allocation

rate in a randomized trial with two treatment groups and X , T are their corresponding

sample spaces. For more than one additional baseline covariate, the unidimensional

integral in (5) becomes a multidimensional integral or a sum. In general, the expectation

in (5) does not have an analytic solution since the independent variables appear in

the standard error σ∆̂ of the denominator of the non-centrality parameter δ. However,

an approximation of the above expectation is easily accomplished using Monte Carlo

integration. In particular, (5) can be approximated by:

pM = 1− βM ≈ 1− 1

B

B∑

b=1

Ftν,δ
(tν,1−α/2 | Ha; X

(b)) +
1

B

B∑

b=1

Ftν,δ
(tν,α/2 | Ha; X

(b)), (6)

where B in the number of the Monte Carlo simulations and X(b) is a realization of the

vectors t and x from Bernoulli(π) and N(µX , σ2
X), respectively. The precision of the

estimated marginal power equals σp̂M
= σpC

/
√

B, where σpC
is the standard error in the

conditional power calculation. The desired level of this precision determines the choice

for B and thus it is advisable to make an initial choice for B (e.g., 50) and then adjust

it accordingly.

Finally, note that the (marginal) power depends not only on the hypothesized regres-

sion coefficients γ = (γ0, ∆, γ1)
T , but also on the residual standard deviation, σU |X , for
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the linear regression of the latent variable U on X. In some cases it might be difficult

to postulate a value for σU |X whereas postulations for the values of the variance of the

response U and the covariate X in the two treatment groups might be more feasible. In

such a case, based on linear regression theory (Armitage and Berry, 1987) we get the

formulas:

σ2
U |X = σ2

U |t,x =
1

(n1 + n2 − p)

(
n1σ

2
u1

+ n2σ
2
u2
− (n1σux1 + n2σux2)

2

n1σ2
x1

+ n2σ2
u2

)
(7)

and

γ1 =
n1σUx1 + n2σUx2

n1σ2
x1

+ n2σ2
x2

, (8)

where for any two continuous random variables Q and R and any binary random vari-

able S, σ2
Qi

and σQRi
denote the variance of Q and the covariance between Q and R

respectively at the ith level of S.

4.3 Sample size calculation

The necessary sample size to detect a treatment effect with a given marginal power

(nominal power) can be estimated using expression (6). Namely, the sample size n needed

for a power p0
M is the root of the following function:

f(n) = pM(n)− p0
M , (9)

with respect to n, where n = n1 + n2 is the total sample size and pM(n) is in fact (6) as

a function of n.

To solve expression (9) for n, repeated evaluations of pM(n) are needed and hence

also repeated Monte Carlo integrations, which becomes quite involved especially when

the target interval for the optimal n is too wide. However, a rough initial estimate of n

could be obtained using an approximation to the likelihood thereby narrowing the target

interval. The likelihood under the logit-normal model is given by:

L(θ) =
n∏

i=1

bi∫

ai

g (u; θ) du =
n∏

i=1

[G (bi; θ)−G (ai; θ)] , (10)
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where G(.) is the distribution function of the logit-normal distribution with parameters

µ = γT xi and σ2. A first order Taylor series expansion in both G (ai; θ) and G (bi; θ)

around the mid-point of the ith coarsening interval, i.e., ζi = ai+bi

2
, gives:

G (ai; θ) ≈ G (ζi; θ) + (ai − ζi) g (ζi; θ) ,

G (bi; θ) ≈ G (ζi; θ) + (bi − ζi) g (ζi; θ) .

Thus, likelihood (10) can be approximated by L(θ) ≈
n∏

i=1

(bi − ai) g (ζi; θ) with a corre-

sponding log-likelihood equal to:

`(θ) ≈
n∑

i=1

[log (bi − ai)− log (ζi (1− ζi)) + log (φ (ζi; θ))] , (11)

where φ(.) is the density of the normal distribution with mean xT
i γ and variance σ2.

From (11) it is obvious that the approximate log-likelihood is proportional to the log-

likelihood function of the simple linear model implying a much easier to compute Fisher

Information matrix (given in Appendix B) at expense of loss of accuracy. Therefore, this

approximation is only useful as an initial sample size calculation.

The methods for power and sample calculations that have been described in this

section have been implemented in R (R Development Core Team, 2005) in the pack-

age grouped which has been written by the first two authors and it is available from

CRAN (htpp://cran.r-project.org). In particular, power calculations for both the

conditional (4) and the marginal case (6) for various distributional assumptions for the

covariates (e.g., normal, gamma, beta, chi-square, uniform and bernoulli) are available.

For the sample size calculations an estimate of the initial search area for the algorithm is

provided using the approximate log-likelihood (11). This package allows also for fitting

the model (1) under three link functions (i.e., identity, log, logit) and three distribu-

tional assumptions for the underlying transformed latent variable (i.e., normal, logistic,

Student’s-t).

A simulation study presented in Section 5 evaluates the performance of both the

conditional and marginal power and sample size formulas under (1) as they have been

presented in this section.
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5. Simulation study

In this section we will describe the results of a set of simulation studies designed with the

following objectives. Firstly, to explore the distribution of the Wald statistic (3) under

both the null and alternative hypothesis. Secondly, to show the increase in the power

of the Wald statistic when adjusting for an important covariate. Thirdly, to investigate

the sensitivity of the power estimate to mis-specifications for the covariate distribution

and finally to assess the validity of the proposed formulas for sample size calculations

and (conditional and marginal) power calculations under a number of scenarios. In all

simulation studies we considered model (1) with the linear predictor (2) assuming ad-

ditional to the treatment covariate one continuous covariate and equal sample sizes for

the two treatment groups (i.e., n1 = n2). Various shapes for the response distribution

have been considered, namely unimodal (γ0 = 0, σ = 1), U -shaped (γ0 = 0, σ = 4) and

J-shaped (γ0 = 2, σ = 1) with m = 11 and m = 21 categories. The treatment effect

size and the impact of the continuous covariate were taken to be small, moderate and

strong with values ∆/σ = 0.2, 0.5, 0.7 and γ1/σ = 0.2, 0.7, 0.9, respectively. Finally, in

order to evaluate our proposals we calculated the (conditional and marginal) empirical

power of the Wald test for every scenario and compared it with the (conditional and mar-

ginal) power estimated by our formulas. The conditional empirical power is calculated

as follows: using the known model design matrix and the assumed parameter values of

each scenario 1,000 datasets are simulated, then model (1) is fitted to each of them and

the empirical power is then defined as the percentage of times the null hypothesis was

rejected. The marginal empirical power is calculated as follows: 100 design matrices are

simulated (including both the treatment indicator and the continuous covariate). Based

on each of the 100 design matrices, 1,000 datasets are simulated using the assumed para-

meter values of each scenario. Then model (1) is fitted to each of them and the empirical

power is again defined as the percentage of times the null hypothesis was rejected.
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5.1 Distributional assumptions for the Wald statistic

Usually, the asymptotic normality of the MLEs is used to claim the normality of

the Wald test. However, simulations indicate that a Student’s-t distribution is more

appropriate in this case. Namely, we simulated 10,000 data sets under various scenarios

regarding the shape of the response distribution, the sample size, the treatment effect

size and the covariate effect size as described in the beginning of Section 5. The compu-

tation of the standard errors is based on the observed information matrix. Our findings

were checked graphically by comparing the empirical and the hypothesized cumulative

distribution function of the normal and the Student’s-t distribution. Under the null hy-

pothesis and even for a small sample size (i.e., n1 = n2 = 20) the Wald test statistic

follows a central Student’s-t distribution with n − 3 degrees of freedom (where 3 is the

rank of the design matrix here). Moreover, the two-sided type I error of the Wald test

under model (1) with significance level equal to 0.05 was shown through simulations in

(Lesaffre et al., 2006) to be close to its nominal level for various shapes of the observed

distribution. Besides its robustness has also been studied by (Heeren and D’Agostino,

1987; Sullivan and D’Agostino, 2003). Under the alternative hypothesis, the distribution

of the Wald test statistic is often well approximated by a non-central t distribution with

n− 3 degrees of freedom and non-centrality parameter δ = ∆a/σ∆̂. However, for a small

sample size (n1 = n2 = 10) and a very skewed distribution (i.e, γ0 = 3 and σ = 1 or

γ0 = 3 and σ = 4) the distribution of the Wald test statistic deviated under both the

null and alternative hypothesis from the Student’s-t distribution. In such cases, probably

another test statistic is required.

5.2 The impact of covariate adjustment on the power of the Wald test

The impact of covariate adjustment on the power of the Wald statistic is illustrated

in Table 1. It was found that even a weak covariate effect increased the power of the

statistic.

[Table 1 about here.]
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5.3 Mis-specification of the distributional assumptions of the continuous covariate

In this section the sensitivity of the marginal power calculations to mis-specification

of the covariate distribution is explored. So far we have assumed that the continuous

covariate x has a normal distribution. However, distributional assumptions for the co-

variates are usually difficult to make and thus prone to mis-specification. To evaluate

the sensitivity of the marginal power function to mis-specification of the covariate dis-

tribution we have considered two cases for the true covariate distribution, namely a

Gamma(4,1) distribution and the mixture distribution 0.6 × N(−2, 1) + 0.4 × N(2, 1)

to allow for more general shapes. We then performed power calculation and assumed

for the covariate a N(4, 4) and a N(−0.4,
√

5), respectively. Thus, we assumed that the

first two moments are correctly specified. For the covariate effect γ1/σ we have taken

it equal to 0.7. Under this assumption, various scenarios were simulated and we calcu-

lated the empirical power of the Wald statistic based on 1,000 data sets. This limited

simulation study shows that when the first two moments for the covariate distribution

are correctly specified the marginal power of the Wald statistic calculated by (6) is close

to the empirical power. However, deviations were observed for small sample sizes and

extreme shapes for the observed data distribution. The results for all the scenarios are

given in Table 2 and 3.

[Table 2 about here.]

[Table 3 about here.]

5.4 Evaluation of the determination of the power and sample size

5.4.1 Description of the simulation study. In this simulation study the performance

of the formulas for the conditional and marginal power and sample size are evaluated.

For the conditional power, we generated a single design matrix obtained from the real-

ized treatment indicator having a Bernoulli(0.5) distribution and a realized continuous

covariate having a standard normal distribution. For various choices for the treatment

effect size, the shape of the response distribution and the sample size, 1,000 data sets
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were simulated and the empirical power of the Wald test was calculated. For the mar-

ginal power and the determination of the sample size, we generated 100 design matrices

as described above. For each design matrix 1,000 data sets were generated and that for

various choices of the treatment effect size, covariate effect size, model standard devia-

tion, intercept and sample size. The number of Monte Carlo iterations was chosen to be

500 in order to achieve a precision level of 10−5. To evaluate the procedure for sample

size calculation we set the marginal power at 0.90 (nominal power) and calculated the

sample size by using (9) employing the two-stage procedure explained in Section 4.3.

The difference between the empirical marginal power obtained for the estimated sample

size and the nominal marginal power was used to evaluate the performance of expression

(9).

A simple but ad hoc approach to handle discrete bounded responses and thus to

calculate the power and sample size is to treat them as continuous and apply the logit

transformation after adding and/or subtracting a small quantity (e.g., 10−5) from the

values at the boundaries to achieve a normal distribution. This is done in practice when

the number of realized discrete values is relatively high, say about 10 or more. Con-

sequently, in the same simulation study we compared the performance of the proposed

expressions using this ad hoc method.

5.4.2 Simulation results. The results for the conditional power are summarized in

Tables 4. In Table 4, based on a BOS with 21 categories, we observe that for both sample

sizes the conditional power calculation (LN power) is close to the empirical power. A

larger deviation is seen for the ad hoc method but especially for small sample sizes. In

addition, based on a BOS with 11 categories, essentially the same results were obtained

but the deviation between the empirical and the ad hoc power increased. As expected,

the power increases with the sample size for both methods.

[Table 4 about here.]

Similar results were obtained for the marginal power given in Table 5. In addition,

we show the precision (expressed by the standard error) of the estimated marginal power
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(LN power) based on Monte Carlo integration. In the majority of the cases the empirical

power is included or is very close to the corresponding 95% confidence intervals implying

a good performance of the proposed expressions.

[Table 5 about here.]

Table 6 presents the calculated sample sizes, using expression (9), and the corre-

sponding empirical power of the Wald test for various scenarios under model (1) (LN

power) and under the ad hoc method. We observe that the sample size calculation based

on the LN power expression gives quite accurate results. Moreover, in the majority of

the scenarios the ad hoc method fails to give a good estimate of the sample size required

to get the marginal power 90%.

[Table 6 about here.]

In conclusion, it has been shown that the LN method is accurate enough for power or

sample size calculations in practice, since it explicitly takes into account the rounding.

6. Relation to the OLR model

An alternative approach to compare two treatments based on a discrete bounded response

in the presence of covariates is ordinal logistic regression (McCullagh, 1980). To see the

approximate relationship between our approach and OLR in the case where the coars-

ening mechanism is the same for all subjects (i.e., all subjects have the same set of cut

points), we replace

[
Φ

(
z
(u)
i −ηi

σ

)
− Φ

(
z
(l)
i −ηi

σ

)]
in model (1) by

[
FL (θj − ηi)− FL

(
θ(j−1) − ηi

)]
,

with FL representing the standard cumulative logistic distribution and θj the jth un-

known cut point if the ith value of the BOS lies in the jth interval. In this way we

obtain the ith contribution to the OLR likelihood. It is known that it is hard to dis-

tinguish between a normal and a logistic distribution function (McCullagh and Nelder,

1989). So, in the simple case where the coarsening mechanism is the same for all sub-

jects, the two likelihoods mainly differ in the way the cut points are specified. In the

OLR likelihood the cut points are estimated by maximizing the OLR with respect to

the regression parameters and θj (j = 1, . . . , J) under the assumption that θ(j−1) ≤ θj
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(j = 1, . . . , J), while in the likelihood based on model (1) the cut points are fixed up

to the scale parameter σ. Of course, the regression parameters in the two models also

differ by this scale parameter. This implies that BOSs following a simple coarsening

mechanism with a logistic distribution in the transformed scale can also be analyzed

using OLR.

Given the similarity of the two models (grouped logit-normal regression model and

OLR model), we now pose the question whether our approach to calculate the power

and necessary sample size could also be used for OLR, despite the (slightly) different

philosophies. To this end we compared our calculated powers for the different scenarios

described in the previous section with the empirical powers obtained by analyzing the

data generated from these scenarios using OLR. This is an important question since

there is no procedure available to perform power and/or sample size calculations in the

presence of continuous covariates.

In Figure 2 we have put on the X-axis the calculated LN power of the scenarios

described in the previous section and on the Y-axis the corresponding empirical power

obtained each time from 1000 fitted OLR models.

[Figure 2 about here.]

The simulation results reveal that the power of OLR is basically the same as assum-

ing a logit-normal distribution for the latent variable in both treatment groups. More

importantly, though, it can be concluded that our approach to calculate the power and

sample size for BOSs approximates quite well the true power and necessary sample size

corresponding to OLR. However, to some extent, it is somewhat surprising that there

is no loss of power for OLR despite that J cut points need to be estimated instead

of 1 scale parameter for the logit-normal approach. This result deserves some further

mathematical exploration.

7. Application

The Barthel index is an ADL scale commonly used in stroke trials to measure the ability

of the patients to perform their daily activities after an acute stroke. The Barthel index
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at 3 months after the acute stroke, was the primary endpoint of the ECASS-1 study

(Dávalos et al., 1999) comparing a thrombolytic drug with placebo. In this section we

perform power and sample size calculations for a future stroke study with a design similar

to the ECASS-1 study and employing the historical data of the ECASS-1 study. The

analysis revealed that the treatment effect using the Wald statistic is not significant at 5%

(p-value=0.210) while age is an important covariate (p-value < 0.001). Consequently,

we performed a sample size calculation to achieve a marginal power equal to 0.80 to

detect a relevant treatment effect while adjusting for age based on our proposed methods

described above. However, calculations without adjusting for age will also be performed

to show the effect of covariate adjustment. In particular, we will consider two models

with the following linear predictors:

Model 1: ηi = γ0 + ∆ti

Model 2: ηi = γ0 + ∆ti + γ1xi

where ti denotes the treatment indicator and xi represents age. Further, we standardized

age to have zero mean and standard deviation 1. Under Model 1 the estimated linear

predictor is η̂i = 2.296 + 0.509ti and σ̂ = 4.96, while under Model 2 the estimated linear

predictor is η̂i = 2.227 + 0.543ti − 0.128x1i and σ̂ = 4.71. The estimated coefficients for

treatment and age were assumed to be the same in a future study and thus sample size

calculations were performed to detect a treatment effect of size ∆/σ = 0.1 adjusting for

age with effect size equal to γ/σ = 0.03. The historical data from the ECASS-1 study

were used to make distributional assumptions for age. We assumed that in the future

study there is a 1:1 allocation rate to the two arms of the study. Hence, we assumed a

Bernoulli(0.5) distribution for the treatment indicator and a N(0, 1) distribution for the

standardized age.

Under these assumptions we calculated the necessary sample size based on the Wald

test to obtain a marginal power of 80%. We obtained a sample size equal to 3670 when

no covariate adjustment for age was performed (Model 1). When adjustment for age

was performed (Model 2) the necessary sample size decreased to 2887. Hence, adjusting

for age implied an important reduction in sample size. Given the results of the previous
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section we conclude that the same reduction would be obtained if the Wilcoxon test is

replaced by OLR. In addition, calculation of the sample size to achieve 80% using the

ad hoc method while adjusting for covariates gives an estimate equal to 2366. However,

the empirical power for this sample size equals 70.48%. This remark is in line with

the conclusions of Section 5.4.2, in that our method explicitly takes the rounding into

account.

8. Concluding Remarks

In this paper we have proposed expressions for power and sample size calculations for

detecting treatment effects when the primary response is a BOS and adjustments for

additional covariates are envisaged. Our methods are based on the parametric approach

proposed by (Lesaffre et al., 2006) for handling BOS that assumes a logistic transforma-

tion on the latent scale. This family of models is quite general and can capture various

shapes varying from unimodal to U or J .

The main features of our approach are the following: power calculations are performed

under the LSA assumption on the logit scale that effectively deals with the bounded

nature of the responses especially when skewed distributions are considered. In addition,

we are assuming location in means that can be easily quantified in contrast to alternatives

that involve probabilities or odds ratios that may be difficult to interpret. Moreover, the

parametric model that is assumed for power calculations allows for covariate adjustments

that can considerably increase the power. Furthermore, even though the focus of this

paper is on BOSs, the proposed formulas are also applicable in the more general grouped

data context, allowing for various coarsening mechanisms. Besides, our method for power

calculations can be also applied to OLR models due to their asymptotic equivalence.

Moreover, the extension to unequal variances between the treatment groups can be easily

handled which may prove important in practice (Lesaffre et al., 2006). Finally, the

practicality of our proposal can be investigated using the R package grouped, available

from http://cran.r-project.org.

However, there are some limitations in our method and some issues that need further

exploration. In particular, even though the family of distributions we consider is quite
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general, some shapes may not be well approximated. Thus, formal tools for checking

the goodness-of-fit of the model are required when pilot or historical data are available.

Informally, there are two methods that can be considered. Firstly, the logit-normal

distribution can be relaxed to a logit-t distribution and its appropriateness can be checked

through the likelihood ratio test. Our formulas, in fact can be easily adjusted for the logit-

t case, by replacing the Normal pdf and cdf by the Student’s-t analogues. Secondly, in the

absence of covariates we can graphically check the appropriateness of the logit-normal

distribution using a kernel density estimation for the treatment groups. Another issue

that needs further investigation is the effect of misspecifying the covariates’ distribution

in the calculation of the marginal power. Our limited simulation study showed that

accurate power estimates are obtained when the first two moments are correctly specified.

Finally, we have not discussed the inclusion of a BOS as a baseline covariate which is

rather common in practice. However, such an extension is not straightforward and further

investigation is required.
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Appendix A: Fisher Information matrix for Section 4

According to (1) the log-likelihood for the logit-normal model is:

`(θ; y) =
n∑

i=1

log {∆Φi} ,

where ∆Φi =

[
Φ

(
z
(u)
i −µi

σ

)
− Φ

(
z
(l)
i −µi

σ

)]
.

The elements of the Fisher Information matrix corresponding to the parameter vector

γ are given as follows:

EY |X

(
− ∂2`

∂γ∂γT

)
= XT W (1)X

where X is the n × p model design matrix and W (1) is a n × n diagonal matrix with
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elements w
(1)
i :

w
(1)
i =

m∑
j=0

[
(z

(u)
ij − µi)φ

(u) − (z
(l)
ij − µi)φ

(l)

σ3
+

(
φ(u) − φ(l)

)2

σ2∆Φij

]

where µi = xT
i γ, φ(u) = φ

(
z
(u)
ij −µi

σ

)
, φ(l) = φ

(
z
(l)
ij −µi

σ

)
with φ(.) denoting the density of

the standard normal distribution.

The expected value of the minus second order derivative of the parameter vector γ

with respect to σ are given as follows:

EY |X

(
− ∂2`

∂γ∂σ

)
= XT w(2)

where the elements of the vector w(2) are given as follows:

w
(2)
i =

m∑
j=0

−φ(u) − φ(l)

σ2
+

(z
(u)
ij − µi)

2φ(u) − (z
(l)
ij − µi)

2φ(l)

σ4

+

[
(z

(u)
ij − µi)φ

(u) − (z
(l)
ij − µi)φ

(l)
] (

φ(u) − φ(l)
)

σ3∆Φij

Finally, the expected value of the minus second order derivative for σ is:

EY |X

(
− ∂2`

∂σ∂σ

)
=

n∑
i=1

w
(3)
i

where

w
(3)
i =

m∑
j=0

−
2
(
(z

(u)
ij − µi)φ

(u) − (z
(l)
ij − µi)φ

(l)
)

σ3
+

(z
(u)
ij − µi)

3φ(u) − (z
(l)
ij − µi)

3φ(l)

σ5

+

[
(z

(u)
ij − µi)φ

(u) − (z
(l)
ij − µi)φ

(l)
]2

σ4∆Φij

Appendix B: Fisher Information matrix based on the approximate likelihood

According to (11) the approximated log-likelihood for the logit-normal model is:

`(θ; y) =
n∑

i=1

{
− log (πσ)− 1

2

(
logit(ζi)− µi

σ

)
− log (1− ζi)

}

where ζi = ai+bi

2
.
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The elements of the Fisher Information matrix corresponding to the parameter vector

γ are those of the simple linear model:

EY |X

(
− ∂2`

∂γ∂γT

)
=

1

σ2
XT X.

The expected value of the minus second order derivative of the parameter vector γ

with respect to σ are given as follows:

EY |X

(
− ∂2`

∂γ∂σ

)
= XT λ(1)

where the elements of the vector λ(1) are given as follows:

λ
(1)
i =

2

σ3

m∑
j=0

(logit (ζij)− µi) ∆Φij

Finally, the expected value of the minus second order derivative for σ is:

EY |X

(
− ∂2`

∂σ∂σ

)
= − n

σ2
+

n∑
i=1

λ
(2)
i

where

λ
(2)
i =

3

σ4

m∑
j=0

(logit (ζij)− µi)
2 ∆Φij
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Figure 1. Correspondence of the LSA on the transformed scale and the treatment effect
on the original scale.

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

z

f(z
)

∆

H0

Ha

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

u

g(
u)

H0

Ha

25



Figure 2. Comparison of the LN power to the empirical OLR power determined for the
scenarios of Section 5.
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Table 1
Simulation study: Power of the Wald statistic for a BOS with 21 categories. For each
scenario 1,000 data sets were simulated and the empirical power was calculated after

adjusting (Adjusted) or not (Non-Adjusted) for the additional covariate (max. standard
error 0.01575 and 0.01577, respectively).

Sample Size γ0 σ Effect Size Empirical Power
n1 = n2 ∆/σ γ1/σ Adjusted Non-Adjusted

50 0 1 0.5 0.2 0.716 0.690
0.9 0.705 0.463

50 2 1 0.5 0.2 0.672 0.649
0.9 0.640 0.417

50 0 4 0.5 0.2 0.622 0.618
0.9 0.581 0.380

50 2 4 0.5 0.2 0.597 0.574
0.9 0.545 0.364

20 0 1 0.5 0.2 0.392 0.380
0.9 0.371 0.225

20 2 1 0.5 0.2 0.326 0.305
0.9 0.326 0.208

20 0 4 0.5 0.2 0.295 0.277
0.9 0.247 0.140

20 2 4 0.5 0.2 0.250 0.236
0.9 0.237 0.138
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Table 2
Simulation study results for sensitivity of the marginal power function to covariate

mispecification. The marginal power was evaluated using expression (6) with 500 Monte
Carlo iterations. The covariate distribution was assumed to be N(4, 4) for a true
Gamma(4,1). The empirical power (max. standard error 0.01452) is obtained via

simulation using 1,000 datasets.

Sample Size Max Score γ0 σ Effect Size Power
n1 = n2 m ∆/σ γ1/σ Empirical Marginal

50 20 0 1 0.2 0.7 0.168 0.164
1.0 0.7 0.999 0.998

50 20 2 1 0.2 0.7 0.163 0.155
1.0 0.7 0.996 0.993

50 20 0 4 0.2 0.7 0.144 0.144
1.0 0.7 0.994 0.978

50 20 2 4 0.2 0.7 0.143 0.138
1.0 0.7 0.991 0.954

20 20 0 1 0.2 0.7 0.113 0.092
1.0 0.7 0.883 0.846

20 20 2 1 0.2 0.7 0.087 0.089
1.0 0.7 0.822 0.773

20 20 0 4 0.2 0.7 0.084 0.085
1.0 0.7 0.751 0.684

20 20 2 4 0.2 0.7 0.071 0.082
1.0 0.7 0.698 0.609
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Table 3
Simulation study results for sensitivity of the marginal power function to covariate

mispecification. The marginal power was evaluated using expression (6) with 500 Monte
Carlo iterations. The covariate distribution was assumed to be N(−0.4,

√
5) for a true

0.6×N(−2, 1) + 0.4×N(2, 1) . The empirical power (max. standard error 0.01558) is
obtained via simulation using 1,000 datasets.

Sample Size Max Score γ0 σ Effect Size Power
n1 = n2 m ∆/σ γ1/σ Empirical Marginal

50 20 0 1 0.2 0.7 0.184 0.164
1.0 0.7 0.998 0.998

50 20 2 1 0.2 0.7 0.155 0.155
1.0 0.7 0.993 0.993

50 20 0 4 0.2 0.7 0.147 0.143
1.0 0.7 0.986 0.978

50 20 2 4 0.2 0.7 0.129 0.138
1.0 0.7 0.975 0.954

20 20 0 1 0.2 0.7 0.097 0.092
1.0 0.7 0.847 0.846

20 20 2 1 0.2 0.7 0.107 0.088
1.0 0.7 0.831 0.773

20 20 0 4 0.2 0.7 0.091 0.084
1.0 0.7 0.753 0.687

20 20 2 4 0.2 0.7 0.069 0.082
1.0 0.7 0.586 0.608
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Table 4
Simulation study: Evaluation of the conditional power expression (4) (LN power) for a
BOS with 21 categories. For each scenario 1,000 data sets were generated from which
the empirical (max. standard error 0.01572 and 0.01580) and the ad hoc power were

calculated.

Sample Size γ0 σ Effect Size Conditional Power
Maximum score 20 Maximum score 10

n1 = n2 ∆/σ γ1/σ Empirical LN Ad hoc Empirical LN Ad hoc
50 0 1 0.2 0.7 0.173 0.166 0.129 0.171 0.164 0.137

0.5 0.7 0.723 0.686 0.553 0.699 0.682 0.457
1.0 0.7 0.998 0.998 0.940 0.997 0.997 0.941

50 2 1 0.2 0.7 0.173 0.155 0.120 0.154 0.145 0.129
0.5 0.7 0.633 0.629 0.403 0.582 0.566 0.432
1.0 0.7 0.993 0.994 0.976 0.989 0.976 0.967

50 0 4 0.2 0.7 0.139 0.143 0.136 0.141 0.139 0.160
0.5 0.7 0.615 0.591 0.607 0.571 0.558 0.525
1.0 0.7 0.995 0.973 0.991 0.986 0.963 0.988

50 2 4 0.2 0.7 0.129 0.138 0.130 0.114 0.133 0.134
0.5 0.7 0.553 0.546 0.532 0.477 0.494 0.426
1.0 0.7 0.988 0.960 0.988 0.964 0.917 0.974

20 0 1 0.2 0.7 0.112 0.070 0.074 0.091 0.069 0.036
0.5 0.7 0.362 0.308 0.295 0.340 0.324 0.172
1.0 0.7 0.603 0.552 0.414 0.589 0.521 0.378

20 2 1 0.2 0.7 0.097 0.068 0.074 0.066 0.065 0.061
0.5 0.7 0.315 0.299 0.210 0.271 0.255 0.181
1.0 0.7 0.570 0.501 0.299 0.428 0.392 0.356

20 0 4 0.2 0.7 0.062 0.066 0.068 0.047 0.065 0.069
0.5 0.7 0.272 0.270 0.288 0.208 0.251 0.318
1.0 0.7 0.412 0.414 0.482 0.255 0.351 0.411

20 2 4 0.2 0.7 0.056 0.065 0.064 0.043 0.063 0.074
0.5 0.7 0.228 0.232 0.299 0.188 0.229 0.237
1.0 0.7 0.337 0.373 0.395 0.227 0.331 0.504
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Table 5
Simulation study: Evaluation of the marginal power expression (6) (LN power) for a

BOS with 21 and 11 categories. The empirical (max. standard error 0.01570 and
0.01580) and the ad hoc power are obtained from sampling 100 sets of covariates and

1,000 data sets for each one. The standard errors (s.e.) are based on 500 Monte Carlo
simulated values.

Sample Size γ0 σ Effect Size Maximum score 20 Maximum score 10
Marginal Power Marginal Power

n1 = n2 ∆/σ γ1/σ Empirical LN (s.e.) Ad hoc Empirical LN (s.e.) Ad hoc
50 0 1 0.2 0.7 0.172 0.165(6.71·10−5) 0.120 0.169 0.163(6.71·10−5) 0.111

0.5 0.7 0.700 0.688(7.29·10−5) 0.510 0.687 0.678(6.90·10−5) 0.433
1.0 0.7 0.999 0.998(< 10−5) 0.948 0.998 0.998(1.12·10−5) 0.946

50 2 1 0.2 0.7 0.161 0.156(8.94·10−5) 0.116 0.144 0.142(1.01·10−4) 0.121
0.5 0.7 0.651 0.640(8.10·10−5) 0.476 0.583 0.567(12.60·10−4) 0.488
1.0 0.7 0.996 0.993(4.47·10−5) 0.971 0.985 0.972(2.24·10−4) 0.965

50 0 4 0.2 0.7 0.143 0.144(6.71·10−5) 0.142 0.132 0.138(7.83·10−5) 0.136
0.5 0.7 0.602 0.584(7.87·10−4) 0.588 0.563 0.550(8.31·10−4) 0.564
1.0 0.7 0.992 0.979(1.23·10−4) 0.990 0.987 0.960(2.01·10−4) 0.985

50 2 4 0.2 0.7 0.136 0.139(7.83·10−5) 0.134 0.132 0.138(7.83·10−5) 0.136
0.5 0.7 0.560 0.545(11.4·10−4) 0.545 0.516 0.505(11.22·10−4) 0.516
1.0 0.7 0.982 0.955(2.91·10−4) 0.978 0.970 0.919(4.58·10−4) 0.967

20 0 1 0.2 0.7 0.107 0.093(6.71·10−5) 0.069 0.104 0.092(5.59·10−5) 0.058
0.5 0.7 0.352 0.328(8.93·10−4) 0.232 0.345 0.322(8.47·10−4) 0.194
1.0 0.7 0.870 0.855(5.25·10−4) 0.672 0.862 0.843(5.59·10−4) 0.606

20 2 1 0.2 0.7 0.099 0.089(6.71·10−5) 0.074 0.090 0.085(6.71·10−5) 0.079
0.5 0.7 0.320 0.300(9.44·10−4) 0.217 0.274 0.260(11.68·10−4) 0.224
1.0 0.7 0.815 0.783(8.61·10−4) 0.667 0.720 0.668(1.29·10−3) 0.651

20 0 4 0.2 0.7 0.081 0.085(5.59·10−5) 0.086 0.069 0.083(5.59·10−5) 0.083
0.5 0.7 0.268 0.270(8.57·10−4) 0.273 0.233 0.252(7.69·10−4) 0.261
1.0 0.7 0.753 0.695(8.16·10−4) 0.755 0.688 0.631(9.84·10−4) 0.728

20 2 4 0.2 0.7 0.078 0.083(5.59·10−5) 0.083 0.065 0.081(5.59·10−5) 0.082
0.5 0.7 0.242 0.249(11.54·10−4) 0.252 0.201 0.231(1.16·10−4) 0.237
1.0 0.7 0.670 0.621(1.19·10−3) 0.689 0.571 0.551(9.89·10−3) 0.647
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Table 6
Simulation study: Evaluation of the calculated sample size using expression (9) (LN

sample) for BOSs with 21 categories and marginal power equal to 90%. The empirical
power (LN and Ad hoc) is obtained via simulating 100 sets of covariates and 1,000 data

sets for each.

γ0 σ Effect Size Sample Size Empirical Power
∆/σ γ1/σ LN Ad hoc LN Ad hoc

0 1 0.2 0.7 1063 1053 0.900 0.697
0.5 0.7 172 170 0.901 0.701
1.0 0.7 45 44 0.913 0.719

2 1 0.2 0.7 1154 1053 0.902 0.694
0.5 0.7 192 171 0.904 0.701
1.0 0.7 54 45 0.915 0.719

0 4 0.2 0.7 1293 1053 0.902 0.819
0.5 0.7 218 170 0.910 0.815
1.0 0.7 67 45 0.942 0.805

2 4 0.2 0.7 1374 1053 0.902 0.794
0.5 0.7 240 171 0.912 0.778
1.0 0.7 78 46 0.943 0.752
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