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Summary

In this article the method of Shen and Louis (1998) is applied to estimate the random effect param-
eters in a linear mixed model (Laird and Ware, 1982). Shen and Louis’ was originally developed
for general two-stage hierarchical models to have a single set of estimates that could satisfy three
inferential goals simultaneously: (1) optimal estimates for empirical distribution functions (EDF),
(2) optimal estimates for the random effect parameter ranks and, (3) good estimates for the individ-
ual parameters. The performance of these so-called triple-goal estimates in estimating the EDF and
subject-specific parameters of the random effects in a linear mixed model is evaluated here using a
simulation study under different distributional assumptions of the random effects and measurement
error. For normally distributed random effects, the triple-goal estimates perform better in estimat-
ing the EDF than the empirical Bayes with a little trade-off to optimally estimate the individual
random effect parameters. However, under misspecified distribution of the random effects combined
with a large measurement error variability this property is lost. We exemplify this using a mixture
of normals as distribution for the random effects. The triple-goal estimates and empirical Bayes esti-
mates can also be determined taking into account the true (non-normal) distribution of the random
effects. We show this for a mixture of normals. In that case, the triple-goal estimates once again
perform better than the EB estimates in estimating the mixture EDF of the random effects.

1 Introduction

Shen and Louis (1998) developed a new method of parameter estimation in two-stage hierarchical

models. These so-called triple-goal estimates are based on optimization of estimation of the empir-

ical distribution and ranks of the parameters with a little trade-off in the optimality of individual

parameter estimates. Mathematical and simulation-based analyses showed that for a known prior,

the method produces more optimal estimates for the empirical distribution function or histogram

than other methods including the posterior means estimates.

We adapt this technique to estimate random effect parameters in a linear mixed model (Laird and

Ware, 1982) and compare these estimates with the empirical Bayes (EB) estimates. Special emphasis

is given here to the evaluation of their performance when the normality assumption about the

distribution of the random effects in the linear mixed model fails. Under violation of the normality
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assumptions, such as a finite mixture of normals, Verbeke and Lesaffre (1996) have shown that the

EB estimates may show a considerable shrinkage towards a unimodal distribution. It is our purpose

to evaluate the behaviour of the triple-goal estimates under a similar violation of the normality

assumption.

In Section 2, we define the triple-goal also called GR estimates in the context of a linear mixed

model. Sections 3 and 4 determine and compare the GR and EB estimates when the underlying

random effects distribution is normal or a mixture of two normal distributions, respectively. Section

5 extends the GR and EB estimates to the heterogeneity models of Verbeke and Lesaffre(1996). In

Section 6 we draw some conclusions.

2 The linear mixed-effects model

The Laird and Ware (1982) random effects model for longitudinal (repeated) data is

Yk = Xkβ + Zkbk + εk, k = 1, . . . ,K (1)

where Yk is the nk dimensional response vector, β is a p-dimensional vector of fixed effects, the

d-dimensional random effect vector bk is distributed as N(0, D), and the nk-dimensional error terms

εk are distributed as N(0, σ2Ink
). All the bk and εk are independent. Xk is a known fixed effects

regressor matrix and Zk is the random effects regressor matrix.

Hence, marginally Yk ∼ N(Xkβ, Vk), k = 1 . . . K with Vk = ZT
k DZk + σ2Ink

. Further, for a well

formulated model it is assumed that rank(Xk, Zk) = rank(Xk)(Morrell et.al., 1997).

The population mean parameters β and the covariance matrix Vk are usually estimated using

maximum likelihood estimation. On the other hand, empirical Bayes estimation results in estimates

of bk, k = 1 . . .K.

The empirical Bayes estimate

Consider the mixed effect model (1) where bk ∼ G0 = N(0, D), and εk ∼ N(0, σ2Ink
).

In a Bayesian context and from the theorem of Lindley and Smiths (1972), it follows that the

posterior distribution for bk | Yk is normal with (Bryk and Raudenbush, 1992)

E(bk | Yk) = (ZT
k Zk + σ2D−1)

−1
ZT

k (Yk −Xkβ), (2)

var(bk | Yk) = σ2(ZT
k Zk + σ2D−1)

−1
. (3)
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The EB estimate for bk equals the mean of the posterior distribution after all the unknown

parameters are replaced by their maximum likelihood estimates. It can be seen that the EB estimates

b̂k are weighted combinations of the overall fixed effect estimate β̂ and least square estimate based

on the linear model Yk = Xkβk+εk with weights that reflect the precisions of the estimators (Strenio

et.al., 1983; Morris, 1983; Dempster et.al., 1981).

The triple-goal or GR estimate

The GR estimate for a univariate random effects vector b = (b1, . . . , bK)T is obtained as follows

(see Shen and Louis, 1998 for more details): Suppose the true empirical distribution function is

GK(t) = 1
K

∑
I{bk≤t}, where I(.) is the indicator function and −∞ < t < ∞, then

ḠK(t) = E[GK(t) | Y ] =
1
K

∑
P (bk ≤ t | Yk),

minimizes the integrated squared error loss given by

ISEL(A, GK) =
∫

(A(t)−GK(t))2dt,

among all the candidate estimates A(.) of GK(.).

Further, for any candidate vector of ranks Q, R̄k = E[Rk | Y ] =
∑K

j=1 P (bk ≥ bj | Yk) is the

estimate of the true rank Rk of bk such that it minimizes the squared error loss

(1/K)
∑

(Qk −Rk)2.

Thence, the (R̂k = rank(R̄k))th order GR estimate of b equals,

b̂R̂k
= Ḡ−1

K

(
2R̂k − 1

2K

)
R̂k = 1, . . . , K. (4)

The distribution parameters of bk | Yk in equations (2) and (3) characterize the distribution

function ḠK and hence b̂R̂k
can be solved from the equality,

ḠK(b̂R̂k
) =

1
K

K∑

k=1

P (bk ≤ b̂R̂k
| Yk)

=
1
K

K∑

k=1

Φ

(
b̂R̂k

− E(bk | Yk)
sd(bk | Yk)

)

=
2R̂k − 1

2K
,

where Φ is the standard normal distribution function.
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This is a problem to find the ordinate of a random variable whose value of CDF, which can be

considered as a mixture of K normal distribution functions each with mixing weight 1
K , is given by

the last term. Mathematical solution is difficult and hence it has to be solved with numerically.

Bi-section method of solving functions has been implemented here.

In practice, R̂k can be replaced with the respective rank of the EB estimate. For a wide class

of models (including the linear mixed effect models) the ranks of both EB and GR estimates are

identical to the minimum error loss rank estimates. See Shen and Louis (1998) for detail as to when

such equality holds.

3 The GR estimates under a normal random effects distri-

bution

We applied the technique of Shen and Louis to estimate the random intercept parameter after fitting

a random intercept model to simulated data. The simulation is based on an observed growth curve

data from Ethiopian babies (Lesaffre, et.al. 1999). The weight profile of a random sample of 54

infants with at most 7 time point measurements was considered. Further, the MLE estimates of

the fixed effects and covariance parameters for the observed sample data are shown in Table 1.

These estimates represent the true parameter values for the subsequent simulations in the following

manner. First, a random sample of size K = 54 random intercept parameters bk was generated

from bk ∼ N(0, D), k = 1, . . . , 54. Then the response vector Yk given bk was generated from

Yk | bk ∼ N(Xkβ + 1bk, σ2) for 1 an nk-dimension column vector of ones. This simulation was

carried out 100 times and the EB and GR estimates were determined for each simulated data.

Table 1: Fixed effect and covariance parameter values estimated from an observed growth curve data,
and used for the subsequent simulations.

Effect Parameter Estimate
Mean structure

intercept β0 2.98
slope β1 0.90

Covariance structure
var(bk) D 0.59
var(εk) σ2 0.33

Finally, the estimates by the two approaches (GR and EB) were evaluated using Integrated
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Squared Error Loss (ISEL). The ISEL measures the discrepancy between the empirical distribution

functions of the estimate and the true random effects.

ISEL(ĜK , GK) =
∫

(ĜK(t)−GK(t))2dt

≈
∞∑

t=−∞
(ĜK(t)−GK(t))2∆t

where ĜK(t) is the empirical distribution of the estimates, GK(t) is the true EDF and ∆t is very

small for a better approximation of the integral. In addition, the squared error loss (SEL) was

determined (see below) in order to see the increase of error loss in estimating bk by GR relative

to the EB approach. The EB estimate is optimal for SEL. Let b̂j be the jth simulation estimated

vector. The SEL for the jth simulation is defined as,

SELj

b̂
=

1
54

54∑

k=1

(b̂j
k − bj

k)2, j = 1, . . . , 100,

with b̂j = (b̂j
1, . . . , b̂

j
K)T and bj = (bj

1, . . . , b
j
K)T .

For simulated data based on parameters in Table 1, the average ISEL for the EB and GR-

method is 0.0078, 0.0063, respectively. Thus there is more than 23% increase in the error loss by

the EB approach compared to GR in estimating the normal empirical distribution function of the

random effects. On the other hand, the average SEL value for the EB and GR-method is 0.06747

and 0.0709, respectively yielding a GR/EB ratio of 1.051. Thus the GR increases the SEL on average

by only around 5%.

4 The GR estimates under a mixture of normals

In the previous section the better performance of the GR method is shown when the normality

assumption of the b′ks holds. i.e. the simulated random effects were in line with the underlying

assumption in the mixed model effect model (1).

Among other things the EB estimates, b̂k, are often used to verify the normality assumption of

the random effects (Pinheiro and Bates, 2000, §4.3.2). However, it has been shown by Verbeke and

Lesaffre (1996) that when the distribution of the bk is a mixture of normals, this is not necessarily

reflected in the histogram of b̂k; especially when the measurement error variance σ2 is relatively

large.
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Here, we will repeat the simulation study of Verbeke and Lesaffre (1996) but examine also the

performance of the GR estimates. Indeed, given the GR estimates reproducing the EDF we wanted

to see how much they maintained their optimality under a mixture of normals. The random effects

are simulated from a mixture of two normal distributions,

bi ∼ pN(µ1, D) + (1− p)N(µ2, D).

We assume here that the components have equal mixing weights (p = 0.5). Further we fixed the

respective population means at -2 and 2 and their variance D as in Table 1. The EB and GR

estimates are determined for 100 simulated data sets from the mixed density for two values of σ2

i.e. 0.33 and 15.

Table 2 presents the performance of the GR approach relative to the EB approach based on

ISEL, SEL and two-samples Kolmogorov-Smirnov (KS) test to compare the empirical distributions

of the estimates and the true random effects.

Both the SEL and ISEL summary statistics increase with σ2. Again, the ISEL for GR is smaller

than for EB. However, the KS goodness of fit test indicates that both approaches do not perform

well (p < 0.05) to estimate the EDF. The extent of discrepancy is much higher when σ2 is relatively

larger.

Table 2: ISEL and SEL performances of GR and EB estimates and results of the KS-statistics for
two measurement errors variances.

σ2 = 0.33 σ2 = 15
Measures EB GR EB GR
ISEL 0.0217 0.0203 0.1267 0.0869
SEL 0.1505 0.1593 1.848 1.839
P-value of KS-goodness of fit statistic 0.0019 0.0006 0 0

Figures 1 and 2 also depict this lack of fit to the true mixture distribution. For smaller mea-

surement error, σ2 = 0.33, Figure 1 shows that the two approaches almost equally approximate the

bimodal mixture distribution but both fits are not adequate (see Table 2 for the KS statistic) at

0.05 level of significance.

On the other hand, when σ2 = 15, the histograms and the super-imposed EDF curves in Figure

2 clearly show that the estimates do not approximate well the distribution of the random effects.

The distributions of the estimates rather show a homogeneous normal distribution than a bimodal

mixed distribution.
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Figure 1: (a) Histograms, and (b) EDF’s of the EB and GR estimates (dark lines) superimposed
over the true random effects distribution (gray line), for σ2 = 0.33.

As a conclusion, it is evident from these numerical results that the GR method is equally sensitive

to violations of the distributional assumptions of the random effects as the EB estimates, and they

also hardly show the heterogeneity in the b’s. The problem is worsened when the measurements

errors are large. In retrospect this result could have been expected. Indeed, it can be seen from

equations (2) and (4) that both the EB and GR estimates are based on the posterior distribution of

the random effects. Therefore, when the random effect bk is wrongly assumed as normally distributed

then the posterior bk | Yk will consequently and wrongly be assumed as normal with the mean and

variance parameters in equations (2) and (3), respectively.
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Figure 2: (a) Histograms, and (b) EDF’s of the EB and GR estimates (dark lines) superimposed

over the true random effects distribution (gray line), for σ2 = 15.

5 Estimates for the heterogeneity model

Verbeke and Lesaffre (1996) defined the heterogeneity model as an extension of the linear mixed

model (1). This model accommodates the clustered bk’s by further assuming that the random

effects are sampled from a mixture of g normals with cluster specific means µj , common covariance

matrix D and mixing weight pj , i.e. bk ∼ ∑
pjN(µj , D) such that E(bk) =

∑
pjµj = 0 for

j = 1, . . . , g. It then follows that marginally Yk ∼ ∑
pjN(Xkβ + Zkµj , Vk) and conditionally

Yk | bk ∼ N(Xkβ + Zkbk, σ2Ink
). Observe that the mixture model can approximate arbitrarily

close any deviation from normality (see Dalal et.al. 1983).

For a fixed component with mean µj , it can be derived from the Lindley and Smiths theorem
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(1972) that

bk | Yk, µj ∼ N(µj + DZT
k Wk(Yk −Xkβ − Zkµk), σ2(ZT

k Zk + σ2D−1)
−1

).

The posterior distribution of bk given Yk is a mixture of the individual component densities given

by,

bk | Yk ∼
g∑

j=1

pkjN(µj + DZT
k Wk(Yk −Xkβ − Zkµk), σ2(ZT

k Zk + σ2D−1)
−1

), (5)

with pkj the posterior probability for the kth subject to belong to the jth component, as mixing

weights. The EB, the mean of the posterior distribution, equals,

b̂k = E(bk | Yk, β̂, D̂, σ̂2) = D̂ZT
k Ŵk(Yk −Xkβ̂) + (I − D̂ZT

k ŴkZk)
g∑

j=1

pkj µ̂j , (6)

where the maximum likelihood estimates of the parameters are fitted using the mixture model.

Similarly, the GR estimates in (4) can be extended to the heterogeneity model by modifying

the posterior distribution that characterizes ḠK(t). Now, for a given estimate of the unknown

parameters, the R̂k
th

order GR estimate is the solution of the equality,

ḠK(b̂R̂k
) =

1
K

K∑

k=1

P (bk ≤ b̂R̂k
| Yk)

=
1
K

K∑

k=1

g∑

j=1

pkjΦ

(
b̂R̂k

− E(bk | Yk, µ = µj)
sd(bk | Yk, µ = µj)

)
(7)

with E(bk | Yk, µ = µj) = µj + DZT
k Wk(Yk − Xkβ − Zkµk) and sd(bk | Yk, µ = µj) =

σ(ZT
k Zk + σ2D−1)−1/2 are the component specific means and standard deviation of bk | Yk, respec-

tively. In practice the unknown parameters are estimated by the maximum likelihood estimation

using an EM algorithm (Titterington et.al. 1985).

We calculated the heterogeneous EB and GR estimates from simulated data based on a mixture

of two normally distributed random effects as in the previous section. We took three different levels

of measurement error variability. The homogeneous model (based on linear mixed model (1)) and

heterogeneous model EB estimates are compared using ISEL measure.

Table 3 summarizes the simulation results on the error loss performances of the EB estimates

for the homogeneity model and the heterogeneity model.

For the smallest measurement error variance, 0.33, there was no relevant error loss reduction

by the heterogeneity model estimate (EB.2) relative to the homogeneity model estimate (EB.1).

Further, as the measurement error increases, the error loss measures increase for both models. The
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Table 3: SEL and ISEL performances of homogeneous and heterogeneous models EB estimates for
varying measurement errors. EB.1 is based on normality assumption of the distribution of the
random effects while EB.2 is based on the mixture of two normally distributed components

σ2 = 0.33 σ2 = 9 σ2 = 16
Measures EB.1 EB.2 EB.1 EB.2 EB.1 EB.2
ISEL 0.0061 0.0060 0.0644 0.0536 0.1199 0.1128
SEL 0.0736 0.0685 1.261 1.173 1.945 1.986

ISEL for the homogeneous model was always larger than for the heterogenous model. This contrast

is clearly seen for σ2 = 9. However, at σ2 = 16, the ISEL ratio is 1.009 indicating both models

performed equivalently worst in estimating the empirical distribution function.

Figure 3 compares the EDF’s of the estimates against the EDF of the true random effects

parameters. For the smaller σ2 the EDF’s of the two models estimates fit very well to the underlying

mixture distribution of b. This is in line with the results in Table 3. However, as σ2 increases the

homogeneity model estimate (EB.1) cannot show the mixture pattern appropriately in contrast to

the heterogeneity model estimates (EB.2).

But, despite the better performance of the heterogeneity estimators to reflect the mixture its

ISEL value is as high as for the homogeneity model estimates. This is due to its behaviour at

the edges of the distribution. The EDF of heterogeneity model estimators (EB.2) shows higher

discrepancies at the tails of the distribution in comparison to the homogeneity model estimators.

On the other hand, the latter estimators are worse in the middles of the distributions.

We also compared the ISEL performances of the heterogeneity model GR estimates (equation

(7)) against the EB estimates (equation (6)). This is intended to see whether the GR estimates

will perform better when the underlying assumption is in line with the mixture distribution of the

random effects. Recall that in Section 3 a similar analysis has been carried out for homogeneous

normally distributed random effects.

For the 100 simulated values from the mixture distribution of two normal components, the

average ISEL’s for the EB and GR estimates are 0.0062 and 0.0051, respectively with a relative

ratio of 1.21. Similarly, the average SEL value was 0.071 for the EB estimator while for the GR

estimate 0.077 was obtained. This result again conforms to the previous conclusion that under the

correct model assumptions the GR estimates perform better in estimating the EDF with a small

trade off in estimating the individual random effects.
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Figure 3: EDF estimates (dark lines) from the homogeneous model empirical Bayes (EB.1) and

heterogenous model empirical Bayes (EB.2) estimates superimposed over the true random effects

distribution (gray line), for σ2 = 0.33, 9,&16.

Finally, we checked the behaviour of the EB and GR estimators when a mixture model is assumed

(using equations (6) and (7)) while in fact the homogeneous normal model applies to the random

effects.

From Figure 4 we can observe that all random effect estimators perform similar. Hence, it can

be concluded that assuming heterogeneity doesn’t give a distorted picture of the estimated random
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Figure 4: Histograms for the random effect estimates of homogeneous and heterogenous models.

effects distribution.

6 Conclusion

The triple-goal (GR) estimate originally developed for two-stage hierarchical models has been in-

troduced in the context of a linear mixed model. This method, which applies only to a univariate

random effect parameter, has been compared with the empirical Bayes estimates of random inter-

cept parameter under different conditions of the distributional assumptions. We showed that the GR

method induces a better estimate for the EDF than the empirical Bayes estimate when the normality

assumption about the random effects in the linear mixed model holds. When this distribution is

misspecified it suffers from the same limitation as the empirical Bayes estimates, i.e. non-robustness.

Thus the method of Shen and Louis cannot be used as diagnostic tool for inspecting the appropri-

ateness of normality assumptions in a fitted linear mixed model. On the other hand, when the

misspecification of the normality assumption is because of presence of finite mixture of normally
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distributed components, the better performance of estimating the EDF can still be maintained by

incorporating these components. In general, the triple-goal estimates perform well only when based

on the correct underlying distribution of the random effects. But in practice, it is not guaranteed

to have prior knowledge about the random effects distribution. Therefore, there is still the need for

explorative tools, which are independent of the prior knowledge of the underlying distribution, to

check distribution of the random effects.
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