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Abstract

The explanation of productivity differentials is very important to identify the eco-
nomic conditions that create inefficiency and to improve managerial performance. In
literature two main approaches have been developed: one-stage approaches and two-
stage approaches. Daraio and Simar (2003) propose a full nonparametric methodology
based on conditional FDH and conditional order-m frontiers without any convexity
assumption on the technology. On the one hand, convexity has always been assumed
in mainstream production theory and general equilibrium. On the other hand, in many
empirical applications, the convexity assumption can be reasonable and sometimes nat-
ural. Leading by these considerations, in this paper we propose a unifying approach to
introduce external-environmental variables in nonparametric frontier models for convex
and non convex technologies. Developing further the work done in Daraio and Simar
(2003) we introduce a conditional DEA estimator, i.e., an estimator of production
frontier of DEA type conditioned to some external-environmental variables which are
neither inputs nor outputs under the control of the producer. A robust version of this
conditional estimator is also proposed. These various measures of efficiency provide
also indicators of convexity. Illustrations through simulated and real data (mutual
funds) examples are reported.
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1 Introduction

Efficiency and productivity literature primarily focused on the measurement of decision

making units (DMUs)’ performance.

In recent decades there has been a growing interest for the logical step ahead: the ex-

planation of DMUs productivity differentials. As a matter of fact, the impact of external-

environmental factors on the efficiency of producers is a relevant issue related to the expla-

nations of efficiency, the identification of economic conditions that create inefficiency, and

finally to the improvement of managerial performance. These factors are neither inputs nor

outputs under the control of the producer, but can affect the performance of the production

process. In literature, two main approaches have been developed.

In the “one-stage” approach the environmental variables are directly included in the

linear programming formulation along with the inputs and outputs. In the “two-stage”

approach the technical efficiency, computed in a standard way, is used as dependent variable

in a second-stage regression. Some authors propose also three-stage and four-stage analysis

as extension of the two-stage approach1.

The main disadvantage of the one-stage approach is that it requires the classification of

environmental factor as an input or an output prior to the analysis. The main shortcoming

of the two-stage approach, as pointed out in Simar and Wilson (2003), is that the efficiency

estimates are serially correlated in a complicated way and that the first stage efficiency scores

are biased. Hence, they propose a procedure based on bootstrap techniques to permit a more

accurate inference in the second-stage. Note that all these two stage approaches have an

additional drawback: they rely on a separability condition between the input-output space

and the space of environmental variables. In addition, in all the studies published so far, a

restrictive parametric model is used for the second-stage regression.

Daraio and Simar (2003), hereafter DS, propose a full nonparametric approach which

overcomes most of the drawbacks mentioned above. They define conditional (to external-

environmental factors) frontiers and conditional order-m frontiers together with their related

efficiency scores and the corresponding nonparametric estimators. In particular, order-m

frontier estimators (Cazals, Florens and Simar, 2002, hereafter CFS) are known as being

more robust to outliers and extreme values than the full frontier estimates.

1See Daraio and Simar (2003), and the references cited there.
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In this paper we provide a unifying approach to introduce external environmental vari-

ables in nonparametric models of production frontiers. Completing the work done in DS we

introduce a conditional Data Envelopment Analysis (DEA) estimator, i.e., a DEA estimator

of production frontiers conditioned to some external-environmental variables that are neither

inputs nor outputs under the control of the producer. In order to control for the influence

of extremes or outliers we introduce also a robust version of our conditional DEA estimator,

based on the concept of order−m frontiers. The motivation for this paper is threefold.

Firstly, convexity has always been an usual assumption on the production set structure,

very often used by economists and practitioners. DEA, in fact, is the most popular nonpara-

metric estimator in empirical applications2, and its convexity assumption on the production

set is widely used in mainstream theories of production and general equilibrium (see e.g.

Mas-Colell, Whinston and Green, 1995). Several recent studies focus on the convexity as-

sumption in frontier models (e.g., Bogetoft, 1995; Bogetoft, Tama, and Tind, 2000; Briec,

Kerstens and Vanden Eeckaut, 2004; Podinovski, 2004).

Secondly, in some fields of application, allowing for the convexity of the production

possibility set is natural given the characteristics of the underlying technology. Consider,

for instance, the industry of mutual funds. A mutual fund is managed by an economic

operator which selects a set of bonds/stocks according to an investment objective or a mix

of investment goals, focusing on the return, or the risk of the portfolio or on a balance among

these two. Owing these features of their management process, it seems quite normal to allow

for the feasibility of some portfolios that are linear combinations of actually observed funds.

In this framework, the assumption that “the mean of any two combinations that can be

produced can itself be produced (Farrell, 1959, p. 377)” seems quite natural.

Hence, in this paper we aim at enriching the toolbox of applied researchers in productivity

analysis offering a complete range of conditional measures of efficiency, i.e., measures of

performance which take into account the operating environment (or other external factors)

in which firms operate in, without imposing their positive or negative impact, but letting

the data themselves to tell if and how they affect the performance.

Therefore, the conditional DEA estimator, as well as its robust version, is useful to

explain efficiency differentials when the convexity hypothesis is reasonable for the technology

analyzed.

Thirdly, we lay down the ground for the development of a statistical test of convexity,

which could offer a rigorous way to choose among a set of efficiency measures (convex and

not convex) those ones appropriate to explain efficiency differentials in the empirical context

analyzed.

2See Cooper, Seiford and Tone (1999) for about 15,000 references of DEA applications.
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The paper is structured as follows. In Section 2 we describe the frontier estimation

setting and we propose, extending DS, a unifying formalization of the production process

based on a probabilistic approach, where the FDH and DEA estimators can be naturally

introduced. Section 3 presents the concept of order-m frontiers, as based on CFS and DS

ideas, and analyzes how convexity can be introduced in these partial frontiers. This leads

to define efficiency scores of order-m with respect to convex technologies. Nonparametric

estimators are then described and some of their properties are investigated. Section 4 shows

how the probabilistic formulation allows to introduce conditional efficiency measures and,

extending DS, defines a conditional DEA efficiency score and its robust (order-m) version.

In Section 5 we propose a series of indicators of the type of those proposed in Briec, Kerstens

and Vanden Eeckaut (2004), extending its application to robust order-m efficiency measures

and to conditional and robust measures of performance. Section 6 illustrates the different

concepts trough some simulated data sets as well as real data on mutual funds. Section 7

concludes, outlining future development to address. In the Appendix we address some issues

about the bandwidth selection procedure necessary for estimating most of the conditional

measures.

2 Formalizing the Production Process

2.1 The activity analysis framework

In an activity analysis framework (Koopmans, 1951; Debreu, 1951) the activity of production

units (or a production technology) is characterized by a set of inputs x ∈ IRp
+ used to produce

a set of outputs y ∈ IRq
+. In this framework, the production set is the set of technically

feasible combinations of (x, y). It is defined as:

Ψ = {(x, y) ∈ IRp+q
+ | x can produce y}. (2.1)

Usually, the free disposability of inputs and outputs is assumed, meaning that if (x, y) ∈ Ψ,

then (x′, y′) ∈ Ψ, as soon as3 x′ ≥ x and y′ ≤ y.

The boundaries of Ψ becomes of interest when we want to estimate efficiency. If we are

looking in the input direction, the Farrell measure of input-oriented efficiency score4 for a

unit operating at the level (x, y) is defined as:

θ(x, y) = inf{θ | (θx, y) ∈ Ψ}. (2.2)

3From here and below inequalities between vectors are element-wise.
4Here and below we consider only the input oriented framework to save place. The extension to the

output oriented framework is straightforward (see DS and Daraio, 2003 for details).
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If (x, y) is inside Ψ, θ(x, y) ≤ 1 is the proportionate reduction of inputs a unit working

at the level (x, y) should perform to achieve efficiency. The corresponding radial efficient

frontier in the input space, for units producing a level y of outputs, is defined by points with

efficiency scores equal to 1. This frontier can then be described as the set (x∂(y), y) ∈ Ψ,

where x∂(y) = θ(x, y)x is the radial projection of (x, y) ∈ Ψ on the frontier, in the input

direction (orthogonal to the vector y).

In empirical applications, the set Ψ is unknown as well as efficiency scores. The econo-

metric problem is therefore to estimate these quantities from a random sample of production

units X = {(xi, yi)|i = 1, . . . , n}. Since the pioneering work of Farrell (1957), the literature

has developed a lot of different approaches to achieve this goal.

Envelopment estimators (Data Envelopment Analysis (DEA): Charnes, Cooper and Rhodes,

1978/ Free Disposal Hull (FDH): Deprins, Simar and Tulkens, 1984) within the nonpara-

metric approach are particularly appealing since they do not rely on restrictive hypothesis

on the Data Generating Process (DGP).

In this framework, an observed production unit, (xi, yi), defines an individual production

possibilities set ψ(xi, yi), which under the free disposability of inputs and outputs, can be

written as:

ψ(xi, yi) = {(x, y) ∈ IRp+q
+ | x ≥ xi, y ≤ yi} (2.3)

The union of these individual production possibilities sets provides the FDH estimator of

the whole production set Ψ:

Ψ̂FDH =
n⋃

i=1

ψ(xi, yi) (2.4)

= {(x, y) ∈ IRp+q
+ | x ≥ xi, y ≤ yi, i = 1, ..., n}.

The DEA estimator5 of the frontier of Ψ, Ψ̂DEA, is obtained by the convex hull of Ψ̂FDH :

Ψ̂DEA = CH
( n⋃

i=1

ψ(xi, yi)
)

(2.5)

=
{
(x, y) ∈ IRp+q

+ | y ≤
n∑

i=1

γi yi ; x ≥
n∑

i=1

γi xi, (2.6)

for (γ1, ..., γn) s.t.
n∑

i=1

γi = 1; γi ≥ 0, i = 1, ..., n
}
.

where CH stands for ‘the convex hull of’. It is the smallest free disposal convex set covering

all the data points.

The corresponding FDH and DEA estimators of efficiency scores are obtained by plugging

Ψ̂FDH and Ψ̂DEA, respectively, in equation (2.2) above.

5Note that here we consider only the Variable Returns to Scale case; the extension to different returns to
scale situations is straightforward.
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2.2 A probabilistic formulation of the production process

DS, generalizing results obtained in CFS, propose a probabilistic formulation of the produc-

tion process in which it is easy to introduce external-environmental factors. The production

process can indeed be described by the joint probability measure of (X, Y ) on IRp
+×IRq

+. This

joint probability measure is completely characterized by the knowledge of the probability

function HXY (·, ·) defined as

HXY (x, y) = Prob(X ≤ x, Y ≥ y). (2.7)

The support of HXY (·, ·) is Ψ and HXY (x, y) can be interpreted as the probability for a unit

operating at the level (x, y) to be dominated. Note that this function is a non-standard

distribution function, having a cumulative distribution form for X and a survival form for

Y . In the input orientation chosen here, it is useful to decompose this joint probability as

follows:

HXY (x, y) = Prob(X ≤ x | Y ≥ y) Prob(Y ≥ y) = FX|Y (x|y)SY (y), (2.8)

where we suppose the conditional probabilities exist (i.e., SY (y) > 0). The conditional

distribution FX|Y is non-standard due to the event describing the condition (i.e.,Y ≥ y

instead of Y = y ). We can now define the efficiency scores in terms of the support of these

probabilities. The input oriented efficiency score θ(x, y) for (x, y) ∈ Ψ is defined for all y

with SY (y) > 0 as

θ(x, y) = inf{θ |FX|Y (θx|y) > 0} = inf{θ |HXY (θx, y) > 0}. (2.9)

The idea here is that the support of the conditional distribution FX|Y (· | y) can be viewed as

the attainable set of input values X for a unit working at the output level y. Under the free

disposability assumption, the lower boundary of this support (in a radial sense) provides the

Farrell-efficient frontier, or the input benchmarked value (see CFS and DS for details).

A nonparametric estimator is then easily obtained by replacing the unknown FX|Y (x | y)
by its empirical version:

F̂X|Y ,n(x | y) =

∑n
i=1 1I(Xi ≤ x, Yi ≥ y)
∑n

i=1 1I(Yi ≥ y)
, (2.10)

where 1I(·) is the indicator function.

As shown by CFS, the resulting estimator of the input efficiency score for a given point

(x, y) coincides with the FDH estimator of θ(x, y):

θ̂FDH(x, y) = inf{θ | (θ x, y) ∈ Ψ̂FDH} (2.11)

= inf{θ | F̂X|Y ,n(θx | y) > 0}. (2.12)
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We know that under the free disposal assumption, this is a consistent estimator of θ(x, y)

with a rate of convergence of n1/(p+q) (see Park, Simar and Weiner, 2000).

Slightly faster is the rate of convergence of the DEA estimator (which relies on the

additional convexity assumption of Ψ) that is of n2/(p+q+1) (see Kneip, Park and Simar,

1998). It is usually obtained by solving the linear program involved by:

θ̂DEA(x, y) = inf{θ | (θ x, y) ∈ Ψ̂DEA}. (2.13)

where Ψ̂DEA was defined in (2.6).

For the extensions below, it is useful to notice that in the probabilistic formulation devel-

oped here, the DEA estimator of the efficiency score could also be obtained by convexifying

the FDH input efficient boundary obtained by solving (2.12) for each data point (xi, yi).

Namely:

θ̂DEA(x, y) = inf{θ | y ≤
n∑

i=1

γi yi ; θx ≥
n∑

i=1

γi x̂
∂,FDH
i , (2.14)

for (γ1, ..., γn) s.t.
n∑

i=1

γi = 1; γi ≥ 0, i = 1, ..., n
}
.

where x̂∂,FDH
i = θ̂FDH(xi, yi) xi is the FDH-input efficient level computed by using (2.12) at

the observed point (xi, yi), i.e., the lower boundary, on the ray (input mix) xi, of the support

of F̂X|Y ,n(· | yi).

3 Order-m frontiers and efficiency scores

The FDH estimator Ψ̂FDH, as well as its convex version Ψ̂DEA, are very sensitive to extremes

and outliers, since they envelop all the data points of the observed set X . To be more robust

to extreme values CFS propose to estimate an order-m frontier, which corresponds to another

benchmark frontier against which units will be compared.

3.1 General formulation

As pointed above the support of FX|Y (· | y) defines the attainable set of input values X

for a unit working at the output level y. Now instead of looking at the lower boundary of

this support, we prefer to define as a benchmark value, the average of the minimal value of

inputs for m units randomly drawn according FX|Y (· | y), i.e., units producing at least the

output level y. This defines the input order-m frontier.

Formally, for a given level of output y, we consider m i.i.d. random variables X1, ..., Xm

generated by the conditional p−variate distribution function FX|Y (· | y) and obtain the
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random production set of order−m for units producing more than y:

Ψ̃m(y) = {(x, y′) ∈ IRp+q
+ | x ≥ Xi, y

′ ≥ y, i = 1, ..., m}. (3.1)

Then, the order-m input efficiency score is defined as:

θm(x, y) = EX|Y (θ̃m(x, y) | Y ≥ y), (3.2)

where θ̃m(x, y) = inf{θ | (θx, y) ∈ Ψ̃m(y)} and EX|Y is the expectation relative to the

distribution FX|Y (· | y).
Hence, the order-m efficiency score is the expectation of the minimal input efficiency

score of the unit (x, y), when compared to m units randomly drawn from the population of

units producing at least the output level y. This is certainly a less extreme benchmark for

the unit (x, y) than the “absolute” minimal achievable level of inputs: it is compared to a

set of m peers producing more or the same level than its level y and we take as benchmark,

the expectation of the minimal achievable inputs in place of the absolute minimal achievable

inputs.

The order-m frontier can be described by the set (x∂
m(y), y) ∈ Ψ, where x∂

m(y) = θm(x, y) x

is the radial projection of (x, y) ∈ Ψ on the order-m frontier, in the input direction (orthog-

onal to the vector y). We can also define the resulting attainable set of order-m by:

Ψm = {(x, y) ∈ Ψ | x ≥ x∂
m(y)}. (3.3)

Note that since θm(x, y) may be ≥ or ≤ 1, some (x, y) ∈ Ψ, may be outside the order-m set

Ψm. As m→ ∞, of course, Ψm → Ψ and θm(x, y) → θ(x, y).

A nonparametric estimator θ̂m(x, y) of order-m efficiency scores θm(x, y) (and of the corre-

sponding frontier) is obtained by plugging the empirical version of FX|Y (· | y) in the formulae

above. The computations involves the computation of the following one-dimensional integral,

θ̂m(x, y) = ÊX|Y (θ̃m(x, y) | Y ≥ y) (3.4)

=
∫ ∞

0
(1 − F̂X|Y (ux | y))mdu,

= θ̂FDH(x, y) +
∫ ∞

θ̂F DH(x,y)
(1 − F̂X|Y (ux | y))mdu. (3.5)

Note that a simple Monte-Carlo procedure, as described in DS and CFS, may approximate

the empirical expectation in (3.4) and so avoiding numerical integration (for large values of

m, the integral is much faster to compute).

One of the main advantage of this estimator is that it does not suffer from the so called

‘curse of dimensionality’ characterizing most nonparametric estimators and implying for
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great values of (p + q) the need of large data sets in order to reduce statistical imprecision

(length of confidence intervals, bias of the estimators, . . . ). We achieve here, for a fixed value

of m, the standard root-n convergence rate of θ̂m(x, y) to θm(x, y) and a Normal limiting

distribution.

Another main advantage of this estimator is that it also provides a much more robust

estimator to outliers or extreme values than the full frontier estimator since by construction,

it does not envelop all the data points. We noticed above that when m → ∞, the order-

m frontier converges to the full frontier. The same is true for the estimator: θ̂m(x, y) →
θ̂FDH(x, y) when m→ ∞. Therefore, choosing appropriately m(n) → ∞ as a function of n,

we can use θ̂m(n)(x, y) as an estimator of the full frontier efficient level θ(x, y): this is a way

of defining a robust estimator of the full frontier, since for any finite m, the corresponding

frontier will not envelop all the data points. CFS show indeed that this robust estimator of

θ(x, y) shares the asymptotic properties of the FDH estimator, in particular, θ̂m(n)(x, y) →
θ(x, y) when n→ ∞.

In practice for finite samples, several values of m are chosen and a particular value of m

can be specified by looking at the percentage of points in the sample which stands outside

Ψ̂m. This percentage could be interpreted as the robustness level of the estimator (we could

choose such a percentage as, say, 5% or 10%,. . . ). These percentages have been used in

Simar (2003) to warn or detect potential outliers in the data set.

3.2 Introducing convexity

In this section, we discuss issues concerning the convexity of the attainable production set of

order-m, Ψm, as defined in (3.3). To the best of our knowledge, no general results have been

published so far on the shape of Ψm. CFS give some monotonicity properties of the frontier,

as a function of y in the case where p = 1 (see Theorem 2.4 in CFS: FX|Y (x | y) has to be

monotone non-increasing with y to obtain a monotone frontier). Florens and Simar (2005)

give some bivariate examples (p = q = 1) where the order-m frontier can be analytically

computed and where Ψ and Ψm are both convex. As a matter of fact, there is basically no

reason why Ψm should be convex, even if Ψ is convex, unless some very peculiar structure is

imposed on HX,Y (x, y). This is due to the expectation defining the efficient level of order-m

in (3.2) and then on its dependence on y.

However, we have seen that order-m frontiers are particularly useful to provide robust

and consistent estimators of the full frontier when m(n) → ∞ with n at the appropriate

rate. Hence, if the true attainable set Ψ is convex, it is useful to impose some convexity

assumptions on order-m attainable sets and their estimators, in order to provide a robust

estimation of the full frontier. This can be done at two levels: either locally (for a given
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value of y), or globally.

• Local convexity

We can indeed for a given level of output y and for a given value of m, introduce the random

convex production set of order-m for units producing more than y, denoted by Ψ̃C
m(y), as

the convex hull of Ψ̃m(y) (defined in equation (3.1)):

Ψ̃C
m(y) = CH

(
Ψ̃m(y)

)
(3.6)

= {(x, y′) ∈ IRp+q
+ | x ≥

m∑

i=1

γiXi, for (γ1, . . . , γn) (3.7)

such that
m∑

i=1

γi = 1 ; γi ≥ 0, y′ ≥ y, i = 1, ..., m},

where the Xi are generated by FX|Y (·|y), as above. Then for the order-m efficiency score,

we define a locally-convex order-m input efficiency measure as:

θLC
m (x, y) = EX|Y (θ̃LC

m (x, y) | Y ≥ y), (3.8)

where θ̃LC
m (x, y) = inf{θ | (θx, y) ∈ Ψ̃C

m(y)}. The resulting order-m frontier, is described by

the set (x∂,LC
m (y), y) ∈ Ψ, where x∂,LC

m (y) = θLC
m (x, y) x is the radial projection of (x, y) ∈ Ψ

on the corresponding order-m frontier, in the input direction (orthogonal to the vector y).

Note that when p = 1 we have θLC
m (x, y) ≡ θm(x, y) so that the “local-convex” order-m

frontier is identical to the basic order-m frontier (x∂
m(y), y) ∈ Ψ described in the preceding

section.

It should be noticed that the local convex constraint for a given y, in (3.7), does not

provide a global convex attainable set of order-m. Denoting this set by ΨLC
m , it is defined

through:

ΨLC
m = {(x′, y) ∈ IRp+q

+ | x′ ≥ x∂,LC
m (y) for (x, y) ∈ Ψ}. (3.9)

Nothing indeed ensures that ΨLC
m is convex. We will discuss later how to estimate these

quantities.

• Global convexity

A natural way to obtain a convex set of order-m is to convexify Ψm globally and not only

locally. As a matter of fact, we can define the convex attainable set of order-m, ΨC
m, as the

convex closure of Ψm:

ΨC
m = CH

(
Ψm

)
. (3.10)
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If the set Ψm is convex, then of course ΨC
m ≡ Ψm. A corresponding order-m efficiency score,

with this convex reference set, is then defined by:

θC
m(x, y) = inf{θ | (θ x, y) ∈ ΨC

m}. (3.11)

This order-m efficiency score has the property of being defined with respect to a convex

attainable set of order-m. As seen below, it has the advantage of being easy to estimate and

it will provide a robust version of the DEA estimator.

• Estimation of θLC
m (x, y)

The idea is, as above, to plug-in the empirical version of FX|Y (·|y) in the expressions (3.6)

to (3.8). A nonparametric estimator of θLC
m (x, y) is then obtained by using the empirical

version of the expectation in (3.8):

θ̂LC
m (x, y) = ÊX|Y (θ̃LC

m (x, y) | Y ≥ y). (3.12)

This can be approximated by a simple Monte-Carlo procedure, similar to the Monte-Carlo

procedure described in DS and CFS:

[1 ] For a given y, draw a sample of size m with replacement among those Xi such that

Yi ≥ y and denote this sample by (X1,b, . . . , Xm,b);

[2 ] Solve the following linear program

θ̃LC,b
m (x, y) = inf{θ | θx ≥

m∑

i=1

γi Xi,b, for (γ1, ..., γm)

s.t.
m∑

i=1

γi = 1; γi ≥ 0, i = 1, ..., m
}
. (3.13)

[3 ] Redo [1]-[2] for b = 1, . . . , B, where B is large.

[4 ] Finally, θ̂LC
m (x, y) ≈ 1

B

∑B
b=1 θ̃

LC,b
m (x, y).

The quality of the approximation can be tuned by increasing B, but at a computational cost

since at each step, we have to run the linear program (3.13).

• Estimation of θC
m(x, y)

An estimator for the order-m efficient score relative to a global convex attainable set of

order-m is even easier to obtain. In analogy with (2.14), we only have to project all the

points on the estimated order−m frontier and then run a DEA program, as follows:

θ̂C
m(x, y) = inf{θ | y ≤

n∑

i=1

γi yi ; θx ≥
n∑

i=1

γi x̂
∂
m,i, (3.14)

for (γ1, ..., γn) s.t.
n∑

i=1

γi = 1; γi ≥ 0, i = 1, ..., n
}
.
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where x̂∂
m,i = θ̂m(xi, yi) xi is the estimated order-m input efficient level for the ith observation.

• Properties

The statistical properties of these “convex” order-m estimators have still to be investigated,

but under the appropriate convexity assumptions on Ψm, we conjecture that they share

the same properties as the original order-m estimators. However, it is easy to analyze the

behavior of these convex order-m measures when m→ ∞.

– By construction and under the convexity of Ψ, for all (x, y) ∈ Ψ and m ≥ 1, we have:

θ(x, y) ≤ θC
m(x, y) ≤ θLC

m (x, y) ≤ θm(x, y), (3.15)

and so, when m → ∞, all the order-m efficiency scores converge to θ(x, y). Also, in

practice, we expect that when Ψm is really convex, θC
m(x, y) will be very similar to

θLC
m (x, y).

– For the estimators, we have the following similar relations. For all (x, y) ∈ Ψ, m ≥ 1

and n, we have:

θ̂DEA(x, y) ≤ θ̂C
m(x, y) ≤ θ̂LC

m (x, y) ≤ θ̂m(x, y). (3.16)

Clearly, when m → ∞, θ̂C
m(x, y) → θ̂DEA(x, y): compare (3.14) with (2.14) and note

that when m→ ∞, x̂∂
m,i → x̂∂,FDH

i .

For non-convex technologies, we have seen that θ̂m(x, y) is a more robust estimator of

the Farrell efficiency score θ(x, y) than the FDH estimator θ̂FDH(x, y) (see the discussion

above, end of Section 3.1). The same is true for convex technologies. Let m(n) be a function

of n going to infinity when n → ∞, θ̂C
m(n)(x, y) is a more robust estimator of the Farrell

efficiency score θ(x, y) than the traditional DEA estimator θ̂DEA(x, y), because for finite m

the corresponding estimated frontier will not envelop all the data points. In practice, for

convex technologies, the choice of m is done as for non-convex ones, by tuning the desired

level of robustness.

As far as order-m efficiency scores themselves have to be estimated, θ̂m(x, y) converges at

the
√
n-rate to θm(x, y), Ψ being convex or non-convex. However, the two sets of relations

(3.15) and (3.16) indicate that under the convexity assumption of Ψm, θ̂C
m(x, y) is a more

appropriate estimator of θm(x, y).
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4 Conditional measures of efficiency

As shown in DS, the probabilistic formulation of the production process allows to introduce

external-environmental factors. We denote by Z ∈ IRr these factors. The idea is that the

joint distribution of (X, Y ) conditional on Z = z defines the production process if Z = z. By

analogy with (2.7), the support of HX,Y |Z(x, y|z) = Prob(X ≤ x, Y ≥ y |Z = z) defines Ψz,

the attainable production set when Z = z. For an input conditional measure of efficiency,

the natural decomposition of this joint distribution is given by:

HX,Y |Z(x, y|z) = FX|Y,Z(x | y, z)SY |Z(y|z), (4.1)

for all y such that SY |Z(y|z) = Prob(Y ≥ y |Z = z) > 0 and where FX|Y,Z(x | y, z) =

Prob(X ≤ x | Y ≥ y, Z = z). So, for all y such that SY |Z(y|z) > 0, Ψz can also be defined

by the support of FX|Y,Z(· | y, z) = Prob(X ≤ x | Y ≥ y, Z = z). Then, as above in (2.9), the

lower boundary of the latter will define the lower boundary achievable for a unit producing

an output level y with an environment described by the value z. Formally we have:

θ(x, y | z) = inf{θ | FX|Y,Z(θx | y, z) > 0}. (4.2)

Note again that the conditioning on Y is the event Y ≥ y (because Y is an output) and the

conditioning on Z is defined, as in a regression framework, by Z = z. Note also that Ψz can

be described as:

Ψz = {(x′, y) ∈ IRp+q
+ | x′ ≥ x∂,z(y) for (x, y) ∈ Ψ}, (4.3)

where x∂,z(y) is the efficient level of input, conditional on Z = z, for an output level y:

x∂,z(y) = θ(x, y | z) x, where (x, y) ∈ Ψ. Clearly, Ψz ⊆ Ψ.

4.1 Conditional FDH

• Definition of θ̂FDH(x, y | z)
A natural nonparametric estimator is obtained by plugging a nonparametric estimator of

FX|Y,Z(· | y, z) in the expression above (4.2). Due to the equality in the conditioning on Z

this requires some smoothing techniques. At this purpose we use a kernel estimator defined

as:

F̂X|Y,Z,n(x | y, z) =

∑n
i=1 1I(xi ≤ x, yi ≥ y)K((z − zi)/h)∑n

i=1 1I(yi ≥ y)K((z − zi)/h)
, (4.4)

where K(·) is the kernel and h is the bandwidth of appropriate size6. Hence, we obtain the

“conditional FDH efficiency measure” as follows:

θ̂FDH(x, y | z) = inf{θ | F̂X|Y,Z,n(θx | y, z) > 0}. (4.5)

6Issues about the practical choice of the bandwidth are discussed in the Appendix.
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As pointed in DS, for any (symmetric) kernel with compact support7 (i.e., K(u) = 0 if

|u| > 1, as for the uniform, triangle, epanechnikov or quartic kernels), the conditional FDH

efficiency estimator is given by:

θ̂FDH(x, y|z) = inf{θ | F̂X|Y,Z,n(θx | y, z) > 0} = min
{i|Yi≥y,|Zi−z|≤h}

{
max

j=1,...,p

(Xj
i

xj

)}
. (4.6)

Therefore, it does not depend on the chosen kernel but only on the selected bandwidth. This

will be different for the conditional order-m measures defined below.

• Conditional FDH attainable set

The conditional attainable set Ψz is estimated by:

Ψ̂z
FDH = {(x′, y) ∈ IRp+q

+ | x′ ≥ x̂∂,FDH,z(y) for (x, y) ∈ Ψ̂FDH} (4.7)

where x̂∂,FDH,z(y) is the estimated conditional efficient level of inputs:

x̂∂,FDH,z(y) = θ̂FDH(x, y|z) x for (x, y) ∈ Ψ̂FDH.

Note that the conditional FDH attainable set can also be defined as follows. A production

unit characterized by the observation (xi, yi, zi) defines an individual attainable set ψ(xi, yi |
zi), which under free disposability of inputs and outputs can be written as in (2.3):

ψ(xi, yi | zi) = {(x, y) ∈ IRp+q
+ | x ≥ xi, y ≤ yi}. (4.8)

Indeed, for this value of Z = zi, all the points in ψ(xi, yi | zi) are, under free disposability,

attainable. Now for any given value of Z = z, the ‘global’ attainable set will be obtained by

the union of all the attainable sets ψ(xi, yi | zi) for zi being in a h-neighborhood of z:

Ψ̂z
FDH =

⋃

{i|z−h≤zi≤z+h}

ψ(xi, yi | zi) (4.9)

= {(x, y) ∈ IRp+q
+ | x ≥ xi, y ≤ yi, for i s.t. z − h ≤ zi ≤ z + h}.

The conditional FDH efficiency score can thus be equivalently defined by:

θ̂FDH(x, y|z) = inf{θ | (θx, y) ∈ Ψ̂z
FDH}, (4.10)

• Properties

Note that the union of all the conditional attainable sets over all the observed values zi ∈
IRr, i = 1, . . . , n will recover the full FDH production set. In symbols:

⋃

i=1,...,n

Ψ̂zi

FDH ≡ Ψ̂FDH . (4.11)

7DS pointed out that for kernels with unbounded support, like the gaussian kernel, it is easy to show
that θ̂FDH(x, y|z) ≡ θ̂FDH(x, y): the estimate of the full-frontier efficiency is unable to detect any influence
of the environmental factors. Therefore, in this framework of conditional boundary estimation, kernels with
compact support have to be used.
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Indeed we have:

⋃

i=1,...,n

Ψ̂zi

FDH =
⋃

i=1,...,n




⋃

{j|zi−h≤zj≤zi+h}

ψ(xj , yj | zj)




=
⋃

i=1,...,n




⋃

{j|zi−h≤zj≤zi+h}

{
(x, y) ∈ IRp+q

+ | x ≥ xj , y ≤ yj

}



=
⋃

i=1,...,n

{
(x, y) ∈ IRp+q

+ | x ≥ xi, y ≤ yi

}
≡ Ψ̂FDH.

4.2 Conditional DEA

• Conditional DEA attainable set

Now, by analogy with (2.6), if we suppose that the true conditional attainable set Ψz is

convex, we can introduce an additional convexity constraints on our estimator. This defines

the conditional DEA attainable set:

Ψ̂z
DEA = CH

(
Ψ̂z

FDH

)
= CH

( ⋃

{i|z−h≤zi≤z+h}

ψ(xi, yi | zi)
)

(4.12)

=




(x, y) ∈ IRp+q
+ | y ≤

∑

{i|z−h≤zi≤z+h}

γiyi ; x ≥
∑

{i|z−h≤zi≤z+h}

γixi

for nonnegative γ’s such that
∑

{i|z−h≤zi≤z+h}

γi = 1



 . (4.13)

Note that this provides a local convex attainable set, local in the sense of conditional on the

external factors Z = z. This is true for all values of z ∈ IRr.

As a matter of fact, Ψ̂z
FDH is an estimator of the attainable set conditional on Z = z, relying

only on free disposability and Ψ̂z
DEA is an estimator relying on the additional assumption of

convexity.

• Definition of θ̂DEA(x, y | z)
A conditional DEA-efficiency score may be defined by:

θ̂DEA(x, y|z) = inf{θ | (θx, y) ∈ Ψ̂z
DEA}. (4.14)

It can be computed by solving the linear program:

θ̂DEA(x, y|z) = inf{θ | y ≤
∑

{i|z−h≤zi≤z+h}

γi yi ; θx ≥
∑

{i|z−h≤zi≤z+h}

γi xi,

for nonnegative γ’s s.t.
∑

{i|z−h≤zi≤z+h}

γi = 1
}
. (4.15)
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Of course, in the latter linear program, xi could be replaced by its projection on the FDH

efficient frontier, i.e., by x̂∂,FDH
i = θ̂FDH(xi, yi) xi.

• Properties

Note that here, the union of all these sets over all the observed values zi ∈ IRr, i = 1, . . . , n

will recover partly the full DEA production set. This is because the union of convex hull of

sets is a subset of the convex hull of the union of the sets. So we have:

⋃

i=1,...,n

Ψ̂zi

DEA =
⋃

i=1,...,n

CH
(
Ψ̂zi

FDH

)
⊆ CH




⋃

i=1,...,n

Ψ̂zi

FDH


 = CH

(
Ψ̂FDH

)
= Ψ̂DEA. (4.16)

But of course, the convex hull of the union will coincide with the DEA set:

CH



⋃

i=1,...,n

Ψ̂zi

DEA



 ≡ Ψ̂DEA (4.17)

4.3 Conditional order-m measures

• General approach

The conditional order-m input efficiency measure is defined in DS, where only free dispos-

ability is assumed. For a given level of outputs y in the interior of the support of Y , we

consider them i.i.d. random variables Xi, i = 1, . . . , m generated by the conditional p-variate

distribution function FX|Y,Z(x | y, z) and we define the conditional random set:

Ψ̃z
m(y) = {(x, y′) ∈ IRp+q

+ | x ≥ Xi, y
′ ≥ y, i = 1, . . . , m}. (4.18)

Note that this set depends on the value of z since theXi are generated through the conditional

distribution function. For any x ∈ IRp
+, the conditional order-m input efficiency measure

given that Z = z, denoted by θm(x, y|z) is then defined as:

θm(x, y|z) = EX|Y,Z(θ̃z
m(x, y) | Y ≥ y, Z = z), (4.19)

where θ̃z
m(x, y) = inf{θ | (θx, y) ∈ Ψ̃z

m(y)} and the expectation is relative to the distribution

FX|Y,Z(· | y, z). It is shown by DS (Theorem 3.1) that θm(x, y|z) converges to θ(x, y|z) when

m→ ∞.

• Definition of θ̂m(x, y|z)
A nonparametric estimator of θm(x, y|z) is provided by plugging the nonparametric estimator

of FX|Y,Z(x|y, z) proposed in (4.4), which depends on the kernel and on the chosen bandwidth.

Formally, the estimator can be obtained by:

θ̂m(x, y|z) = ÊX|Y,Z(θ̃z
m(x, y) | y, z) (4.20)

=
∫ ∞

0
(1 − F̂X,n(ux | y, z))mdu. (4.21)
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This involve the computation of a one-dimensional numerical integral. Note that DS propose

also a Monte-Carlo algorithm to approximate the empirical expectation in (4.20), but for

large m solving the integral is much faster.

Since θ̂m(x, y|z) → θ̂FDH(x, y|z) when m → ∞, the order-m conditional efficiency score

can again be viewed as a robust estimator of the conditional efficiency score θ(x, y|z) when

chosing m = m(n) → ∞ with n → ∞. For finite m, the corresponding attainable set will

not envelop all the data points and so is more robust to extremes or outlying data points.

• Introducing convexity

Following the same idea as in Section 3.2 we can provide a robust estimator of the conditional

DEA efficiency score by convexifying the conditional attainable set obtained by the estimates

θ̂m(x, y|z). We first define, as above, Ψ̃C,z
m (y) as being the convex hull of Ψ̃z

m(y):

Ψ̃C,z
m (y) = CH

(
Ψ̃z

m(y)
)

(4.22)

= {(x, y′) ∈ IRp+q
+ | x ≥

m∑

i=1

γiXi, for (γ1, . . . , γn) (4.23)

such that
m∑

i=1

γi = 1 ; γi ≥ 0, y′ ≥ y, i = 1, ..., m},

this random convex set depends on z through the random generation of the Xi, i = 1, . . . , m.

The corresponding conditional efficiency score of order-m is then defined by:

θC
m(x, y|z) = EX|Y,Z(θ̃C,z

m (x, y) | Y ≥ y, Z = z), (4.24)

where θ̃C,z
m (x, y) = inf{θ | (θx, y) ∈ Ψ̃C,z

m (y)} and the expectation is relative to the distri-

bution FX|Y,Z(· | y, z). Of course, when p = 1, θC
m(x, y|z) ≡ θm(x, y|z), because Ψ̃z

m(y) is

trivially convex.

Clearly, when m → ∞, and if Ψz is convex, θC
m(x, y|z) converges to θ(x, y|z): this can be

seen when realizing that for all m, under convexity of Ψz, θ(x, y|z) ≤ θC
m(x, y|z) ≤ θm(x, y|z)

and that θm(x, y|z) converges to θ(x, y|z) as m→ ∞.

• Definition of θ̂C
m(x, y | z)

The conditional efficiency scores of order-m, relative to a convex conditional attainable set,

can be estimated by replacing the unknown FX|Y,Z(·|y, z) needed in computing (4.24) by its

nonparametric estimator proposed in (4.4).

θ̂C
m(x, y | z) = ÊX|Y,Z(θ̃C,z

m (x, y) | Y ≥ y, Z = z). (4.25)

In practice, this can be computed by the following Monte-Carlo algorithm (adapted from

DS for convex sets). Suppose that h is the chosen bandwidth for a particular kernel K(·)
with bounded support:
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[1 ] For a given y, draw a sample of size m with replacement, and with a probabil-

ity
K((z − zi)/h)∑n

j=1K((z − zj)/h)
, among those Xi such that Yi ≥ y. Denote this sample by

(X1,b, . . . , Xm,b);

[2 ] Solve the following linear program

θ̃C,z,b
m (x, y) = inf{θ | θx ≥

m∑

i=1

γi Xi,b, for (γ1, ..., γm)

s.t.
m∑

i=1

γi = 1; γi ≥ 0, i = 1, ..., m
}
. (4.26)

[3 ] Redo [1]-[2] for b = 1, . . . , B, where B is large.

[4 ] Finally, θ̂C
m(x, y | z) ≈ 1

B

∑B
b=1 θ̃

C,z,b
m (x, y).

As usual, the quality of the Monte-Carlo approximation can be tuned by the choice of B.

• Properties

Here, when m → ∞, θ̂C
m(x, y | z) will converge to the conditional DEA efficiency score

θ̂DEA(x, y | z), so again, this version of order-m estimator relative to convex conditional

attainable sets can be viewed as a robust version of the conditional DEA estimator.
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5 Indicators for convexity

Extending ideas from Briec, Kerstens and Vanden Eeckaut (2004) and the references reported

there, we can built indicators of convexity with some simple ratios of the several measures

of efficiency introduced above. Table 1 summarizes the measures of interest.

Table 1: Efficiency estimators: a summary table with references

Unconditional Conditional

Non-Convex Tech. Convex Tech. Non-Convex Tech. Convex Tech.

Full θ̂FDH(x, y) θ̂DEA(x, y) θ̂FDH(x, y|z) θ̂DEA(x, y|z)
frontiers

Deprins, Simar Charnes, Cooper Daraio and This paper
and Tulkens (1984) and Rodhes(1978) Simar(2003)

Local Conv.

Robust θ̂m(x, y) θ̂LC
m (x, y) θ̂m(x, y|z) θ̂c

m(x, y|z)
frontiers

Cazals, Florens This paper Cazals, Florens, This paper
and Simar(2002) and Simar (2002),

Daraio and Simar (2003)
Global Conv.

θ̂C
m(x, y)

This paper

When using the indicators of convexity, we prefer here to avoid the words “goodness of

fit tests for convexity”, as used by Briec et al (2004), because, formally they do not provide

a “test” in a statistical sense, but rather indicators or descriptive statistics.

These ratios provide indeed useful indications about the convexity assumption by com-

paring the convex and non convex version of the various efficiency scores. Along these lines

we can built the following indicators of convexity for each DMU:

- Indicator of Convexity for the full frontier efficiency score estimates:

ICi =
θ̂DEA(xi, yi)

θ̂FDH(xi, yi)

- Indicator of Convexity for the conditional full frontier efficiency score estimates:

ICZi =
θ̂DEA(xi, yi | zi)

θ̂FDH(xi, yi | zi)
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- Indicator of Convexity for the order-m frontier efficiency score estimates:

ICm,i =
θ̂C

m(xi, yi)

θ̂m(xi, yi)

- Indicator of Convexity for the conditional order-m frontier efficiency score estimates.

ICZm,i =
θ̂C

m(xi, yi | zi)

θ̂m(xi, yi | zi)
,

where of course the latter indicator is trivially equal to 1 when p = 1.

Table 2 summarizes the different indicators.

Table 2: Indicators for convexity

Unconditional Conditional

Full ICi = θ̂DEA(x,y)

θ̂F DH (x,y)
ICZi = θ̂DEA(x,y|z)

θ̂FDH (x,y|z)

frontiers

Briec, Kerstens and This paper
Vanden Eeckaut (2004)

Robust ICm,i =
θ̂C

m
(x,y)

θ̂m(x,y)
ICZm,i =

θ̂C

m
(x,y|c)

θ̂m(x,y|c)

frontiers

This paper This paper

By construction, all these ratios are less or equal to one (in the input oriented framework

adopted here) and under the convexity assumption, they should not be far from one at least

for large sample sizes. A statistical test could be developed according these lines, by building

some appropriate test statistics (like average of the indicators over the sample units). Then

we would reject the null hypothesis of convexity if the test statistic is too small. Bootstrap

techniques are the only way to perform these tests in a rigorous way by evaluating the

appropriate p-values. The implementation of the bootstrap should follow the lines of Simar

and Wilson (2001, 2002). This will not be pursued here and is left for future work.
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6 Empirical illustrations

We illustrate our methodology using some simulated data and a real data set on US mutual

funds, belonging to the Aggressive Growth category.

6.1 Simulated datasets

We simulated a simple Cobb-Douglas technology with 3 different scenarios for the external -

environmental variable Z. We simulated a sample of size n = 100 from Z ∼ Uniform(1, 2)

and compare three different scenarios for generating X. As above, we adopt an input orien-

tation.

Simulated example 1 X = Y 2 Z−2 ε, where Y ∼ Uniform(1, 2), ε is the random true

inefficiency given by ε = e0.4u, and u ∼ N+(0, 1). Here Z is favorable for the

production process: it is, in a certain sense, a substitute of the input X;

Simulated example 2 X = Y 2 Z2 ε, where Y and ε are as above. Here we have a

scenario similar to example 1 except that the effect of Z is unfavorable: if the value of

Z augments, also X augments;

Simulated example 3 X = Y 2 ε, where Y and ε are as above. In this case Z is indepen-

dent of X and hence neutral for the production process.

6.1.1 Simulated example 1

Figure 1 illustrates how the nonparametric regression of the ratios between the conditional

and unconditional efficiency measures on Z is able to capture the favorable effect of Z on

the production process8. Although we are only working with estimated values, it also shows

that our method for detecting the effect of Z is not affected by the convexity assumption,

which was expected since the true sets are convex.

Figure 2 provides the same plot for the robust (order-m) version of the efficiency scores,

where m was chosen to be equal to 25. As expected (there are no outliers here), the message

of these plots is the same as for their full frontier correspondents.

Table 3 offers some descriptive statistics of the different input efficiency measures used

here. To investigate the usefulness of the descriptive indicators of convexity, the table pro-

vides also some information on the distribution of these indicators in the sample (by giving

8As explained in DS, in an input oriented framework, an increasing smoothing nonparametric regression
line describes a negative effect of the external factor Z on the production process. Whilst a decreasing
nonparametric regression line highlights a positive effect of Z on the production process; and finally, a
straight line denotes a neutral effect of Z on the production process. For more details on this topic see DS.
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Figure 1: Simulated example 1, positive (favorable) effect of Z on production efficiency (input
oriented framework). Scatter plot and smoothed regression of θ̂FDH,n(x, y | z)/θ̂FDH,n(x, y)

on Z (top panel) and of θ̂DEA,n(x, y | z)/θ̂DEA,n(x, y) on Z(bottom panel).

the number of observations for which the indicators are ≥ 0.99, . . . , 0.65). The table deserves

some comments:

– Since the true sets, Ψ and Ψz, are convex, the estimators are not too different using

convex and non-convex approaches.

– We know that the true sets are convex, so the indicators IC and ICZ for the full

frontier should be near one. The two distributions have indeed most of their mass

above, say 0.90. Nevertheless, these indicators would be more useful for “testing” the

convexity assumption within a formal inferential procedure (using the bootstrap as

mentioned above).

– We do not know if the order-m attainable sets are convex, but comparing the distribu-

tion of the indicators ICm with the distribution of IC, it seems that the distribution of

robust indicators (ICm) is less concentrate near 1 (i.e., ICm has a smaller proportion

of values larger than 0.95: 34 observations against 42 for IC). Here again, a formal

test should indicate if these differences are significant.

– Since p = 1, θ̂C
m,n(.|z) ≡ θ̂m,n(.|z), hence the last column ICZm is identically equal to

1 for all the 100 observations.
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Figure 2: Simulated example 1, positive effect of Z on production efficiency (input oriented
framework). Scatter plot and smoothed regression of θ̂m,n(x, y | z)/θ̂m,n(x, y) on Z (top

panel), and of θ̂C
m,n(x, y | z)/θ̂C

m,n(x, y) on Z (bottom panel).

θ̂DEA,n(x, y) θ̂DEA,n(x, y | z) θ̂C
m,n(x, y) θ̂C

m,n(x, y | z)
Average 0.531 0.859 0.596 0.927
St. Dev. 0.241 0.178 0.274 0.134
Minimum 0.136 0.385 0.140 0.440
# Eff. Obs 3 32 10 63

θ̂FDH,n(x, y) θ̂FDH,n(x, y | z) θ̂m,n(x, y) θ̂m,n(x, y | z)
Average 0.579 0.917 0.647 0.927
St. Dev. 0.247 0.147 0.282 0.134
Minimum 0.152 0.437 0.157 0.440
# Eff. Obs 12 63 14 63

Indicators IC ICZ ICm ICZm

# ≥ 0.99 26 50 11 100
# ≥ 0.95 42 61 34 100
# ≥ 0.90 59 74 59 100
# ≥ 0.85 79 81 90 100
# ≥ 0.80 90 89 97 100
# ≥ 0.75 97 92 98 100
# ≥ 0.70 99 97 99 100
# ≥ 0.65 100 98 100 100

Table 3: Descriptive statistics of efficiency scores estimated over 100 observations, for the
simulated example 1. Average, Standard Deviation, Minimum value, number of efficient
observations, and distribution of the indicators of convexity.
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6.1.2 Simulated example 2

Figures 3 and 4 show that the nonparametric regression of the ratios between the conditional

and unconditional efficiency measures on Z allows to capture, in this case, the unfavorable

effect of Z on the production process (increasing nonparametric regression of the efficiency

ratios on Z). Here again, as expected, the method for detecting the effect of Z is not affected

by the convexity assumption.
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Figure 3: Simulated example 2, negative (unfavorable) effect of Z on production effi-
ciency (input oriented framework). Scatter plot and smoothed regression of θ̂FDH,n(x, y |
z)/θ̂FDH,n(x, y) on Z (top panel) and of θ̂DEA,n(x, y | z)/θ̂DEA,n(x, y) on Z(bottom panel).

Table 4 reports some descriptive statistics on the results of simulated example 2. The

qualitative comments made above for Table 3 roughly apply in this case too: the orders

of magnitude of the figures appearing in the tables are very similar. Note that here the

difference between the distributions of IC and of ICm seems not significant (the number of

observations larger than 0.95 is 15 for IC and 17 for ICm).
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Figure 4: Simulated example 2, negative effect of Z on production efficiency (input oriented
framework). Scatter plot and smoothed regression of θ̂m,n(x, y | z)/θ̂m,n(x, y) on Z (top

panel), and of θ̂C
m,n(x, y | z)/θ̂C

m,n(x, y) on Z (bottom panel).

θ̂DEA,n(x, y) θ̂DEA,n(x, y | z) θ̂C
m,n(x, y) θ̂C

m,n(x, y | z)
Average 0.475 0.783 0.557 0.892
St. Dev. 0.221 0.169 0.267 0.155
Minimum 0.145 0.365 0.154 0.402
# Eff. Obs 5 8 10 42

θ̂FDH,n(x, y) θ̂FDH,n(x, y | z) θ̂m,n(x, y) θ̂m,n(x, y | z)
Average 0.581 0.872 0.653 0.892
St. Dev. 0.254 0.162 0.298 0.155
Minimum 0.201 0.393 0.213 0.402
# Eff. Obs 13 41 20 42

Indicators IC ICZ ICm ICZm

# ≥ 0.99 6 19 5 100
# ≥ 0.95 15 36 17 100
# ≥ 0.90 28 49 41 100
# ≥ 0.85 35 63 54 100
# ≥ 0.80 61 87 76 100
# ≥ 0.75 81 97 82 100
# ≥ 0.70 85 99 94 100
# ≥ 0.65 89 100 98 100

Table 4: Descriptive statistics of efficiency scores estimated over 100 observations, for the
simulated example 2. Average, Standard Deviation, Minimum value, number of efficient
observations, and distribution of the indicators of convexity.
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6.1.3 Simulated example 3

Figures 5 and 6 below illustrate that the nonparametric regression of the ratios between

the conditional and unconditional efficiency measures on Z allows again to capture the real

(neutral) effect of Z on the production process (straight nonparametric regression of the

efficiency ratios on Z), with or without the convexity assumption.
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Figure 5: Simulated example 3, no effect of Z on production efficiency (input oriented frame-
work). Scatter plot and smoothed regression of θ̂FDH,n(x, y | z)/θ̂FDH,n(x, y) on Z (top panel)

and of θ̂DEA,n(x, y | z)/θ̂DEA,n(x, y) on Z(bottom panel).

The statistics on the efficiency scores and the indicators of convexity are given in Table

5. They mainly confirm the comments given for the preceding scenarios.
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Figure 6: Simulated example 3, no effect of Z on production efficiency (input oriented frame-
work). Scatter plot and smoothed regression of θ̂m,n(x, y | z)/θ̂m,n(x, y) on Z (top panel),

and of θ̂C
m,n(x, y | z)/θ̂C

m,n(x, y) on Z (bottom panel).

θ̂DEA,n(x, y) θ̂DEA,n(x, y | z) θ̂C
m,n(x, y) θ̂C

m,n(x, y | z)
Average 0.761 0.810 0.836 0.889
St. Dev. 0.170 0.174 0.188 0.162
Minimum 0.306 0.344 0.353 0.378
# Eff. Obs 5 15 19 42

θ̂FDH,n(x, y) θ̂FDH,n(x, y | z) θ̂m,n(x, y) θ̂m,n(x, y | z)
Average 0.811 0.872 0.872 0.889
St. Dev. 0.176 0.170 0.190 0.162
Minimum 0.344 0.344 0.380 0.378
# Eff. Obs 17 41 29 42

Indicators IC ICZ ICm ICZm

# ≥ 0.99 13 31 14 100
# ≥ 0.95 43 50 58 100
# ≥ 0.90 78 68 98 100
# ≥ 0.85 98 84 100 100
# ≥ 0.80 100 94 100 100
# ≥ 0.75 100 97 100 100
# ≥ 0.70 100 100 100 100
# ≥ 0.65 100 100 100 100

Table 5: Descriptive statistics of efficiency scores estimated over 100 observations, for the
simulated example 3. Average, Standard Deviation, Minimum value, number of efficient
observations, and distribution of the indicators of convexity.
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6.2 Real data set

We illustrate our methodology analyzing Aggressive-Growth US Mutual Funds data. Several

studies have applied efficiency analysis methods to evaluate the performance of mutual funds

(see e.g. Murthi, Choi, and Desai,1997, and the references reported in Daraio and Simar,

2004a). We apply an input oriented framework in order to evaluate how mutual funds

perform in terms of their risk (as expressed by standard deviation of return) and transaction

costs (including expense ratio and turnover) management (so that we have p = 3 inputs).

The traditional output in this framework is the total return of funds. Sengupta (2000)

uses market risks as an input in his work, assuming that it has a favorable (positive) effect

on the performance of the funds. In our illustration we use market risks as environmental

variable (Z), to investigate its effect on our data, i.e. if it is detrimental or favorable to

the performance of mutual funds in the period under consideration. We used 3 inputs (risk,

expense ratio and turnover), 1 output (return), 1 environmental factor (market risks) and 129

observations. For a detailed description and analysis of these data as well as a comparison

with other US mutual funds category by objectives, see Daraio and Simar (2004a).

Figure 7 provides the nonparametric regression of the ratios between the conditional and

unconditional efficiency measures on Z (market risks) for the US Aggressive Growth mutual

funds.
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Figure 7: US Aggressive Growth Mutual Funds data (input oriented framework). Scatter plot
and smoothed regression of θ̂FDH,n(x, y | z)/θ̂FDH,n(x, y) on Z (top panel) and of θ̂DEA,n(x, y |
z)/θ̂DEA,n(x, y) on Z(bottom panel).

Globally these plots indicate that for a large part of the range of Z (Z ≤ 0.6), a neu-
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tral effect of the market risk is observed and that the positive effect (globally assumed in

Sengupta’s approach) appears only for larger values of Z. This illustrates how our tools

can be useful in an exploratory phase to detect the effect of environmental variables on the

production process, without any a priori assumption.

Figure 8 shows the picture for the robust versions of the frontiers. For order−m efficiency

measures we choose a value of m = 75, which corresponds to a level of robustness at 10%.

The plots lead roughly to the same conclusions on the effect of Z on the production process

for the non-convex case (top panel) but for the robust order-m convex frontier estimators,

the effect of Z is less clear to interpret: here some favorable effect is also detected for smaller

values of Z. Since non-convex estimators are always consistent (even under convexity) but

convex estimators are only consistent under convexity, this difference for the robust efficiency

estimators should warn for potential non-convexities in the production process. This will be

confirmed in the analysis of the indicators of convexity below.
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Figure 8: US Aggressive Growth Mutual Funds data (input oriented framework). Scatter
plot and smoothed regression of θ̂m,n(x, y | z)/θ̂m,n(x, y) on Z (top panel), and of θ̂C

m,n(x, y |
z)/θ̂C

m,n(x, y) on Z (bottom panel).

In this mutual funds example, an empirical investigation on convexity is indeed of great

importance. This analysis could be useful to reveal the strategic behavior of mutual funds

managers concerning the substitutability among the management dimensions: risks, turnover

and transaction costs.

From a performance point of view, the knowledge of the strategic behavior adopted by

funds in managing risks, turnover and transaction costs as substitute resources (disclosed

by the verification of the convexity hypothesis) or as non substitute inputs (disclosed by

28



the refusing of the convexity hypothesis) could shed lights on the type of strategic goals

pursued: mixed strategy (substitution) the latter, pure strategy (specialization) the former.

In particular, a simple check might be done on the analyzed funds to see how the funds

that apply a mixed strategy (i.e. use their inputs as substitutes, i.e. verify convexity) have

performed compared with the funds that have specialized their management along some non

substitutive combinations of inputs (as here we applied an input oriented framework).

To investigate convexity with this data set, we provide in Table 6, as for the simulated

examples, some descriptive statistics of the different input efficiency measures and some

information on the distribution of the indicators of convexity. This table deserves some

comments:

– The efficiency scores for convex and non-convex technologies have the same order of

magnitude when we look at their average, although their ratio is substantially lower

than 1 in all the cases. The full distribution of the convexity indicators brings more

information:

– The distribution of IC is not very concentrated near 1 (only 23 % of observations

- 30 over 129 - have values higher than 0.99). The robust version of the indicator,

ICm, is even less concentrated near 1: around 50 % of observations - 66 over 129

- have values larger than 0.85. Hence, in this exploratory phase, the assumption

of convexity of the attainable set seems to be not confirmed.

– The analysis of the distributions of ICZ and ICZm (very similar), might indicate

more convexity when looking at the attainable production sets, conditionally to

the level of the market risks Z, since the distributions are more concentrated

near 1 (more than 100 observations over 129 have the indicators ICZ and ICZm

greater than 0.90).

– All these comments are based on descriptive considerations. As a matter of fact, the

observed differences may or may not be significant: this indicates the need for formal

testing procedures (evaluation of p-values,. . . ) particularly in the analysis of real data

sets.
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θ̂DEA,n(x, y) θ̂DEA,n(x, y | z) θ̂C
m,n(x, y) θ̂C

m,n(x, y | z)
Average 0.549 0.844 0.582 0.902
St. Dev. 0.170 0.164 0.178 0.135
Minimum 0.305 0.417 0.340 0.489
# Eff. Obs 6 21 6 39

θ̂FDH,n(x, y) θ̂FDH,n(x, y | z) θ̂m,n(x, y) θ̂m,n(x, y | z)
Average 0.608 0.888 0.687 0.904
St. Dev. 0.207 0.159 0.197 0.144
Minimum 0.310 0.417 0.362 0.453
# Eff. Obs 20 69 22 69

Indicators IC ICZ ICm ICZm

# ≥ 0.99 30 56 12 82
# ≥ 0.95 84 69 27 96
# ≥ 0.90 93 101 44 107
# ≥ 0.85 106 123 66 121
# ≥ 0.80 110 127 89 123
# ≥ 0.75 114 129 110 124
# ≥ 0.70 116 129 120 124
# ≥ 0.65 121 129 123 126

Table 6: Descriptive statistics of efficiency scores estimated over the 129 observations, for the
US Aggressive Growth Mutual Funds data. Average, Standard Deviation, Minimum value,
number of efficient observations, and distribution of the indicators of convexity.

7 Conclusions

Motivated by the consideration that there exist empirical applications in which convexity

could be reasonable we propose in this paper a conditional DEA estimator and a robust

version of it based on the concept of order-m frontier. We describe also how these measures

can be estimated and we address the problem of their practical computation. These newly

introduced measures complete the exploratory tools available for gauging the performance

of DMUs when extra information on operating environment are available.

We report also some indicators of convexity for several conditional and unconditional,

full frontier and robust efficiency measures, extending previous indicators proposed in the

literature. Finally, we illustrate all these concepts trough the analysis of some empirical

examples: simulated and real data sets.

The analysis of the distributions of convexity estimators in the mutual funds example
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shows that convexity is not clearly established and non-substitutability among the manage-

ment dimensions (risks, turnover and transaction costs) might be at place in US Aggressive

Growth funds. This illustration suggests that the convexity issue should be carefully taken

into account in applied works. As a matter of fact, even when convexity could be reason-

able from a theoretical point of view, its validity should be empirically checked and verified.

Moreover, non-convex estimators are always consistent (even under convexity), whilst convex

estimators are consistent only under the convexity assumption.

The indicators of convexity presented here, even if useful for descriptive and exploratory

purpose, are not able to give a definitive answer about the convexity assumption of the

corresponding attainable sets. In fact, the conclusions are drawn in terms of estimated

technologies instead of true technologies. A statistical test procedure is requested to make

inference with respect to the true technology. In other words, for a particular observation or

for the global technology, without a formal testing procedure, it is impossible to determine

if the values of the various indicators of convexity less than one are due to non convexity or

due to sampling variation. Bootstrap techniques are the only way to perform these tests in

a rigorous way. The implementation of the bootstrap should follow the lines of Simar and

Wilson (2001, 2002).

Rigorous statistical procedures for testing convexity both in the traditional inputs-outputs

representation of the production process and in the enlarged inputs-outputs-external factors

framework are left for future development of this work.
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Appendix: Bandwidth selection

DS propose a simple data-driven procedure for choosing the bandwidth, based on a k-nearest

neighbor method, based on likelihood cross-validation for the density of Z.

In a first step, a bandwidth h which optimizes the estimation of the density of Z is

selected, based on the likelihood cross validation criterion, using a k-NN (Nearest Neigh-

borhood) method (see e.g. Silverman, 1986). This allows to obtain bandwidths which are

localized, insuring we have always the same number of observations Zi in the local neighbor

of the point of interest z when estimating the density of Z.

Hence, for a grid of values of k, we evaluate the leave-one-out kernel density estimate of

Z, f̂
(−i)
k (Zi) for i = 1, . . . , n and find the value of k which maximizes the score function:

CV (k) = n−1
n∑

i=1

log
(
f̂

(−i)
k (Zi)

)
,

where

f̂
(−i)
k (Zi) =

1

(n− 1)hZi

n∑

j=1,j 6=i

K

(
Zj − Zi

hZi

)
,

and hZi
is the local bandwidth chosen such that there exist k points Zj verifying |Zj −Zi| ≤

hZi
.

In a second step, taking into account for the dimensionality of x and y, and the sparsity

of points in larger dimensional spaces, the local bandwidths hZi
are expanded by a factor

1 + n−1/(p+q), increasing with (p + q) but decreasing with n. For more details, see Daraio

(2003).

We notice that the calculations of efficiency scores and the evaluation of the influence of

external factors is not too sensitive to the choice of the procedure for bandwidth selection. As

a matter of fact, we obtained very similar results by applying the global bandwidth obtained

with the Sheather and Jones (1991) method for kernel density estimation of Z. See Daraio

and Simar (2004b), where a comparison of these bandwidth selection methods is proposed.
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