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Abstract

This paper address the problem of estimating the monotone boundary of a noncon-

vex set in a full nonparametric and multivariate setup. This is particularly useful in

the context of productivity analysis where the efficient frontier is the locus of optimal

production scenarios. Then efficiency scores are defined by the distance of a firm from

this efficient boundary. In this setup, the Free Disposal Hull (FDH) estimator has been

extensively used due to its flexibilty and because it allows nonconvex attainable pro-

duction sets. However the nonsmoothness and discontinuities of the FDH is a drawback

for conducting inference in finite samples. In particular, it is shown that the bootstrap

of the FDH has poor performances and so is not useful in practice. Our estimator,

the LFDH, is a linearized version of the FDH, obtained by linear interpolation of ap-

propriate FDH-efficient vertices. It offers a continuous, smooth version of the FDH.

We provide an algorithm for computing the estimator, and we establish its asymp-

totic properties. We also provide an easy way to approximate its asymptotic sampling

distribution. The latter could offer bias-corrected estimator and confidence intervals

of the efficiency scores. In a Monte-Carlo study, we show that these approximations

works well even in moderate sample sizes and that our LFDH estimator outperforms,

both in bias and in MSE the original FDH estimator.
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1 Introduction

This paper address the problem of estimating the monotone boundary of nonconvex set in

a full nonparametric and multivariate setup. The problem found its sources in productiv-

ity analysis and efficiency measurements of firms. Foundations of the economic theory on

productivity and efficiency analysis date back to the works of Koopmans (1951) and Debreu

(1951) on activity analysis. Shephard (1970) proposes a modern formulation of the problem.

Following these lines, we consider a production technology where the activity of the firms is

characterized by a set of inputs x ∈ IRp
+ used to produce a set of outputs y ∈ IRq

+. In this

framework the production set is the set of technically feasible combinations of (x, y). It is

defined as

Ψ = {(x, y) ∈ IRp+q
+ | x can produce y}. (1.1)

Assumptions are usually done on this set, such as free disposability of inputs and outputs,

meaning that if (x, y) ∈ Ψ, then (x′, y′) ∈ Ψ, as soon as1 x′ ≥ x and y′ ≤ y. In some cases,

convexity of Ψ is also assumed (see Shephard, 1970, for more details).

As far as efficiency of a firm is of concern, the boundaries of Ψ are of interest. The efficient

boundary (frontier) of Ψ is the locus of optimal production scenarios (minimal achievable

input level for a given output or maximal achievable output given the input). The Farrell-

Debreu efficient frontier is defined in a “radial sense” and the efficiency scores for a given

production scenario (x, y) ∈ Ψ, are defined as:

Input oriented : θ(x, y) = inf{θ ≥ 0 | (θx, y) ∈ Ψ} (1.2)

Output oriented : λ(x, y) = sup{λ ≥ 1 | (x, λy) ∈ Ψ} (1.3)

If (x, y) is inside Ψ, θ(x, y) ≤ 1 is the proportionate reduction of inputs a unit working at

the level (x, y) should perform to achieve efficiency. If θ(x, y) = 1, the unit is on the efficient

frontier of Ψ. In the output direction, we have λ(x, y) ≥ 1 represents the proportionate

increase of outputs the unit operating at level (x, y) should attain to be considered as being

efficient and if λ(x, y) = 1, the unit is on the efficient frontier.

In practice Ψ is unknown and so has to be estimated from a random sample of production

units {(xi, yi) | i = 1, . . . , n}, where we assume that Prob((xi, yi) ∈ Ψ) = 1 (referred in the

literature as deterministic frontier models). So the problem is related to the problem of

estimating the support of the random variable (x, y) where, for mathematical convenience,

we will assume that Ψ is compact. The most popular nonparametric estimators are based

1From here and below inequalities between vectors a, b ∈ R
k have to be understood element by element.

Writing a ≤ b means ai ≤ bi, for i = 1, . . . , k.
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on envelopment ideas: we search for estimators of Ψ which envelops at best the observed

data points. The statistical properties of these estimators are now well established (see e.g.

Simar and Wilson, 2000, for a recent survey).

The most flexible nonparametric estimator, initiated by Deprins, Simar and Tulkens

(1984), is the Free Disposal Hull (FDH) estimator. It is provided by the free disposal hull

of the sample points:

Ψ̂FDH =
{
(x, y) ∈ IRp+q

+ | y ≤ yi, x ≥ xi, i = 1, . . . , n
}

. (1.4)

The FDH efficiency scores are obtained by plugging Ψ̂FDH in equations (1.2) and (1.3) in

place of the unknown Ψ. The asymptotic properties of the resulting estimators are provided

by Park, Simar and Weiner (2000). In summary, the error of estimation converges at a rate

n1/(p+q) to a limiting Weibull distribution.

If we assume that Ψ is convex, the convex hull of Ψ̂FDH provides the Data Envelop-

ment Analysis (DEA) estimator of Ψ, initiated by Farrell (1957) and popularized as linear

programming estimator by Charnes, Cooper and Rhodes (1978). It is defined as

Ψ̂DEA = {(x, y) ∈ IRp+q
+ | y ≤

n∑

i=1

γiyi ; x ≥
n∑

i=1

γixi for (γ1, . . . , γn)

such that

n∑

i=1

γi = 1 ; γi ≥ 0, i = 1, . . . , n}. (1.5)

It is the smallest free disposal convex set covering all the data points. When using Ψ̂DEA

as the estimated attainable set, the asymptotic properties of resulting DEA efficiency scores

have been investigated in Kneip, Park and Simar (1998), Kneip, Simar and Wilson (2003)

and Jeong (2004). In summary, the error of estimation converges at a rate n2/(p+q+1) to a

limiting nondegenerate distribution.

These nonparametric estimator are very popular and very attractive due to their flexibil-

ity. Under convexity assumption, the DEA estimator provides a piecewise linear continuous

“convex” frontier estimate, but the less restrictive FDH estimator, allowing for nonconvex at-

tainable sets provides a discontinuous boundary estimate (for p = q = 1, it is a “stair-case”

monotone function) whereas the true unknown boundary is often assumed to be smooth

(continuous and differentiable). As explained below, the nonsmoothness and the discontinu-

ity of the FDH estimator make it very difficult to use for inference in finite sample and the

bootstrap (even in its consistent version) fails to provide sensible practical solutions (poor

finite sample properties).

The objective of this paper is to propose a smooth (linearized) version of the FDH

estimator allowing nonconvex attainable set Ψ which address the main drawbacks of the
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FDH estimator. Our resulting estimator appears indeed to behave better than the FDH in

finite samples and its asymptotic distribution can be easily evaluated in practice. The paper

is organized as follows. Section 2 summarizes the main properties of the FDH estimator

then, Section 3 presents our linearized version of the FDH (LFDH) and the practical way for

computing the corresponding efficiency scores. Section 4 analyzes the asymptotic properties

of our estimator and suggests bias-correction and confidence intervals for the frontier and

for the efficiency scores. Section 5 investigates the finite samples properties of our estimator

and shows its superiority over the original FDH estimator. Section 6 concludes. In the

Appendix, we show that the subsampling bootstrap is consistent for the FDH estimators

but we indicate by some simulation its practical limitations in finite sample, advocating

again for the use of our LFDH estimator.

2 The FDH estimator

Given a sample Xn = {(xi, yi), i = 1, · · · , n} ⊂ Ψ, the FDH estimate of Ψ was defined in

(1.4). The resulting FDH estimators of the efficiency scores for a firm operating at the level

(x, y) are defined by

θ̂n(x, y) = min{θ ≥ 0 | (θx, y) ∈ Ψ̂FDH},

λ̂n(x, y) = max{λ ≥ 1 | (x, λy) ∈ Ψ̂FDH}.

One may easily verify that

θ̂n(x, y) = min
i|Yi≥y

max
1≤k≤p

x
(k)
i

x(k)
, (2.1)

λ̂n(x, y) = max
i|Xi≤x

min
1≤k≤q

y
(k)
i

y(k)
. (2.2)

where a(k) denotes the k-th component of the vector a.

From now on, for the presentation, we will only focus on the input orientation, but of

course, all the results and properties are easily translated into the output oriented case.

Park, Simar and Weiner (2000) analyze the asymptotic properties of the estimators. They

rely on some regularity assumptions on the Data Generating Process.

Assumption 1. θ(x, y) is continuously (partially) differentiable in (x, y) ∈ Ψ, and its

partial derivatives are all nonzero for all (x, y) ∈ Ψ.

Assumption 2. (xi, yi)’s are iid with a density f which is continuous, and f(x, y) > 0 on

Ψ and f(x, y) = 0 outside Ψ.
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It is then shown that n1/(p+q)(θ̂n(x, y) − θ(x, y)) has a limiting Weibull distribution

W (µxy, p + q) where µxy is a parameter depending on the shape of the boundary and on

the density f at the boundary point. The expression of µxy and a way for estimating it in

finite sample is provided in Park, Simar and Weiner (2000). The curse of dimensionality is a

particularly sensible issue in this setup, as shown by their simulations and makes the use of

the estimated limiting Weibull distribution rather imprecise in small sample (say n smaller

than 1000, when p + q ≥ 5).

In fact, in addition to the curse of dimensionality shared by most of the nonparametric

techniques, the nonsmoothness and the discontinuity of FDH estimator make its use very

difficult for statistical inference in finite sample. An alternative for doing inference might be

the bootstrap. In the Appendix A, we show indeed that a subsampling bootstrap provides

a consistent approximation of the sampling distribution of FDH estimators. This bootstrap

is very easy to implement and avoids the problem of estimating the unknown parameter of

the limiting Weibull.

However, one may doubt on its usefulness in practice. In fact, from our small simu-

lation study in the Appendix, it is verified that the subsampling bootstrap is not a good

idea particularly for the confidence interval. The main reason is that the FDH estimate is

determined by only one sample point, and each subsampling chooses this point too often.

Also, the choice of the optimal subsample size remains an open and sensible question, as

shown in our simulations.

Since under our assumptions the true frontier is continuous, we might hope to improve

the performance of the FDH estimator by smoothing its corresponding frontier. This is the

idea of the linearized free disposal hull (LFDH) estimator defined in the next section. As

shown below, it turns out that indeed the LFDH estimator outperforms the FDH estimator.

3 The LFDH estimator

3.1 Main idea

Linear interpolation is certainly the simplest plan for smoothing the FDH frontier. The

idea is to interpolate the vertices of the free disposal hull of a given data set to get the

smoothed version of FDH estimate. In a two dimensional setup (p = q = 1), this would be

easy to do, by drawing the polygonal line smoothing the staircase production frontier. But

in multidimensional setups it is not straightforward to identify the points which are to be

interpolated among the vertices.

In this section we propose an algorithm for doing this, which results in the linearly
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interpolated FDH (LFDH) efficiency scores. We will consider the estimation of θ(x0, y0) (or

of λ(x0, y0), for the output oriented case) for a given firm (x0, y0). A sketch of the idea is as

follows:

Step 1: Identify the vertices of the free disposal hull built by the observations Xn.

Step 2: Move the vertices to a convex surface along the direction parallel to x0 (or y0 for

the output oriented case).

Step 3: Compute the convex hull of the moved points.

Step 4: Identify the vertices constituting the facet penetrated by the ray θx0 (or λy0 for the

output oriented case).

Step 5: Interpolate them.

A precise algorithm for this idea shall be described in the next subsection. For the practical

implementation, Step 2–3 seems rather ambiguous when both input and output variables

are multidimensional. Hence we will translate the problem, by considering a new coordinate

system, where the frontier will be described by a scalar function and multidimensional co-

variates. This idea is analogous to the idea developed in Kneip, Simar and Wilson (2003)

when analyzing the properties of the DEA estimator.

For this, we need to build an orthonormal basis of a (d− 1) dimensional space t⊥ = {v ∈

IRd | t′v = 0} for a given vector t ∈ IRd, where ′ denotes the transpose of a vector or a matrix.

An algorithm to obtain an orthonormal basis of t⊥ can be given as follows:

ONB 1: Compute Sj =
(∑j

i=1 t2i

)1/2

for j = 1, · · · , d.

ONB 2: Set j = 1.

ONB 3: If Sj = 0, then set

vj =
(

0, 0, · · · , 0︸ ︷︷ ︸
j−1

, 1, 0, · · · , 0︸ ︷︷ ︸
d−j

)′
.

Otherwise, set

vj =
(

t1cj, t2cj, · · · , tjcj︸ ︷︷ ︸
j

, − Sj/Sj+1, 0, · · · , 0︸ ︷︷ ︸
d−j−1

)′
,

where cj = tj+1/(SjSj+1).

ONB 4: If j = d − 1 then STOP. Otherwise, set j = j + 1 and goto [ONB 3].
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One may easily verify that those vj ’s obtained by the above algorithm are all orthogonal to

the vector t ∈ IRd, and that {vj | j = 1, · · · , d − 1} are linearly independent. In addition

v′
jvj = 1 holds for all j = 1, · · · , d − 1. Thus {vj | j = 1, · · · , d − 1} forms an orthonormal

basis for the (d − 1)-dimensional space t⊥.

3.2 Definition of the LFDH estimator

Fix (x0, y0) ∈ IRp
+ × IRq

+ the point of interest. We are to define a linearly interpolated FDH

(LFDH) efficiency score at (x0, y0) as an estimator of θ(x0, y0). For brevity we restrict the

detailed presentation for the input efficiency scores. In a remark below we give the algorithm

for the output orientation.

Let XB be the set of the FDH-efficient vertices obtained by Xn, i.e.

XB =
{

(xi, yi) ∈ Xn | θ̂n(xi, yi) = 1 = λ̂n(xi, yi), i = 1, · · · , n
}

, (3.1)

and let nB be the cardinality of XB. The problem is now to identify the points to be

interpolated among the nB points in XB.

Let {vj | j = 1, · · · , p−1} be an orthonormal basis for x⊥
0 . Consider a transformation rx0

from IRp
+ to IRp−1 × IR+ :

rx0
: x 7→

(
x′v1, x′v2, · · · , x′vp−1,

x′x0√
x′

0x0

)
. (3.2)

Then (r
(1)
x0

(x), · · · , r
(p−1)
x0

(x)) is the coefficient vector of x in the space spanned by {vj | j =

1, · · · , p−1} and r
(p)
x0

(x) is the distance between x and x⊥
0 . Therefore, it holds that rx0

(x0) =

(0, · · · , 0,
√

x′
0x0). Moreover, rx0

is a one-to-one transformation, and the following reciprocal

relation holds

x =

p−1∑

j=1

r(j)
x0

(x)vj + r(p)
x0

(x)
x0√
x′

0x0

.

When p = 1, we have rx0
(x) = x for all x ∈ IR+.

Consider now a transformation hx0,y0
: IRp

+ × IRq
+ 7→ IRp−1+q × IR+ which maps (x, y) to

(z, u), where

z =
(
r
(1)
x0

(x), · · · , r
(p−1)
x0

(x), y(1) − y
(1)
0 , · · · , y(q) − y

(q)
0

)′
,

u = r
(p)
x0

(x).
(3.3)

Note that hx0,y0
(x0, y0) = (0, 0, · · · , 0,

√
x′

0x0). See Figure 1 for a graphical illustration of

the new coordinate system given by the transform hx0,y0
.
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0
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u

z
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2

1

2

x

y

x

Figure 1: An illustration of the new coordinate system (z, u) in the case of p = 2 and q = 1.

Applying the transform in (3.3) to the points in XB, we get the set of transformed data

in the new coordinate system (z, u):

{(zi, ui) | (zi, ui) = hx0,y0
(xi, yi), (xi, yi) ∈ XB} .

Now we are to identify the adjacent zi’s among them which forms a (smallest) simplex in

z-space containing z = 0. Those adjacent zi’s must satisfy the property that the interior

of the circumcircle determined by the adjacent zi’s contains no other zi’s. This is closely

related to Delaunay triangulation (or tessellation) in computational geometry, see Barber,

Dobkins and Huhdanpaa (1996) and Section 5.3 in O’Rourke (1998). A simple way to do

this, suggested by Brown (1979), is as follows. By substituting ui with wi = z′izi for each

i = 1, · · · , nB, we get the moved points {(zi, wi) | i = 1, · · · , nB} laid on the strictly convex

surface u = z′z in the coodinate system (z, u). Next, compute the convex hull of (zi, wi)’s
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and identify the set of indices I defined by

I = {i | (zi, wi) makes the facet of the convex hull containing the origin (z = 0),

i = 1, · · · , nB}. (3.4)

That is, if we define γ∗ = (γ∗
1 , · · · , γ∗

nB
) by

γ∗ = arg min
γ

{
nB∑

i=1

γiwi

∣∣∣∣∣

nB∑

i=1

γizi = 0,

nB∑

i=1

γi = 1, γi ≥ 0, i = 1, · · · , nB

}
,

then we have I = {i | γ∗
i > 0}. For a graphical illustration of the idea so far, see Figure 2.

+

*

*

*

*

*

*

(x ,y )00

+

+

+

+

+

u

z
u=z'z

x

y

Figure 2: Identifying the adjacent points which are to be interpolated. The crosses (+)

represent (zi, ui)’s and the asterisks (*) represent the correspoding (zi, wi)’s.

Finally, define the LFDH estimator θ̃n(x0, y0) by

θ̃n(x0, y0) = min{θ > 0 | θx0 ≥
∑

i∈I γixi, y0 ≤
∑

i∈I γiyi

for some γi ≥ 0, i ∈ I such that
∑

i∈I γi = 1}.
(3.5)

Note that the proposed estimator coincides with a DEA estimator with reference set (sample

points) given by the points {(xi, yi) | i ∈ I}. We note also that it satisfies the free dispos-

ability assumption. Moreover, we are able to build the corresponding LFDH estimator of
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the attainable set Ψ by

Ψ̂LFDH =
{

(x, y) ∈ IRp+q
+

∣∣∣ x ≥ θ̃n(t, s)t, y ≤ s, (t, s) ∈ Ψ̂FDH

}
. (3.6)

Remark 1. The algorithm for output LFDH efficiency score is given similarly. Define

y⊥
0 = {v ∈ IRq

+ | y′
0v = 0} and let {vj | j = 1, · · · , q − 1} be an orthonormal basis for y⊥

0 .

Consider a transformation ry0
from IRq

+ to IRq :

ry0
: s 7→

(
s′v1, · · · , s′vp−1,

s′y0√
y′

0y0

)
.

For each observation (xi, yi) ∈ XB, apply a transform (xi, yi) 7→ (zi, wi) :

zi =
(
x

(1)
i − x

(1)
0 , · · · , x

(p)
i − x

(p)
0 , ry0

(yi)
(1), · · · , ry0

(yi)
(q−1)

)′

wi = z′izi

for i = 1, · · · , nB. Next, we construct a convex hull of the transformed data and identify the

set of indices defined by

I = {i | (zi, wi) makes the facet of the convex hull containing z = 0}.

Hence we have got {(xi, yi) ∈ XB | i ∈ I} which are to be interpolated. Finally the LFDH

estimator is given by

λ̃n(x0, y0) = max{θ ≥ 1 | x0 ≥
∑

i∈I γixi, λy0 ≤
∑

i∈I γiyi

for some γi ≥ 0, i ∈ I such that
∑

i∈I γi = 1}.
(3.7)

Remark 2. LFDH estimator can be regarded as a rolling-ball estimator by Hall, Park and

Turlach (2002) with variable ball size. LFDH determines the smoothing parameter, i.e. the

ball size, automatically in such a way that it locally adapts to the shape of the given cloud

of points.

4 Asymptotic distribution

4.1 Asymptotics of LFDH estimator

Recall the transformation hx0,y0
: IRp

+ × IRq
+ 7→ IRp−1+q × IR+ given by

zi =
(
rx0

(xi)
(1), · · · , rx0

(xi)
(p−1), y

(1)
i − y

(1)
0 , · · · , y

(q)
i − y

(q)
0

)′

ui = rx0
(xi)

(p)
(4.1)
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for i = 1, · · · , n. We denote the transformed dataset by X̃n:

X̃n = {(zi, ui) | i = 1, · · · , n}.

In the new coordinate system (z, u), the attainable set Ψ is reexpressed as

G = {(z, u) ∈ IRp−1+q × IR+ | (z, u) = hx0,y0
(x, y), (x, y) ∈ Ψ}. (4.2)

And we can define the boundary of Ψ through its correspondent in the coodinate system

(z, u):

g(z|x0, y0) = inf{u > 0 | (z, u) ∈ G}. (4.3)

Hence the set G can equivalently be represented by the function g as well:

G = {(z, u) ∈ IRp−1+q × IR+ | u ≥ g(z|x0, y0)}.

Furthermore, since the point of interest (x0, y0) is transformed by hx0,y0
into (0, |x0|), we

have

θ(x0, y0) = |x0|
−1g(0|x0, y0), (4.4)

where | · | denotes the Euclidean norm of a vector. See Figure 3 for a graphical illustration.

x

y

(x  , y  )0 0

0

0

x

y
u

z
u=g(z)

Psi
G

g(0)

Figure 3: Ψ, G and g in the case of p = 1 and q = 1.
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The following assumptions are the analogy in the coodinate system (z, u) of Assumption

1 and Assumption 2 in Section 2.

Assumption 1a. The function g(z) is continuously differentiable in z, and g1(z) is nonsin-

gular for all z, where g1(z) is the diagonal matrix having (∂/∂z)g(z) as its diagonal elements.

Assumption 2a. (zi, ui)’s are iid with a density f̃ which is continuous and positive on G.

In particular f̃(z, g(z)) is bounded away from zero for all z.

Define the LFDH estimator, ĝLFDH(z|x0, y0), of g(z|x0, y0) for z ∈ IRp−1+q by the fol-

lowing procedure. Firstly, identify the vertices of the free disposal hull of Xn and apply

the transform in (4.1) on the vertices to get {(zi, ui) | i = 1, · · · , nB}. Secondly, move

{(zi, ui) | i = 1, · · · , nB} to a convex surface along the u-axis. Thirdly, build the convex

hull of the projected points and identify the set of indices Iz such that {(zi, ui) | i ∈ Iz} is

involved in the facet of the convex hull computed at z. Note that I0 is identical to I in

(3.5). Finally define the LFDH estimator of g(z|x0, y0) by

ĝLFDH(z|x0, y0) = min

{∑
i∈Iz

γiui

∣∣∣∣
∑

i∈Iz
γizi = z for some γi ≥ 0, i ∈ Iz

such that
∑

i∈Iz
γi = 1

}
.

(4.5)

Note that, in the coordinate system (z, u), ĝLFDH(z|x0, y0) is the highest piecewise linear

surface below (zi, ui)’s. Moreover, it is easily verified that

θ̄z,n = min{θ > 0 | θx0 =
∑

i∈Iz
γixi, y0 =

∑
i∈Iz

γiyi

for some γi ≥ 0, i ∈ Iz such that
∑

i∈Iz
γi = 1}

is equal to |x0|
−1ĝLFDH(z|x0, y0).

Under Assumption 1a–2a one may prove that, as n→ ∞,

θ̄z=0,n = θ̃n(x0, y0)

holds with probability tending to one, see Proposition 2 in Jeong and Park (2004). Hence it

holds that with probability tending to one

ĝLFDH(0|x0, y0) = |x0| · θ̃n(x0, y0). (4.6)

Consequently, the asymptotic behaviour of θ̃n(x0, y0) is equivalent to that of ĝLFDH(0|x0, y0).

To simplify the notation, we will omit ‘|x0, y0’ in g(·|x0, y0) and ĝLFDH(·|x0, y0) from now on.

Consider an estimation of a continuous frontier function g(z), z ∈ IRp−1+q. Due to the

complexity in multidimensional situation it is not easy to derive the explicit formula for the
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asymptotic distribution of ĝLFDH(z). So we suggest to follow the strategy used in Hwang,

Park and Ryu (2002), Jeong (2004) and Jeong and Park (2004). Omitting the detailed proofs

which are very similar to those in Jeong and Park (2004), we sketch the main steps to obtain

the limit distribution as follows. Consider a linear transformation that takes (zi, ui) to

z∗i = n1/(p+q)g1(z)(zi − z)

u∗
i = n1/(p+q){ui − g(z)}.

Then (z∗i , u
∗
i ) has as its frontier the surface with the equation

u∗ = 1′z∗ + o(1)

uniformly on any compact set of z∗, where 1 = (1, 1, . . . , 1)′. Moreover, for large n, the

density in the new coordinate system (z∗, u∗) is approximated by n−1‖g1(z)‖−1f0 uniformly

in the region
{

(z∗, u∗)
∣∣∣ |z∗| ≤ εnn

1/(p+q), 1′z∗ ≤ u∗ ≤ 1′z∗ + εnn1/(p+q)
}

for each sequence εn → 0, where f̃0 denotes the density at (z, g(z)) and ‖ · ‖ denotes the

determinant of a matrix.

Define κ = {‖g1(z)‖/f̃0}
1/(p+q), and consider a new random sample from the uniform

distribution on

Bκ =
{

(z∗, u∗)
∣∣ z∗ ∈ [−(κ/2)n1/(p+q), (κ/2)n1/(p+q)]p−1+q,

1′z∗ ≤ u∗ ≤ 1′z∗ + κn1/(p+q)
}
.

(4.7)

Note that the uniform density on this region is n−1‖g1(z)‖−1f̃0. Let ĝ∗
LFDH(·) be the version

of ĝLFDH(·) obtained from the new sample. Then, according to the same arguments for

Theorem 1 in Jeong and Park (2004), we have the following theorem.

Theorem 4.1. Under Assumption 1a–2a, For z ∈ IRp−1+q, n1/(p+q){ĝLFDH(z) − g(z)} and

ĝ∗
LFDH(0) have the same limit distribution.

Corollary 4.1. Under Assumption 1–2, n1/(p+q){θ̃n(x0, y0) − θ(x0, y0)} and ĝ∗
LFDH(0)/|x0|

have the same limit distribution.

Once the unknown parameters f̃0 and g1(z) are determined, the limit distribution of

LFDH estimator θ̃n(x0, y0) can be simulated based on this result: we only need to simulate

a large number of times the value ĝ∗
LFDH(0), each of which being computed fropm a random

sample drawn from the uniform on Bκ. Of course, f̃0 and g1(z) are unknwon, but they can

be easily and consistently estimated as follows.

12



For estimating f̃0, we propose to use the histogram type version in Jeong and Park (2004):
∑n

i=1I{(zi, ui) ∈ D(δ)}

n · mes(D(δ))
(4.8)

where D(δ) is the region in the coordinate system (z, u) defined by, for δ > 0,

D(δ) =
{
(z, u)

∣∣ z ∈ [−δ/2, δ/2]p−1+q, ĝLFDH(0) ≤ u ≤ ĝLFDH(0) + δ
}

and mes(A) denotes the Lebesgue measure of a set A ∈ IRp+q. Its consistency is directly

derived by the consistency of ĝLFDH, as long as δ is chosen to satisfy nδp+q→ ∞ as n→ ∞,

see Theorem 2 in Gijbels, Mammen, Park and Simar (1999).

For estimating g1(z), we propose to use the slope of the facet involved in ĝLFDH(z), see

Park (2001) and Hall and Park (2002). The slope can be easily obtained by computing the

hyperplane in the coordinate system (z, u) which passes through the set of points

{(zi, ui) | i ∈ Iz} ∪ {(z, ĝLFDH(z))}.

That is, the estimator of ‖g1(z)‖ is defined by the product of (β0, β1, · · · , βp−1+q) which is

the solution of the system of equations below:

ui = β0 +

p−1+q∑

j=1

βjz
(j)
i , i ∈ Iz. (4.9)

Note that the cardinality of Iz is greater than or equal to 1 and less than or equal to p + q

by construction. In fact it is equal to p + q with probability tending to one as n→ ∞, and

hence the system (4.9) is nonsingular in probability. When the cardinality of Iz is less than

p + q, we suggest to add the equation

ĝLFDH(z) = β0 +

p−1+q∑

j=1

βjz
(j)

to (4.9) at first. If the singularity still exists, then, by the ascending order of |zi − z| for zi’s

such that (zi, ui) ∈ X̃n \ {(zi, ui) | i ∈ Iz}, add the equation

ĝLFDH(zi) = β0 +

p−1+q∑

j=1

βjz
(j)
i

to (4.9) in turn until the system becomes nonsingular. We point out that, for estimating g1,

the proposed estimator does not require any smoothing parameter.

Having an estimate of the asymptotic distribution of the LFDH estimators, the next

subsection suggests procedures for correcting for the bias and for constructing confidence

intervals of the quantities of interest.
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4.2 Bias-corrected estimator and confidence interval

By using the distribution of ĝ∗
LFDH(0), we may indeed quantify the bias of the LFDH estimator

ĝLFDH(0) or θ̃n(x0, y0). Let {ĝ∗
LFDH,b(0)}B

b=1 be the set of B values of ĝ∗
LFDH(0), each of which

is computed from a random sample from the uniform distribution on Bκ̂, see (4.7), where κ̂

is an estimate κ which is the unknown in the large sample approximation in Theorem 4.1.

Since the empirical distribution of {ĝ∗
LFDH,b(0)}B

b=1 approximates the distribution of ĝ∗
LFDH(0),

we may estimate the asymptotic mean of n1/(p+q){ĝLFDH(0) − g(0)} by

B−1
B∑

b=1

ĝ∗
LFDH,b(0).

Thus, a bias corrected estimator of g(0) is given by

ĝLFDH(0) − n−1/(p+q)B−1

B∑

b=1

ĝ∗
LFDH,b(0).

Of course we get the bias-corrected version of θ̃n(x0, y0) by

|x0|
−1 ·

{
ĝLFDH(0) − n−1/(p+q)B−1

B∑

b=1

ĝ∗
LFDH,b(0)

}
.

The empirical distribution of {ĝ∗
LFDH,b(0)}B

b=1 also enables us to construct a confidence in-

terval for g(0). Let q̂α be the α-th quantile of the empirical distribution of {ĝ∗
LFDH,b(0)}B

b=1.

Then, 100(1 − α)% confidence interval for g(0) is given by

[
ĝLFDH(0) − n−1/(p+q)q̂1−α/2, ĝLFDH(0) − n−1/(p+q)q̂α/2

]
,

and hence 100(1 − α)% confidence interval for θ(x0, y0) is given by
[
θ̃n(x0, y0) − n−1/(p+q)|x0|

−1q̂1−α/2, θ̃n(x0, y0) − n−1/(p+q)|x0|
−1q̂α/2

]
.

5 Numerical study

5.1 Sampling distribution of FDH and LFDH estimators

In this section, we compare the sampling distribution of FDH estimator and that of LFDH

estimator by a simulation study. We performed 500 Monte Carlo experiments with the

sample sizes n = 100 and n = 400 and we choose the simulation models used in the Section

4.1 in Park, Simar and Weiner (2000).

• Model 1: Simulation II in Park, Simar and Weiner (2000). p = q = 2.
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• Model 2: Simulation III in Park, Simar and Weiner (2000). p = 4, q = 1.

Figure 4 depicts the sampling distributions of the FDH and LFDH estimates in all the Monte-

Carlo scenarios. We clearly see in the figures the superior performance of LFDH estimators

over FDH estimators: in each case, the sampling distribution is more concentrated (less

variance) and the sampling distribution is shifted toward the true value of the estimated

parameters. This is confirmed by analyzing the mean squared error of both parameters

as provided in Table 1. The table demonstrates again the desirable properties of LFDH

estimator over the original FDH: the bias is substantially smaller and the MSE are smaller

by a factor 4–5.
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Figure 4: Comparison of the sampling distribution of FDH (histogram) and that of LFDH

(solid line) estimates. Model 1: θ = 2.0027. Model 2: θ = 1.4161.
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Mean (s.e.) MSE (×10−1)

n FDH LFDH FDH LFDH

Model 1 100 1.3021 (0.0092) 1.6711 (0.0071) 5.3316 1.3535

(θ = 2.0027) 400 1.5039 (0.0065) 1.7728 (0.0046) 2.6965 0.6357

Model 2 100 1.1039 (0.0033) 1.2608 (0.0030) 1.0297 0.2858

(θ = 1.4161) 400 1.1806 (0.0026) 1.3053 (0.0019) 0.5886 0.1403

Table 1: MSE comparisons of FDH estimator and LFDH estimator.

5.2 Limit distribution vs. empirical distribution

We conducted another simulation study to evaluate the accuracy of our large sample approx-

imation of the sampling distribution as described in Section 4 by Theorem 4.1. Under Model

2 in the previous subsection, 500 Monte Carlo experiments were done with the sample sizes

n = 400 and n = 1000. We compared the empirical distribution of n1/(p+q){ĝLFDH(z)− g(z)}

and the simulated distribution of ĝ∗
LFDH(0). Note that 2000 Monte Carlo simulations were

done for the latter.

Figure 5 depicts the simulated survival function of −ĝ∗
LFDH(0) and the empirical survival

function of −n1/(p+q){ĝLFDH(z) − g(z)}, where we verify that our large sample approxima-

tion works quite well even with the moderate sample sizes n = 400 and n = 1000 in a 5

dimensional setup.
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Figure 5: Comparison of the simulated limit distribution (solid) and the empirical distribution

(dotted) of LFDH estimates.
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6 Conclusion

In this paper we have proposed a new nonparametric estimator of monotone frontiers which

allows for nonconvex sets below the frontier. This is particularly useful in the context of

productivity analysis where the FDH estimator has been extensively used. However the

nonsmoothness and discontinuities of the FDH is a drawback for conducting inference in

finite samples. The bootstrap, even in a consistent version of it, does not provide a useful

alternative (poor finite sample properties).

Our estimator, the LFDH, is a linearized version of the FDH, obtained by linear interpo-

lation of the appropriate FDH-efficient vertex in the observed sample. It offers a continuous,

smooth version of the FDH. We provide an algorithm for computing the estimator, and we

establish its asymptotic properties. We also provide a easy way to approximate its asymp-

totic sampling distribution. The latter could offer bias-corrected estimator and confidence

intervals of the efficiency scores.

In a Monte-Carlo study, we show that these approximations works well even in moderate

sample sizes and that our LFDH estimator outperforms, both in bias and in MSE the orig-

inal FDH estimator. Also, the gap between the asymptotic distribution and the empirical

distribution diminishes faster as n increases.

The approach presented here could be extended if smoother version of the FDH would

be wanted. We could use spline interpolation passing through the appropriate FDH-efficient

vertices. However, we doubt the practical gain of such more elaborate smoothing procedure.

Finally, it should be noticed that the algorithm proposed above might be adapted to

provide linear interpolation of emprical distribution functions of multidimensional random

variables.
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A Appendix: Subsampling FDH estimators

A.1 The consistency

We know that in this boundary estimation setup, the naive bootstrap (sampling with re-

placement, samples of size n from the original sample Xn) is inconsistent (see Simar and

Wilson, 2000 and the references reported there). Subsampling is a way to solve the problem.

Let m be the size of each subsample such that m/n → 0 and m→ ∞ as n→ ∞, that is, the

subsample X ∗
n,m = {(X∗

i , Y ∗
i ), i = 1, · · · , m} is drawn randomly, without replacement, from

the original sample Xn. Let θ̂∗n,m = θ̂∗n,m(x0, y0) be the FDH estimate of θ(x0, y0) obtained

from the subsample X ∗
n,m. Write θ0 = θ(x0, y0) and θ̂n = θ̂n(x0, y0) for brevity.

Theorem A.1. Under the assumptions AI–AIII in Park et al. (2000), as n→ ∞ we have

sup
z>0

∣∣∣∣∣Pr
{
n1/(p+q)

(
θ̂n/θ0 − 1

)
≤ z
}

−Pr

{
m1/(p+q)

(
θ̂∗n,m/θ̂n − 1

)
≤ z

∣∣∣∣Xn

} ∣∣∣∣∣
p

−→ 0. (A.1)

Proof. Define NW(x, y) = {(x′, y′) ∈ IRp+q
+ | x′ < x, y′ > y} ∩ Ψ, and the events

En =
[
NW(x∂

0(1 + n−1/(p+q)z), y0) ∩ Xn = φ
]
,

E∗
n,m =

[
NW(x∂

0(1 + m−1/(p+q)z), y0) ∩ X ∗
n,m = φ

]
.

Then, we may easily prove that for z > 0

∣∣∣Pr
{
n1/(p+q)

(
θ̂n/θ0 − 1

)
> z
}
− Pr {En}

∣∣∣→ 0;
∣∣∣Pr
{
m1/(p+q)

(
θ̂∗n,m/θ0 − 1

)
> z

∣∣∣Xn

}
− Pr

{
E∗

n,m

∣∣∣Xn

}∣∣∣ p
→ 0

as n→ ∞. Since m1/(p+q)(θ̂nθ0 − 1)
p
→ 0, it suffices to show that

sup
z>0

∣∣∣∣∣Pr
{

Em

}
− Pr

{
E∗

n,m

∣∣Xn

}∣∣∣∣∣
p

−→ 0 (A.2)

as n→ ∞.

Let Nn,m =
(

n
m

)
be the number of subsamples, indexed by j = 1, · · · , Nn,m, available

from Xn. And let X ∗
n,m,j be the jth subsample, and E∗

n,m,j be the event E∗
n,m corresponding

to X ∗
n,m,j. Then

Pr
{
E∗

n,m | Xn

}
=

1

Nn,m

Nn,m∑

j=1

I
{
E∗

n,m,j

}
,
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which is a U-statistic with the mean Pr {Em}. Hence, by Hoeffding’s inequality (see Serfling,

1980, Theorem A, p.201),
∣∣Pr
{
E∗

n,m | Xn

}
− Pr {Em}

∣∣ p
→ 0. The uniformity in z of the

convergence (A.2) is given by Polya’s Theorem (see Serfling, 1980, p.18).

The preceding argument is for subsampling without replacement, but asymptotically,

subsampling with replacement does not make any difference.

A.2 Subsampling FDH in action

When the sample size n or the subsample size m = nκ is not large enough and the point

of interest (x0, y0) is close to the frontier of the free disposal hull of the original sample Xn,

it may happen very often that the point (x0, y0) is not laid in the free disposal hull of the

subsample X ∗
n,m, which may cause a problem to define the efficiency score and deteriorate

the quality of resulting bootstrap distribution. But note that, for any positive real number

a, θ(ax, y) = a−1θ(x, y), θ̂n(ax, y) = a−1θ̂n(x, y) and θ̂∗n,m(ax, y) = a−1θ̂∗n,m(x, y), so that we

have

θ̂n(ax, y)/θ(ax, y) = θ̂n(x, y)/θ(x, y), θ̂∗n,m(ax, y)/θ̂n(ax, y) = θ̂∗n,m(x, y)/θ̂n(x, y)

for all a > 0. By choosing a large enough for (ax0, y0) to be laid in the free disposal hull of

each subsample and then computing θ̂∗n,m(ax0, y0)/θ̂n(ax0, y0) instead of θ̂∗n,m(x0, y0)/θ̂n(x0, y0),

we can avoid the above technical difficulty. If the value of y0 is too large (if y0 ≥, 6=

max{yj|(xj , yj) ∈ X ∗
n,m}), such value a does not exist. In such a case, we suggest to add

the point of interest (x0, y0) to the bootstrap sample X ∗
n,m, this does not alter the asymp-

totic properties of the bootstrap. This trick is applicable to subsampling any other radial

efficiency scores such as the DEA efficiency score as analyzed by Kneip, Simar and Wilson

(2003).

Another practical difficulty is due to the fact that Nn,m is very large in general. That is, it

may be very difficult in practice to consider all possible X ∗
n,m,j, j = 1, . . . , Nn,m. Therefore we

consider the following Monte Carlo algorithm : Draw randomly a set of numbers {J1, · · · , JB}

from {1, · · · , Nn,m} with or without relacement. Write d∗
n,m,b = m1/(p+q)(θ̂∗n,m,b/θ̂n − 1),

where θ̂∗n,m,b is the value for θ̂∗n,m from the subsample X ∗
n,m,Jb

, b = 1, . . . , B. Then, the

empirical distribution of {d∗
n,m,b, b = 1, · · · , B} approximates the exact sampling distribution

of n1/(p+q)(θ̂n/θ − 1) given Xn as B→ ∞. For example, we can estimate the bias of FDH

estimator by this approximation resulting the following bias corrected estimator:

θ̂n ·

{
1 + n−1/(p+q)B−1

B∑

b=1

d∗
n,m,b

}−1

.
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Moreover we can construct a 100 × (1 − α)% confidence interval for θ0 as follows:

[
θ̂n/(1 + n−1/(p+q)c∗1−α/2,m), θ̂n/(1 + n−1/(p+q)c∗α/2,m)

]

where c∗α,m denotes the α-th sample quantile of {d∗
n,m,b, b = 1, · · · , B}.

A.3 Simulation study

We conducted some simulation studies following the settings in Section 5 in order to investi-

gate the finite sample performances of the subsampling (with replacement) FDH estimators.

From M = 500 Monte Carlo experiments, we computed the MSE of the bias-corrected esti-

mator and the coverage probabilities of the confidence interval obtained from subsampling,

which are summarized in Table 2 and Table 3. We considered the subsample sizes m = nκ

for various κ in 0 < κ ≤ 1, and B = 2000 was used for each subsampling.

As is seen from the simulation results, while the subsampling worked fairly well for the

bias-correction, the subsampling for building confidence intervals shows very poor perfor-

mances. Indeed, the coverage probabilities obtained by the subsampling are not generally

close to the nominal level even in the cases of the sample size of n = 1000 which is not small

at all. These features are mainly due to the nature of FDH estimator rather than that of

subsampling. Note that the subsampling approximates the continuous sampling distribution

distribution by a discrete distribution, and that the value of FDH estimate is completely

determined by only ‘one’ point of the FDH vertices of the data. In this situation the approx-

imate discrete distribution tends to give too much probability mass on the point. Therefore,

the approximation of the sampling distribution would have very poor accuracy particularly

in the tail when the (sub)sample size is not large enough, which inherently gives the poor

coverage accuracy of the confidence interval with large nominal probability such as 90%, 95%

and 99%. Hence we may expect that the coverage probabilities would be very poor espe-

cially for the small values of κ, which is observed in Table 3. In the bias-correction we may

expect the similar thing by the same reason as the above. By construction, the bias would

be over-calibrated by the subsampling when κ is small (since large d∗
n,m,b’s would have large

probability masses in the subsampling distribution), which results in the over-correction, see

Table 2. The effect, however, is less crucial than that for the confidence interval, since it

involves the average of the d∗
n,m,b’s not the tail distribution of the d∗

n,m,b’s.
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Model 1 (θ = 2.0027)

n = 100 n = 1000

κ Mean (S.E.) MSE Mean (S.E.) MSE

FDH 1.2892 (0.0085) 5.4480 1.6173 (0.0053) 1.6274

0.50 2.2612 (0.0253) 3.8720 2.1415 (0.0106) 0.7547

0.55 2.1827 (0.0243) 3.2625 2.0464 (0.0100) 0.5230

0.60 2.0724 (0.0228) 2.6383 1.9707 (0.0096) 0.4721

0.65 1.9549 (0.0211) 2.2473 1.9128 (0.0093) 0.5095

0.70 1.8266 (0.0190) 2.1093 1.8668 (0.0090) 0.5851

0.75 1.7374 (0.0175) 2.2361 1.8262 (0.0087) 0.6857

0.80 1.6558 (0.0161) 2.4910 1.7899 (0.0084) 0.8021

0.85 1.5814 (0.0148) 2.8658 1.7575 (0.0080) 0.9208

0.90 1.5228 (0.0136) 3.2277 1.7274 (0.0076) 1.0481

0.95 1.4731 (0.0126) 3.5974 1.7003 (0.0072) 1.1740

1.00 1.4286 (0.0116) 3.9693 1.6758 (0.0068) 1.2963

Model 2 (θ = 1.4161)

n = 100 n = 1000

κ Mean (S.E.) MSE Mean (S.E.) MSE

FDH 1.0992 (0.0034) 1.0621 1.2267 (0.0020) 0.3787

0.50 1.3627 (0.0095) 0.4763 1.4524 (0.0037) 0.0818

0.55 1.3618 (0.0094) 0.4699 1.4215 (0.0036) 0.0650

0.60 1.3566 (0.0092) 0.4601 1.3835 (0.0034) 0.0694

0.65 1.3480 (0.0090) 0.4488 1.3498 (0.0033) 0.0976

0.70 1.3320 (0.0086) 0.4403 1.3239 (0.0032) 0.1356

0.75 1.3140 (0.0081) 0.4329 1.3048 (0.0031) 0.1715

0.80 1.2902 (0.0075) 0.4425 1.2899 (0.0030) 0.2039

0.85 1.2604 (0.0068) 0.4759 1.2775 (0.0029) 0.2339

0.90 1.2308 (0.0061) 0.5307 1.2662 (0.0028) 0.2628

0.95 1.2031 (0.0055) 0.6029 1.2561 (0.0026) 0.2900

1.00 1.1762 (0.0048) 0.6917 1.2471 (0.0024) 0.3154

Table 2: Comparison of FDH estimator and its bias corrected versions. The values for MSE

are multiplied by 101.
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Model 1

n = 100 n = 1000

κ 90% 95% 99% 90% 95% 99%

0.50 0.350 0.352 0.352 0.250 0.290 0.290

0.55 0.406 0.408 0.408 0.370 0.450 0.450

0.60 0.496 0.498 0.498 0.544 0.552 0.552

0.65 0.570 0.574 0.576 0.650 0.660 0.672

0.70 0.648 0.678 0.688 0.692 0.718 0.742

0.75 0.712 0.732 0.770 0.680 0.724 0.778

0.80 0.698 0.756 0.818 0.634 0.694 0.780

0.85 0.632 0.714 0.818 0.578 0.630 0.734

0.90 0.566 0.654 0.784 0.504 0.570 0.660

0.95 0.480 0.584 0.730 0.420 0.482 0.584

1.00 0.394 0.490 0.654 0.306 0.352 0.482

Model 2

n = 100 n = 1000

κ 90% 95% 99% 90% 95% 99%

0.50 0.552 0.552 0.552 0.280 0.360 0.360

0.55 0.554 0.554 0.554 0.432 0.502 0.502

0.60 0.564 0.564 0.564 0.672 0.674 0.674

0.65 0.588 0.588 0.588 0.810 0.818 0.822

0.70 0.632 0.632 0.632 0.806 0.858 0.892

0.75 0.660 0.664 0.664 0.694 0.792 0.890

0.80 0.682 0.708 0.708 0.540 0.634 0.810

0.85 0.698 0.740 0.764 0.450 0.520 0.644

0.90 0.670 0.768 0.816 0.350 0.406 0.528

0.95 0.576 0.710 0.832 0.268 0.308 0.408

1.00 0.444 0.600 0.802 0.176 0.210 0.304

Table 3: Coverage probabilities of the confidence interval by subsampling FDH estimator
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