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ABSTRACT. In a recent paper, Braekers and Veraverbeke [1] obtained asymp-

totic results for an estimator of the conditional distribution function of the lifetime,

in a fixed design regression model with dependence between lifetime and censoring

time. We complement these findings by corresponding results for the conditional

quantile estimator. Our main results are uniform strong consistency and a Bahadur-

type representation. The latter is an invaluable tool for deriving further asymptotic

results, such as the weak convergence of the quantile process.
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1. INTRODUCTION

We consider the estimation of quantiles of the conditional lifetime distribution in

a fixed design regression model in which the lifetime Yx at a fixed covariate value

x ∈ [0, 1] is subject to right censoring by a non-negative censoring variable Cx. We
do not necessarily assume the independence of Yx and Cx, but allow dependence via

an Archimedean copula model for the joint survival function of Yx and Cx.

In many practical situations, the independence of Yx and Cx is doubtful. For exam-

ple, in a clinical trial, one might have that patients withdraw (are censored) because

they are doing poorly with the new treatment. Or in engineering, one might have

that a piece of equipment is replaced (is censored) because it has given some sign of

future failure.

Copula models for censored observations, in the absence of covariates, have been

studied by Zheng and Klein [8] and Rivest and Wells [4]. For Archimedean copula

models with covariate information, Braekers and Veraverbeke [1] studied the as-

ymptotic properties of an estimator Fxh(t) for the conditional distribution function

Fx(t) = P (Yx ≤ t).
In this paper we focus on the estimation of quantiles of the distribution function

Fx(t). For 0 < p < 1, the p-th quantile is defined as F
−1
x (p) = inf{t : Fx(t) ≥ p} and

the corresponding estimator is given by F−1xh (p) = inf{t : Fxh(t) ≥ p}. Our results
are the rate of uniform strong consistency (Section 3), a Bahadur-type asymptotic

representation (Section 4) and the weak convergence result for the quantile process

(Section 5). Two basic lemmas on the almost sure (a.s.) behaviour of Fxh(t) are

proved in Section 6. We begin with preliminaries on the copula model and the

estimator.

2. THE COPULA MODEL AND THE DISTRIBUTION

FUNCTION ESTIMATOR

We assume that, at fixed design points 0 ≤ x1 ≤ . . . ≤ xn ≤ 1, we have re-

sponses Y1, . . . , Yn and censoring times C1, . . . , Cn. The observed random variables

are (Zi, δi), where for each i = 1, . . . , n : Zi = min(Yi, Ci) and δi = I(Yi ≤ Ci). At a
given design point value x ∈ [0, 1], we write Fx, Gx, Hx for the distribution function
of the lifetime Yx, the censoring time Cx and the observed variable Zx = min(Yx, Cx).

We will also write δx = I(Yx ≤ Cx). (Note that at the n design variables xi, we
write Yi, Ci, Zi, Fi, . . . instead of Yxi , Cxi, Zxi, Fxi, . . .)

Our Archimedean copula model assumes that the joint survival function of Yx and
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Cx at x can be written as

Sx(t1, t2) = P (Yx > t1, Cx > t2) = ϕ[−1]x (ϕx(F x(t1)) + ϕx(Gx(t2))).

Here ϕx is a known generator function depending in a general way on the covariate

value x and F x (respectively Gx) is the survival function of Yx (respectively Cx) at

x. We refer to Nelsen [3] or Genest and MacKay [2] for definitions and properties of

Archimedean copulas and their generators. We have that, for each x, ϕx : [0, 1] →
[0,∞] is a known, continuous, convex, strictly decreasing function with ϕx(0) = 0.
ϕ
[−1]
x is the pseudo-inverse of ϕx given by ϕ−1x (s) if 0 ≤ s ≤ ϕx(0) and zero if

ϕx(0) ≤ s ≤ +∞.
The estimator Fxh(t) for Fx(t) in Braekers and Veraverbeke [1] is given by

F xh(t)

= ϕ−1x

X �
Zi≤t,δi=1

J
ϕx(Hxh(Zi−)− ϕx(Hxh(Zi−)− wni(x;hn))

o~
I(t ≤ Z(n)).

(2.1)

Here Z(1) ≤ . . . ≤ Z(n) are the ordered Z1, . . . , Zn and

Hxh(t) =
n�
i=1

wni(x;hn)I(Zi ≤ t). (2.2)

The weights {wni(x;hn)} in (2.1) and (2.2) are smoothing weights which give larger
weight to observations at design points close to x. Here we take the Gasser-Müller

weights, which is the natural choice in the fixed design situation. They are given by

wni(x;hn) =
1

cn(x;hn)

xi8
xi−1

1

hn
K

w
x− z
hn

W
dz

cn(x;hn) =

xn8
0

1

hn
K

w
x− z
hn

W
dz

where x0 = 0, K is a known probability density function (kernel) and h = {hn} is a
sequence of positive constants, tending to 0 as n→∞ (bandwidth sequence). Note

that for the independence copula (ϕx(t) = − log t), the estimator in (2.2) becomes
the classical Beran generalization of the Kaplan-Meier estimator, studied by Van

Keilegom and Veraverbeke [6], [7].

For the design points x1, . . . , xn, we write ∆n = min(xi− xi−1) and ∆n = max(xi −
xi−1). The notations ,K,∞ = sup

u∈IR
K(u), ,K,22 =

∞$
−∞

K2(u)du, µK1 =
∞$
−∞

uK(u)du,
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µK2 =
∞$
−∞

u2K(u)du will be used for the kernel K. We use the following assumptions

on the design and on the kernel

(C1) xn → 1, ∆n = O(n
−1), ∆n −∆n = o(n

−1)

(C2) K is a probability density function with finite support [−M,M ], for some
M > 0, µK1 = 0 and K is Lipschitz of order 1.

Note that (C1) implies that cn(x;hn) = 1 for n sufficiently large. Therefore we may

take cn(x;hn) = 1 in all proofs of asymptotic results.

If L is any (sub)distribution, then TL = inf{t : L(t) = L(+∞)} denotes the right
endpoint of its support. Here we have that THx ≤ min (TFx, TGx), with equality if
ϕx(0) = +∞. In our results we will need typical types of smoothness conditions on
functions like Hx(t) = P (Zx ≤ t) and Hu

x (t) = P (Zx ≤ t, δx = 1). We formulate

them here for a general (sub)distribution function Lx(t), t ∈ IR, 0 ≤ x ≤ 1 and for
a fixed T > 0

(C3) L̇x(t) =
∂

∂x
Lx(t) exists and is continuous in (x, t) ∈ [0, 1]× [0, T ]

(C4) LIx(t) =
∂

∂t
Lx(t) exists and is continuous in (x, t) ∈ [0, 1]× [0, T ]

(C5) L̈x(t) =
∂2

∂x2
Lx(t) exists and is continuous in (x, t) ∈ [0, 1]× [0, T ]

(C6) LIIx(t) =
∂2

∂t2
Lx(t) exists and is continuous in (x, t) ∈ [0, 1]× [0, T ]

(C7) L̇Ix(t) =
∂2

∂x∂t
Lx(t) exists and is continuous in (x, t) ∈ [0, 1]× [0, T ]

Note that (C3) implies that Lx(t) is Lipschitz, in the sense that for all 0 ≤ x, xI ≤ 1,

sup
0≤t≤T

|Lx(t)− LxI(t)| ≤ ,L̇,|x− xI|

where ,M, = sup
0≤x≤1

sup
0≤t≤T

|Mx(t)| for any functionMx(t) on [0, 1]× [0, T ]. Similarly,
(C4) implies that for all 0 ≤ t, tI ≤ T

sup
0≤x≤1

|Lx(t)− Lx(tI)| ≤ ,LI,|t− tI|.

The generator ϕx of the Archimedean copula needs to satisfy the following properties
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(C8) ϕIx(v) =
∂

∂x
ϕx(v) and ϕIIx(v) =

∂2

∂x2
ϕx(v) are Lipschitz in the x-direction

with a bounded Lipschitz constant, and ϕIIIx (v) =
∂3

∂x3
ϕx(v) ≤ 0 exists and is

continuous in (x, v) ∈ [0, 1]×]0, 1].

These assumptions and the fact that ϕx is the generator of an Archimedean copula,

give that ϕIx is monotone increasing with ϕIx < 0 and ϕIIx is monotone decreasing
with ϕIIx ≥ 0.

3. STRONG CONSISTENCY OF THE QUANTILE ESTI-

MATOR

Our first result is the uniform strong consistency of F−1xh (p) as estimator for F
−1
x (p).

This will follow as a consequence of a stronger result which gives an exponential

bound for P

w
sup

ε0≤p≤p0
| F−1xh (p)− F−1x (p) |> ε

W
, where 0 < ε0 < p0 < 1.

Theorem 1.

Assume (C1), (C2), Hx(t) and H
u
x (t) satisfy (C3) and (C4) in [0, T ] with T < THx,

hn → 0,
log n

nhn
→ 0.

Assume that ϕx satisfies (C8) and also that ϕ
I
x(1) < 0.

Let 0 < ε0 < p0 < 1 be such that F−1x (p0) < T and inf
ε0≤p≤p0

fx(F
−1
x (p)) = λ > 0,

where fx = F
I
x.

(a) For ε > 0 such that F−1x (ε0)− ε ≥ 0, F−1x (p0) + ε ≤ T and

inf
F−1x (ε0)−ε≤y≤F−1x (p0)+ε

fx(y) ≥ λ

2
,

for n sufficiently large and

ε ≥ 2

λ
Amax

w√
6,K,2 1

(nhn)1/2
, 4(,Ḣ, ∨ ,Ḣu,)

w8
|u|K(u)du

W
hn

W
with

A =
3

2

w
− 1

ϕIx(1)

WD|ϕIx(Hx(T )) | +ϕIIx(Hx(T ))
i

(3.1)

we have

P

w
sup

ε0≤p≤p0
| F−1xh (p)− F−1x (p) |> ε

W
≤ 1

4A
d0 λε nhn e

−d1nhn λ2ε2

256A2
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with

d0 =
8e2

,K,22
, d1 =

4

3,K,22
. (3.2)

(b) If
nh5n
log n

= O(1), then, as n→∞,

sup
ε0≤p≤p0

| F−1xh (p)− F−1x (p) |= O((nhn)−1/2(log n)1/2 a.s.

Proof. (a) We have that

P

w
sup

ε0≤p≤p0
| F−1xh (p)− F−1x (p) |> ε

W

≤ P
D
F−1xh (p) > F

−1
x (p) + ε for some ε0 ≤ p ≤ p0

i
+ P

D
F−1xh (p) < F

−1
x (p)− ε for some ε0 ≤ p ≤ p0

i
(3.3)

Now, for the first term in (3.3), we have

P
D
F−1xh (p) > F

−1
x (p) + ε for some ε0 ≤ p ≤ p0

i
≤ P

w
sup
0≤t≤T

| Fxh(t)− Fx(t) |> inf
ε0≤p≤p0

(Fx(F
−1
x (p) + ε)− p)

W (3.4)

Since inf
ε0≤p≤p0

(Fx(F
−1
x (p) + ε)− p) ≥ inf

F−1x (ε0)≤y≤F−1x (p0)+ε
fx(y)ε ≥ 1

2
λε > 0 we can

apply Lemma 1 to (3.4).

The second term in (3.3) can be bounded in the same way.

(b) This follows from the Borel-Cantelli lemma.

4. ALMOST SURE ASYMPTOTIC REPRESENTATION

FOR THE QUANTILE ESTIMATOR

Theorem 2.

Assume (C1), (C2), Hx(t) and H
u
x (t) satisfy (C5) - (C7) in [0, T ] with T < THx,

hn → 0,
log n

nhn
→ 0,

nh5n
logn

= O(1).

Assume that ϕx satisfies (C8) and also that ϕ
I
x(1) < 0. Let 0 < ε0 < p0 < 1 be such

that F−1x (p) < T and inf
ε0≤p≤p0

fx(F
−1
x (p)) = λ < 0. Then, for ε0 ≤ p ≤ p0, we have

F−1xh (p)− F−1x (p) =
p− Fxh(F−1x (p))

fx(F−1x (p))
+ rn(x, p)
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where

sup
ε0≤p≤p0

| rn(x, p) |= O((nhn)−3/4(logn)3/4) a.s.

as n→∞.

Proof. Using Lemma 2 we have that

sup
ε0≤p≤p0

| Fxh(F−1xh (p))− p |≤ sup
ε0≤p≤p0

| Fxh(F−1xh (p))− Fxh(F−1xh (p)−) |

≤ sup
0 ≤ s, t ≤ T

|t− s| ≤ c(nhn)−1/2(logn)1/2

| Fxh(t)− Fxh(s)− Fx(t) + Fx(s) |

= O((nhn)
−3/4(log n)3/4) a.s.

Hence,

sup
ε0≤p≤p0

eeeeF−1xh (p)− F−1x (p)− p− Fxh(F
−1
x (p))

fx(F−1x (p))

eeee
≤ 1

λ
sup

ε0≤p≤p0

eefx(F−1x (p))(F−1xh (p)− F−1x (p))− (Fxh(F−1xh (p))− Fxh(F−1x (p))
ee

+O((nhn)
−3/4(log n)3/4) a.s.

≤ 1

λ
sup

ε0≤p≤p0

eefx(F−1x (p))(F−1xh (p)− F−1x (p))− Fx(F−1xh (p))− Fx(F−1x (p))
ee

+O((nhn)
−3/4(log n)3/4) a.s.

where the last inequality follows from Theorem 1 and Lemma 2. By Taylor expan-

sion, this can be rewritten as

1

2λ
sup

ε0≤p≤p0
| f Ix(θ) | (F−1xh (p)− F−1x (p))2 +O((nhn)

−3/4(log n)3/4) a.s.

where θ is between F−1xh (p) abnd F
−1
x (p). From (C6), f Ix is bounded on [0, T ]. The

theorem is proved after a further application of Theorem 1.
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5. WEAKCONVERGENCE OF THE QUANTILE PROCESS

An important consequence of the result in the previous section is the weak conver-

gence of the quantile process {(nhn)1/2(F−1xh (p)−F−1x (p))} in the space f∞[ε0, p0] of
uniformly bounded, real functions, endowed with the uniform topology. Combining

our Theorem 2 with Theorem 3 in Braekers and Veraverbeke [1] we also obtain the

following weak convergence result.

Theorem 3.

Assume (C1), (C2), Hx(t) and H
u
x (t) satisfy (C5) - (C7) in [0, T ] with T < THx.

Assume that ϕx satisfies (C8) and also that ϕ
I
x(1) < 0. Let 0 < ε0 < p0 < 1 be such

that F−1x (p) < T and inf
ε0≤p≤p0

fx(F
−1
x (p)) = λ > 0.

(a) If nh5n → 0 and
(logn)3

nhn
→ 0, then, as n→∞,

(nhn)
1/2(F−1xh (·)− F−1x (·))→ Wx(F

−1
x (·))

fx(F−1x (·)) in f
∞[ε0, p0]

(b) if hn = Cn
−1/5, for some c > 0, then, as n→∞,

(nhn)
1/2(F−1xh (·)− F−1x (·))→

�Wx(F
−1
x (·))

fx(F−1x (·)) in f
∞[ε0, p0]

where Wx(·) and �Wx(·) are Gaussian processes with covariance function given in
Theorem 3 of Braekers and Veraverbeke [1].

6. TWO LEMMAS

In this section we prove two crucial lemmas that have been used in the previous

sections. Lemma 1 provides an exponential probability bound for

sup
0≤t≤T

| Fxh(t) − Fx(t) |. Lemma 2 describes the a.s. behaviour of the modulus of
continuity of the estimator Fxh(t).

Lemma 1.

Assume (C1), (C2), Hx(t) and H
u
x (t) satisfy (C3) and (C4) in [0, T ] with T < THx,

hn → 0,
log n

nhn
→ 0.

Assume that ϕx satisfies (C8) and also that ϕ
I
x(1) < 0. For n sufficiently large and

ε ≥ 4A max(
√
6,K,2 1

(nhn)1/2
, 4(,Ḣ, ∨ ,Ḣu,)($ |u|K(u)du)hn)
8



with A as in (3.1), we have

P

w
sup
0≤t≤T

| Fxh(t)− Fx(t) |> ε

W
≤ 1

4A
d0 ε nhne

−d1nhn ε2

64A2

with d0 and d1 as in (3.2).

Proof. From Lemma 1 in Braekers and Veraverbeke [1] we have that

F x(t) = ϕ−1x

⎛⎝− t8
0

ϕIx(Hx(s))dH
u
x (s)

⎞⎠ (6.1)

With Hxh(t) as in (2.2) and H
u
xh(t) =

n�
i=1

wni(x;hn)I(Zi ≤ t, δi = 1), we have from
(2.1) and (6.1) and an application of the mean value theorem that

Fxh(t)− Fx(t)

=

l
−ϕ−1x

X
− �
Zi≤t,δi=1

[ϕx(Hxh(Zi−))− ϕx(Hxh(Zi−)− wni(x;hn))]
~

+ϕ−1x

X
− �
Zi≤t,δi=1

ϕIx(Hxh(Zi)wni(x;hn)

~M

−
⎧⎨⎩ϕ−1x

⎛⎝− t8
0

ϕIx
D
Hxh(s)

i
dHu

xh(s)

⎞⎠− ϕ−1x

⎛⎝− t8
0

ϕIx
D
Hx(s)

i
dHu

x (s)

⎞⎠⎫⎬⎭
=

−1
ϕIx(ϕ−1x (θ1))

l �
Zi≤t,δi=1

ϕIx(Hxh(Zi))wni(x;hn)

− �
Zi≤t,δi=1

J
ϕx(Hxh(Zi−))− ϕx(Hxh(Zi−)− wni(x;hn))

oM

− 1

ϕIx(ϕ−1x (θ2))

⎧⎨⎩
t8
0

ϕIx(Hx(s))dH
u
x (s)−

t8
0

ϕIx(Hxh(s))dH
u
xh(s)

⎫⎬⎭ (6.2)

with θ1 between −
�

Zi≤t,δi=1
[ϕx(Hxh(Zi−))− ϕx(Hxh(Zi−)− wni(x;hn))] and

− �
Zi≤t,δi=1

ϕIx(Hxh(Zi))wni(x;hn) and θ2 between −
t$
0

ϕIx(Hxh(s))dH
u
xh(s) and

−
t$
0

ϕIx(Hx(s))dH
u
x (s).
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To bound the two terms on the right hand side of (6.2) we first note that
−1

ϕIx(ϕ−1x (θ1))

converges a.s. to
−1

ϕIx(F x(t))
. Since F x(t) ≤ 1 and ϕIx is monotone increasing, we

have that −ϕIx(F x(t)) ≥ −ϕIx(1) and that
−1

ϕIx(ϕ−1x (θ1))
≤ 3

2

w −1
ϕIx(1)

W
a.s., for n

sufficiently large. The same bound holds for
−1

ϕIx(ϕ−1x (θ2))
.

Using Lemma 3 in Braekers and Veraverbeke [1], we obtain that the first term in

the right hand side of (6.2) is a.s. bounded above by

9

4

w −1
ϕIx(1)

W
ϕIIx(Hx(T ))

n�
i=1

w2ni(x;hn) ≤
9

4

w −1
ϕIx(1)

W
ϕIIx(Hx(T )),K,∞∆n

hn
.

Using integration by parts on the second term in the right hand side of (6.2), we

obtain the a.s. bound

3

2

w −1
ϕIx(1)

WFJ| ϕIx(Hx(T )) | +ϕIIx(Hx(T ))
o
sup
0≤t≤T

| Hu
xh(t)−Hu

x (t) |

+ | ϕIx(Hx(T )) | sup
0≤t≤T

| Hxh(t)−Hx(t) |
k

≤ A

F
sup
0≤t≤T

| Hu
xh(t)−Hu

x (t) | + sup
0≤t≤T

| Hxh(t)−Hx(t) |
k

with A as in (3.1).

With ε > 0 and n sufficiently large, we have that

P

w
sup
0≤t≤T

| Fxh(t)− Fx(t) |> ε

W
≤ P
w
sup
0≤t≤T

| Hu
xh(t)−Hu

x (t) |>
ε

4A

W

+P

w
sup
0≤t≤T

| Hxh(t)−Hx(t) |> ε

4A

W
.

For each of the two terms on the right hand side we have an exponential inequality

by applying Lemma A3 in Van Keilegom and Veraverbeke [7].

Lemma 2.

Assume (C1), (C2), Hx(t) and H
u
x (t) satisfy (C3), (C6), (C7) in [0, T ] with T < THx,

1−Hx(T ) > δ > 0, hn → 0, nhn →∞.
Assume that ϕx satisfies (C8) and also that ϕ

I
x(1) < 0.

10



(a) Let {an} be a sequence of positive constants, tending to 0 as n → ∞, and
satisfying nan →∞.
Then, for n sufficiently large and

ε ≤ 12
w
− 1

ϕIx(1)

W
| ϕIx(δ) |

+
,Ḣu,∆n +M,ḢuI,anhn + ,HuII,a2n

�

+6
ϕIIx(δ)
(ϕIx(1))2

,F I, | ϕIx(δ) | ,HuI,a2n
(6.3)

and

ε ≤ 12
w
− 1

ϕIx(1)

W
ϕIIx(δ),HuI,an

max(
√
6,K,2(nhn)−1/2 + 2,Ḣ,∆n + 2µ

K
2 ,Ḧ,h2n)

(6.4)

we have

P

X
sup

0 ≤ s, t ≤ T
|t− s| ≤ an

| Fxh(t)− Fxh(s)− Fx(t) + Fx(s) |> ε

~

≤ C1an
ε2
exp

w
−C2nhnε

2

C3an + ε

W
+ C4

nhnε

an
exp

w
−C5nhnε

2

a2n

W

+C6nhn exp (−C7nhn) + C8 1
an
exp (−C9nhnan)

where C1, . . . , C9 are positive constants.

(b) If
nh5n
log n

= O(1) and {an} is a sequence of positive constants of the form
an = c1(nhn)

−1/2(logn)1/2 for some c1 > 0, then, as n→∞,

sup
0 ≤ s, t ≤ T
|t− s| ≤ an

| Fxh(t)− Fxh(s)− Fx(t) + Fx(s) |= O((nhn)−3/4(log n)3/4) a.s.

Proof. (a) Defining

4Fxh(t) = ϕ−1x

⎛⎝− t8
0

ϕIx(Hx(y))dH
u
xh(y)

⎞⎠ (6.5)

11



we can write

Fxh(t)− Fxh(s)− Fx(t) + Fx(s)

=
+ 4Fxh(t)− 4Fxh(s)− Fx(t) + Fx(s)�

+
+
Fxh(t)− Fxh(s)− 4Fxh(t) + 4Fxh(s)�

(6.6)

From (6.1), (6.5) and the mean value theorem, we can rewrite the first term in the

right hand side of (6.6) as

1

ϕIx(ϕ−1x (θ1))

n�
i=1

wni(x;hn)
\
ϕIx(Hx(Zi))I(s ≤ Zi ≤ t, δi = 1)

−E [ϕIx(Hx(Zi)I(s ≤ Zi ≤ t, δi = 1)]
�

+
1

ϕIx(ϕ−1x (θ1))

n�
i=1

wni(x;hn)
t$
s

ϕIx(Hx(y))d(Hxi(y)−Hu
x (y))

+

F
1

ϕIx(ϕ−1x (θ1))
− 1

ϕIx(ϕ−1x (θ2))

k
t$
s

ϕIx(Hx(y))dH
u
x (y)

= T1 + T2 + T3,

where θ1 is between −
t$
0

ϕIx(Hx(y))dH
u
xh(y) and −

s$
0

ϕIx(Hx(y))dH
u
xh(y) and θ2 is be-

tween −
t$
0

ϕIx(Hx(y))dH
u
x (y) and −

s$
0

ϕIx(Hx(y))dH
u
x (y).

As in the proof of Lemma 1 it follows that

eeee 1

ϕIx(ϕ−1x (θ1))

eeee and eeee 1

ϕIx(ϕ−1x (θ2))

eeee are
both bounded above by

3

2

w −1
ϕIx(1)

W
a.s.. Also, by the Lipschitz property of

1

ϕIx
, we

have that

eeee 1

ϕIx(ϕ−1x (θ1))
− 1

ϕIx(ϕ−1x (θ2))

eeee ≤ 32 ϕIIx(δ)
(ϕIx(1))2

,F I,|t− s|.

We will now bound the terms T1, T2 and T3. For T3 we have

sup
0 ≤ s, t ≤ T
|t− s| ≤ an

|T3| ≤ 3
2

ϕIIx(δ)
(ϕIx(1))2

,F I,|ϕIx(δ) | ,HuI,a2n. (6.7)

12



For T2, we obtain, after integration by parts,

T2 =
1

ϕIx(ϕ−1x (θ1))
{ϕIx(Hx(t))[EH

u
xh(t)− EHu

xh(s)−Hu
x (t) +H

u
x (s)]

+[EHxh(s)−Hu
x (s)][ϕ

I
x(Hx(t))− ϕIx(Hx(s))]

+
t$
s

[EHu
xh(y)−Hu

x (y)]ϕ
II
x(Hx(y))dHx(y)}.

Hence,

sup
0 ≤ s, t ≤ T
|t− s| ≤ an

|T2|

≤ 3
2

w −1
ϕIx(1)

W
{|ϕIx(δ)| sup

0 ≤ s, t ≤ T
|t− s| ≤ an

|EHu
xh(t)− EHu

xh(s)−Hu
x (t)−Hu

x (s)|

+|ϕIx(δ)|,H I,an sup
0≤s≤T

|EHu
xh(s)−Hu

x (s)|

+ϕIIx(δ),H I,an sup
0≤s≤T

|EHu
xh(s)−Hu

x (s)|}

≤ 3
w −1
ϕIx(1)

W
|ϕIx(δ)|{,Ḣu,∆n +M,ḢuI,anhn + ,HuII,a2n}. (6.8)

In the last inequality we used Lemma A.1(a) and (the proof of) Lemma A.5(b) in

Van Keilegom and Veraverbeke [7].

From (6.7) and (6.8) it follows that

sup
0 ≤ s, t ≤ T
|t− s| ≤ an

|T2 + T3| ≤ ε

4

because of our imposed condition (6.3) on ε.

Therefore,

P
p 4Fxh(t)− Fxh(s)− Fx(t) + Fx(s)| > ε

2

Q
≤ P

p
|T1| > ε

4

Q
= P

w
|
n�
i=1

wni(x;hn){ϕIx(Hx(Zi))I(s ≤ Zi ≤ t, δi = 1)

−E[ϕIx(Hx(Zi))I(s ≤ Zi ≤ t, δi = 1)]}| > ε

6
(−ϕIx(1))

W
.

(6.9)

13



In order to obtain an upper bound for the probabililty in (6.9), we apply Bernstein’s

inequality (Serfling [5]). The variance of the sum above is bounded by

n�
i=1

w2ni(x;hn)
t$
s

ϕ
I2
x (Hx(y))dH

u
xi
(y)

≤ (ϕIx(δ))
2,HuI,an

n�
i=1

w2ni(x;hn) ≤ (ϕIx(δ))2,HuI,,K,∞∆n

hn
an.

Hence, Berstein’s inequality gives that

P
p
| 4Fxh(t)− 4Fxh(s)− Fx(t) + Fx(s) |> ε

2

Q
≤ 2 exp

w
−C2nhnε

2

C3an + ε

W
for some constants C2 > 0 and C3 > 0.

By a classical argument, based on partitioning the interval [0, T ], we can replace

sup
0≤t≤T

and sup
0≤s≤T

maxima and obtain that, for some constant C1 < 0,

P

X
sup

0 ≤ s, t ≤ T
|t− s| ≤ an

| 4Fxh(t)− 4Fxh(s)− Fx(t) + Fx(s)| > ε

2

~
≤ C1an

ε2
exp

w
−C2nhnε

2

C3an + ε

W
.

For the second term in the right hand side of (6.6), we first note that, using Lemma

3 in Braekers and Veraverbeke [1], we have that

sup
0≤t≤T

eeeeeeF xh(t)− ϕ−1x

⎛⎝− t8
0

(Hxh(t))dH
u
xh(y)

⎞⎠eeeeee ≤ 94
w −1
ϕIx(1)

W
ϕIIx(δ),K,∞

∆n

hn
.

Hence, by adding and subtracting terms, we obtain that

sup
0 ≤ s, t ≤ T
|t− s| ≤ an

|Fxh(t)− Fxh(s)− 4Fxh(t) + 4Fxh(s)|

≤ 3
2

w −1
ϕIx(1)

W
ϕIIx(δ)| sup

0≤t≤T
|Hxh(t)−Hx(t)| sup

0 ≤ s, t ≤ T
|t− s| ≤ an

|Hu
xh(t)−Hu

xh(s)|

+2
ϕIIx(δ)
(ϕIx(1))2

,F I,|ϕIx(δ)|+
9

2

w −1
ϕIx(1)

W
ϕIIx(δ),K,∞

∆n

hn
.
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For n sufficiently large, the sum of the last two terms is less than
ε

4
, and hence

P

X
sup

0 ≤ s, t ≤ T
|t− s| ≤ an

|Fxh(t)− Fxh(s)− 4Fxh(t) + 4Fxh(s)| > ε

2

~

≤ P

X
sup
0≤t≤T

|Hxh(t)−Hx(t)| · sup
0 ≤ s, t ≤ T
|t− s| ≤ an

|Hu
xh(t)−Hu

xh(s)| >
ε

4a

~
(6.10)

where a =
3

2

w −1
ϕIx(1)

W
ϕIIx(δ).

To deal with the right hand side of (6.10) we call the event Z and use that P (Z) ≤
P (Z ∩ (An ∩Bn)) + P (Acn) + P (Bcn) where An = {1−Hx(t) ≥

δ

2
for all 0 ≤ t ≤ T}

and Bn = {|Hu
xh(t)−Hu

xh(s)| ≤ 2,HuI,an for all 0 ≤ s, t ≤ T, |t− s| ≤ an}.
Then, since 1−Hx(t) > δ for all 0 ≤ t ≤ T , we have that

P (Acn) ≤ P
w
sup
0≤t≤T

|Hxh(t)−Hx(t)| > δ

2

W
and also

P (Bcn) ≤ P
X

sup
0 ≤ s, t ≤ T
|t− s| ≤ an

|Hu
xh(t)−Hu

xh(s)−Hu
x (t) +H

u
x (s)| > ,HuI,an

~

Hence,

P

X
sup

0 ≤ s, t ≤ T
|t− s| ≤ an

|Fxh(t)− Fxh(s)− 4Fxh(t) + 4Fxh(s)| > ε

2

~

≤ P

w
sup
0≤t≤T

|Hxh(t)−Hx(t)| > ε

4a

1

2,HuI,an

W
+ P

w
sup
0≤t≤T

|Hxh(t)−Hx(t)| > δ

2

W

+ P

X
sup

0 ≤ s, t ≤ T
|t− s| ≤ an

|Hu
xh(t)−Hu

xh(s)−Hu
x (t) +H

u
x (s)| ≥ ,HuI,an

~
.

We can now apply the exponential inequalities in Lemma A.3 in Van Keilegom and

Veraverbeke [7] and in Theorem 4 in Van Keilegom and Veraverbeke [6]. This re-

quires the restriction (6.4) on ε.
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