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Abstract

In this paper, two tests for weak exogeneity in the econometric modelling of financial
point processes are proposed. They are motivated by the common practice in many econo-
metric studies of tick-by-tick data of making inference on the joint density of durations and
marks through the conditional (marks given durations) density. However, this inference is
only valid if the process of the marginal (durations) is weakly exogenous for the parameters
of the conditional density, a hypothesis which is often left untested. Under standard pseudo-
maximum likelihood conditions, we first derive a simple parametric score/LM test statistic
when the potential dependence between the parameters of interest in the conditional model
and the marginal process is assumed to be linear. Next, an alternative consistent test is
proposed when the functional form of the dependence is left unspecified. To illustrate the
use of these tests, we analyze two types of financial point processes, linked with market
microstructure theory and stealth trading hypothesis, for five stocks traded at NYSE: (i)
the relationship between trade size and trade durations and (ii) the relationship between
volume and price durations. In general we reject the null hypothesis of weak exogeneity,
therefore questioning some results in the literature which rely on separate estimation of
each density.
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1 INTRODUCTION

It is a common practice in econometrics to analyze a joint process, say {y, x}, through the
analysis of the parameters of interest, ψ, via either the conditional density of y given x,
f(y|x), or the opposite, f(x|y). It has the following justification: If we denote by f(x, y)
the joint density of the process {y, x}, then it can be always written as the product of the
conditional times the marginal densities, i.e. f(y, x) = f(y|x)f(x) or f(y, x) = f(x|y)f(y).1 In
a parametric setup, researchers make distributional assumptions for f(y|x) and f(x), depending
on parameter sets, θy for f(y|x) and θx for f(x). Then, if i) x is weakly exogenous for ψ and ii)
the respective densities are correctly specified, the inference procedure described above is valid;
cf. Engle et al. (1983). Otherwise, if either weak exogeneity or correctness of specification of
the joint distribution fails, the resulting estimators would be inconsistent; c.f. Huber (1967),
White (1981, 1982). However, the distributional sufficient condition has been somehow relaxed
by assuming correct specification of the conditional mean instead of demanding it for the whole
density function (see Gourieroux et al.1984 a,b, for details). This last result is based in a well
known property of the exponential densities.

Regarding weak exogeneity, most tests have been derived under the assumption of correct
specification of the joint density function of the process of interest. Furthermore, the form of the
joint density has been commonly taken as Gaussian. Then, using standard maximum-likelihood
(ML) approaches several tests for exogeneity have been proposed in the literature; cf. Engle et
al. (1983), Engle and Hendry (1983) and Boswijk and Urbain (1997). Unfortunately, neither
normality nor knowledge of the joint density of the process are appropriate assumptions when
modelling financial point processes, which constitute our focus in this paper. This situation
arises when no distribution may capture correctly the data features, because of skewness or
lepto(platy)kurtosis, but the first moment is still correctly specified.

A financial point process may be, in general, decomposed in two sets of variables. The
first, denoted by x, is the vector of durations - defined as the time interval between two
financial events. The second, denoted by y, a matrix of variables associated to each arrival
time - known, in statistics, as the marks of the process. Examples of financial durations are
the time elapsing between trades of equity assets (see e.g., Engle, 2000) or between changes
in the intervention interest rates set by central banks in the interbank reserve market (see
e.g., Dolado and Maria-Dolores, 2002). The marks, in turn, may refer to changes in the price
or volume of the traded assets or the change in the interest rate itself, whose probability of
change is modelled conditional on a given duration of time where no variations occur. In these
examples, the nature (i.e. support) of the mark differs among applications.

1For ease of exposition we focus on the factorization f(y, x) = f(y|x)f(x). This is often the case in empirical
applications of market microstructure. Specifically, when modelling financial point process we are interested in
the distributions of durations, denoted by x, and marks, denoted by y. One advantange of these financial point
processes is that only one of the two possible factorizations of f(y, x) is valid. In effect, because of the time
ordering of the process, it only makes sense to factorize the joint density as the conditional of the marks times
the marginal of the duration, i.e. f(y, x) = f(y|x)f(x). Alternatively, the factorization f(y, x) = f(x|y)f(y) is
meaningless as the conditional density in this case would be the probability that a duration dies conditional on
the mark that is only observed when the duration dies.
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In a similar tick-by-tick data2 context to ours, Engle (2000) discusses the need of weak
exogeneity if one wishes to perform a separate estimation of each density. If some of the
parameters of the marginal process are present in the conditional density, his suggestion is
to estimate them consistently from the marginal pdf and then replace these estimates in the
conditional density to obtain estimates of the parameters of interest. This would provide
consistent estimates of the parameters of interest (as long as the conditional mean is still
correctly specified). Yet they will be inefficient, given the use of first-step estimates of the
marginal mean. However, no explicit test for weak exogeneity is proposed, as we do here. Of
course, this type of test would be a necessary requirement before implementing the two-step
procedure.

For the previous reasons, we propose two tests for weak exogeneity using a pseudo-maximum
likelihood (PML) framework. First, we propose a simple score-type test for weak exogeneity
considering the class of Quasi Generalized Pseudo Maximum Likelihood (QGPML) estimators
when the dependence between the parameters of the conditional and marginal means of the
densities is assumed to be linear. In this case, it is easy to show that a pseudo-score test (equiv-
alent to the standard score/LM test) suffices to achieve consistency. Secondly, since, under
misspecification of the functional dependence, this score test may reject the weak exogeneity
assumption when indeed the data generating process might present this feature, we also derive
a consistent specification likelihood-ratio test that shows nontrivial power against nonpara-
metric alternatives. A bootstrap procedure to approximate the asymptotic distribution of the
latter test is developed.

In our empirical application, we consider two financial point processes. The financial du-
rations correspond to the time intervals between i)trades and ii)accumulated price changes.
The marks are i) trade size3 and ii)accumulated volume per price changes respectively. Data
are tick-by-tick of 5 stocks traded at NYSE in 1996. The choice of volume as the mark of the
point process can be motivated by reference to the microstructure literature.

In effect, in many empirical market microstructure studies, durations have been modelled
conditional on past values of different marks, such as the spread or trade size; cf. Engle (2000)
or Bauwens and Giot (2000). On the other hand, modelling the marks conditional on the
durations has important economic implications. For example, the first application, where we
study the relation between trade size and trade durations, is useful to test the hypothesis
of stealth-trading; cf. Barclay et al. (1993) and Chakravarty (2001). According to this
hypothesis, informed traders trade medium size blocks to avoid the disclosure of their private
information to the market. This is related with Easley and O’Hara (1992) model that predicts
that tranquile periods are informative as no informed traders are in the market. In the second
application we examine the relationship between accumulated volume per price change and
price duration. This is linked with the Clark’s mixture of distribution hypothesis (1973) that
predicts a positive covariance between volume size and squared returns, a proxy for volatility.
To the extent that price durations are as well a proxy of the instantaneous volatility of the
market (cf. Engle and Russell, 1998), in this fashion we study the instantaneous relation

2Denomination of a point process among stock market practitioners.
3Trade size is also known as trade volume. However, we stick to trade size as it is the usual terminology

among market microstructure empiricists.
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between volume size and volatility.

In both examples, we test weak exogeneity, that is, if the durations are weakly exogenous
for the parameters of the volume density. From our results, out of ten estimations, we reject
the presence of weak exogeneity in seven (eight) cases using the parametric (nonparametric)
test. Therefore, we conclude that it is often not valid to estimate separately the parameters of
conditional and the marginal densities. And it seems useful to apply our weak exogeneity test
before drawing strong conclusions from these exercises.

The rest of the paper is structured as follows. Section 2 introduces notation and offers a
brief summary of the concept of weak exogeneity. Section 3 reviews the score/LM test in ML
and PML frameworks, and discusses its application in several examples where the dependence
between the parameters in the means of the conditional and marginal densities is assumed
to be linear. Section 4 proposes a consistent specification test for weak exogeneity when the
functional form of the dependence is left unspecified. Section 5 contains two applications and
section 6 concludes.

2 WEAK EXOGENEITY

Following the seminal contribution of Engle et al. (1983), let {zi}Ni=1 = {yi, xi}Ni=1 be a bivariate
stochastic process with joint density f (zi|Ii; θ) where Ii is a sigma field consisting of past values
of the process, zi−1 and current and past values of other valid conditioning variables wi, i.e.
Ii = (zi−1, wi). The joint density can be factorized as

fz (zi|Ii; θ) = fy|x (yi|xi, Ii; θy) fx (xi|Ii; θx) , (1)

where (θy, θx) ∈ Θ. The choice of this factorization, and not the reverse one i.e. fz = fx|yfy, is
given by economic information about the processes (x, y), as discussed above for marked-point
processes.

Let ψ = f (θ) ∈ Ψ be the parameters of interest which are assumed to be only present in the
conditional density. The key issue, addressed by Engle et al. (1983), is to know under which
conditions it is possible to estimate ψ just as a function of θy and without loss of information.
In other words, that all the information needed for the estimation of ψ is in fy|x. This would be
possible if xi is weakly exogenous for ψ, namely if i) ψ = f (θy) and ii) θy and θx are variation
free, i.e. (θy, θx) ∈ Θy × Θx.4

The next step is to derive a simple test for weak exogeneity. For this, we need to specify
some functional forms for the densities, an issue that shall be discussed at length later on. For

4Note that, albeit not considered in this article, further definitions of exogeneity arise if one is additionally
interested in prediction or policy analysis, besides inference. For example, in the case of prediction conditional
on forecasts of the exogenous variables, besides weak exogeneity, one also needs Granger noncausality of y with
respect to x, leading to the concept of strong exogeneity. How to test for Granger noncausality in a financial
point process has been analyzed by Renault and Werker (2004). Finally, when considering policy analysis, strict
exogeneity requires weak exogeneity and that θy is invariant to interventions affecting θx; cf. Engle et al. (1983).
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the time being, let us just assume that the parameters of interest are in the conditional mean
of y given x and the information set I, with the following structure

E[yi|xi, Ii; θy] = µ
y|x,Ii
i = g

[
α(µ

x|I
i )xi + λ′Ui

]
, (2)

while the conditional mean of xi has the form

E[xi|Ii; θx] = µ
x|I
i = h

[
β′Ui

]
, (3)

where Ui = (1, wi, wi−1, . . . , zi−1, . . .); g(·), α(·) and h(·) are assumed to be known functions.
Their specific functional forms will depend on the the nature of the problem.5 For notational
simplicity, we suppress hereafter the information set I, always keeping in mind the dependence
of the previous expressions on it.

Under the assumption that the parameters of interest depend solely on the parameters of

the conditional mean µ
y|x
i i.e. ψ = (α, λ), it suffices to test that α(µxi ) = α (a constant) in

order to test weak exogeneity. If such a case, the parameters of interest are not subject to
cross-equation restrictions and ψ is not subject to variations in θx. More specifically, if α(µxi )
is assumed to be linear, i.e. α(µxi ) = α0 + α1µ

x
i , then testing weak exogeneity reduces to

test the null hypothesis H0 : α1 = 0. In the sequel, we will refer to this case as LD (linear
dependence). Note, however, that the approach easily extends to more general functional
forms for dependence. For instance, α(µxi ) may be assumed to be a nonlinear (e.g. quadratic)
function of µxi .

By contrast, if α(·) is left unspecified, (2) becomes the so called semiparametric generalized
partially linear model with time varying coefficients (see Severini and Staniswallis, 1994 and
Cai, Fan and Li, 2000). In this framework, testing for weak exogeneity again reduces to test
the null hypothesis of H0 : α (µxi ) = α. That is, under the null hypothesis of weak exogeneity
no variation in α (·) is allowed. This is a nonparametric test. The next two sections explain
the parametric and the nonparametric tests, respectively.

3 THE SCORE PARAMETRIC TEST

In this Section we first introduce some further notation and briefly review the derivation of
the score parametric test, first under ML and then under PML, using general forms of g and h
in (2) and (3). Next, we discuss the choice of specific functional forms for g and h depending
on the supports of y and x. We highlight that, by appropriate choice of the density and the
functions g and h, the first order conditions are the same for all choices, up to a weighting
factor. Finally, we derive the test for two simple examples, stressing its similarity with the very
well-known case of linear conditional means and Gaussian distributions. In the first example,
we assume that f(y|x) follows a Poisson distribution and that f(x) is Gaussian whilst in the
second one we consider the case of two exponential distributions. Lastly, we briefly disgress
about how to implement the test when the parameters of interest are not in the conditional
mean, but in the conditional variance.

5Note that their arguments are linear. However, this assumption can be easily relaxed by substituting

g
[
α(µ

x|I
i )xi + λ′Ui

]
by g

[
α(µ

x|I
i )xi, Ui(λ)

]
and h [β′Ui] by h [Ui(β)].
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3.1 The LM test in ML and PML frameworks

As is well known, assuming that the densities are correctly specified and that LD holds, the
general theory of ML leads to a simple score test for α1 = 0. This is the popular Lagrange
Multiplier (LM) test based on the constrained model under H0 : α1 = 0. Given (1), the
log-likelihood is

L (θy, θx) = ℓy|x (y|x;µx (ψ) , θy∗) + ℓx (x; θx)

where ℓy|x and ℓx are the conditional and marginal log-likelihood functions and θy∗ = θy \ ψ
i.e. the parameters not present in the conditional mean and hence of no interest. These may
be parameters of higher moments, such as the variance.

Defining î (θ) = ∂LN

∂θ and Î (θ) = ∂2LN

∂θ∂θ′ to be the empirical score and Hessian, they can be
partitioned as

î (θ) =



îy|x (θ)

îx (θ)



 and Î (θ) =



 Îy|x (θ) Îy|x,x (θ)

Îx,y|x (θ) Îx (θ)



 .

Denote by θ̂c the restricted ML estimator (i.e. under α1 = 0) and equivalently for θ̂yc and
θ̂xc . Then, under standard regularity conditions, they are asymptotically normally distributed,
consistent and efficient, in the sense that they reach the Cramer-Rao bound. Under the null
hypothesis Îy|x,x (θ) = Îx,y|x (θ) = 0 and

î
(
θ̂c

)
=



îy|x
(
θ̂c

)

0



 =





îα1

y|x

(
θ̂c

)

îθ
y†

y|x

(
θ̂c

)

0




=





îα1

y|x

(
θ̂c

)

0

0




,

where θy† = θy \α1. The FOCs imply that all the components of îy|x

(
θ̂yc
)

are zero, except the

one pertaining to α1. Equivalently, the submatrix Îy|x

(
θ̂c

)
can be partitioned

Îy|x

(
θ̂yc

)
=




Îα1

y|x

(
θ̂yc
)

Îα1,θy†

y|x

(
θ̂yc
)

Îθ
y†,α1

y|x

(
θ̂yc
)

Îθ
y†

y|x

(
θ̂c

)



 .

Hence, the LM test has the familiar form (see e.g. Harvey, 1981)

SML = −îα1

y|x

(
θ̂c

)′
Îα1

y|x

(
θ̂yc

)−1
îα1

y|x

(
θ̂c

)
(4)

where Îα1

y|x

(
θ̂yc
)−1

is the inverse of the component corresponding to α1 of the partitioned matrix

Îy|x

(
θ̂yc
)

i.e. Îα1

y|x

(
θ̂yc
)−1

=

[
Îα1

y|x

(
θ̂yc
)
− Îα1,θy†

y|x

(
θ̂yc
)
Îθ

y†

y|x

(
θ̂yc
)−1

Îθ
y†,α1

y|x

(
θ̂yc
)]−1

. Under mild

regularity conditions regarding the densities, it is well known that the limiting distribution of
the test is χ2(1) under H0; cf. Silvey (1975).
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In the derivations above, no specific assumptions have been made regarding the functional
form of the joint density. It has just been specified as the product of the conditional and the
marginal. In practice, however, we often encounter cases in which the nature of y may differ
substantially from that of x. For example, y may be a binomial process and x a gamma process
which makes it difficult to write down the true joint density. In such cases, if the parameters of
interest are exclusively present in the mean of the conditional density and our focus lies on the
estimation of a parameter present in the first conditional moment then, following the important
results of Gourieroux et al. (1984a,b) we can write the pseudo-log-likelihood function as

QLEF (ψ, η) = log qLEFy|x

(
y;µy|x

)
+ log qLEFx (x;µx) , (5)

where qLEFy|x and qLEFx are the conditional and marginal pseudo log-likelihood functions that

belong to the Linear Exponential Family (LEF hereafter), i.e.

qLEFy|x = exp
{
Ay|x

(
µ
y|x
i

)
+By|x (yi) + Cy|x

(
µ
y|x
i

)
yi

}
and

qLEFx = exp {Ax (µxi ) +Bx (xi) + Cx (µxi )xi}

being A, B and C are scalars. The parameters are now only present in the conditional means.
For qLEFy|x they are the parameters of interest ψ. For qLEFx the parameters in the conditional
mean are in the subset η. Therefore, θy = ψ ∪ θy∗ and θx = η ∪ θx∗.

As is well known, the LEF contains many important laws, such as Gaussian, Poisson, bino-
mial, multinomial, gamma (and hence exponential), negative binomial, multivariate Gaussian
and multivariate Poisson distributions, which turn out to be particularly useful in modelling
durations and marks of a financial point process. However, some of these laws have some
additional parameters which are present in higher moments. These parameters would be in
θy∗ and θx∗. In our setup, they will be assumed to be known since no assumptions are made on
higher moments. For example, if qLEFx is i.i.d. Gaussian, θx =

(
µx, σ2

)
, η = µx and θx∗ = σ2.

The estimates that maximize QLEF are the PML estimates. These estimates are consistent,
asymptotically normal distributed but not efficient. Indeed, its variance-covariance matrix is
of the classical sandwich form J−1IJ−1 where, for ψ,

Jy|x,LEF = E

[
∂2QLEF

∂ψ∂ψ′

]
= E

[
∂µy|x

∂ψ
Σ−1
y|x,0

∂µy|x

∂ψ′

]
,

where Σy|x,0 is the variance-covariance matrix of the LEF density of the conditional model

evaluated at θy0 , the true parameters. By the properties of LEF it equals
∂Cy|x

∂µy|x , and

Iy|x,LEF = E

[
∂QLEF

∂ψ

∂QLEF

∂ψ′

]
= E

[
∂µy|x

∂ψ
Σ−1
y|x,0Ωy|x,0Σ

−1
y|x,0

∂µy|x

∂ψ′

]
,

where Ωy|x,0 is the variance-covariance matrix of the true density, evaluated at θy0 , of the
conditional model. Equivalent matrices can be constructed for η.

From the above PML functions a pseudo-score test can be easily constructed. Note that
it is a pseudo-score test because it differs the the classical score test, in the sense that its
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variance-covariance matrix does not reach the Cramer-Rao bound. The matrices Jy|x,LEF and
Iy|x,LEF , as well as the scores, may be partitioned exactly as in ML. Under the null, the test
is equivalent to (4) but with different weighting matrix

SLEF = −îα1

y|x

(
ψ̂
)′
Ŵα1

y|x

(
ψ̂
)−1

îα1

y|x

(
ψ̂
)
, (6)

where (omitting the arguments and the subscripts for ease of exposition)

Ŵα1 =
[
Îα1 − Îα1,θy†

Ĵθ
y†−1

Ĵθ
y†,α1 − Ĵα1,θy†

Ĵθ
y†−1

Îθ
y†,α1 + Ĵα1,θy†

Ĵθ
y†−1

Îθ
y†
Ĵθ

y†−1
Ĵθ

y†,α1

]−1
,

such that Î and Ĵ are consistent estimators of I and J respectively. They are obtained by
replacing the linear operator E by an empirical mean and ψ by ψ̂. The test is distributed
as χ2(1). This expression is quite cumbersome since nothing has been assumed regarding the
variance. The weighting matrix of the pseudo-score test differs substantially from that of the
ML score test. Only in the case where the variance of LEF density equals the true variance,
Ω0 = Σ0 we will get a variance-covariance matrix that reaches the semiparametric efficiency
bound, i.e. J−1IJ−1 reduces to

Jy|x,LEF = E

[
∂µy|x

∂ψ
Ω−1
y|x,0

∂µy|x

∂ψ′

]
. (7)

Alternatively, if we have some information about how Ω looks like, we can estimate it
consistently in a first step and then replace it in the LEF, giving rise to Generalized PML
(GPML) discussed below.

As mentioned before, some of the distributions belonging to the LEF have parameters, θy∗

and θx∗, that are not present in the conditional means but in higher moments, in particular in
the true variances, denoted by νy|x = νy|x (θy∗) and νx = νx (θx∗). It could even be the case
that some of the parameters of the conditional mean are also present in the true variances:
νy|x = νy|x (θy) and νx = νx (θx). For example, in the case of the Poisson distribution, one does
not need to estimate any variance parameter as the variance equals the mean. However, for
the negative binomial one needs to estimate a second parameter that is present in the variance
but not in the mean; cf. Gourieroux et al.(1984b) for more details on this specific example.
In any case, the parameters involved in the variance need to be estimated consistently ad hoc.
Denote by ν̂y|x the variance evaluated in ˆθy∗ or θ̂y, which are strongly consistent estimates
of θy∗ and θy respectively. Similarly for νx. The LEF may be extended to the case where
the variance is considered to be a nuisance parameter. Such a family is the Generalized LEF
(GLEF)

qGLEFy|x = exp
{
Ay|x

(
µ
y|x
i , ν̂

y|x
i

)
+By|x

(
yi, ν̂

y|x
i

)
+ Cy|x

(
µ
y|x
i , ν̂

y|x
i

)
yi

}
,

and equivalently for the marginal density. The generalized-pseudo-log-likelihood (GPML) can
be written as

QGLEF (ψ, η) = log qGLEFy|x

(
y;µy|x, ν̂y|x

)
+ log qGLEFx (x;µx, ν̂x) . (8)
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If the parameters involved in the variances can be consistently estimated, the estimated
GPML parameters are also consistent, asymptotically normal and with variance-covariance
matrix, for ψ,

Iy|x,GLEF = E

[
∂µy|x

∂ψ
Ω−1

0

∂µy|x

∂ψ′

]
,

which is, indeed, the lowest bound we can get given that the distribution is not correctly
specified. Notice that it is equivalent to the semiparametric efficiency bound which is attained
since we know the form of the true variance and we estimate it consistently ad hoc.

As before, a score/LM test can be implemented by partitioning the matrix Iy|x,GLEF and
evaluating it under H0, so that test becomes

SGLEF = −îα1

y|x

(
θ̂yc

)′
Îα1

y|x,GLEF

(
θ̂yc

)−1
îα1

y|x

(
θ̂yc

)
(9)

where Îy|x,GLEF

(
θ̂yc
)

is a consistent estimator of Iy|x,GLEF . As before, the test is asymptoti-

cally χ2(1).

3.2 Specifying the conditional means and the first order conditions

The previous section has highlighted that one of the main advantages of working within the LEF
or GLEF is that a correct specification of the mean, even if the distribution if misspecified, leads
to estimates that are consistent and normally distributed, albeit not efficient. Nonetheless,
this loss of efficiency may be minimized when the variance is correctly specified and estimated
consistently. Therefore, the key issue in deriving a score/LM test is the correct specification
of the conditional mean. In Section 3.1 we assumed some very general forms of both the
conditional and marginal densities. In the sequel, however, we will focus only on the conditional
density since it is the one of main interest for most empirical applications. Yet, the same sort
of results extend to the marginal distribution.

Recall that the conditional mean has the form

µ
y|x
i = g

[
α(µxi )xi + λ′Ui

]

where, under LD, α(µxi ) = α0 + α1µ
x
i . Therefore, the only remaining issue for deriving the

weak-exogeneity test is how to specify g. Its functional form depends critically on the support
of the data.

For example, if yi has real support, the most appropriate functional form for g is the

identity and the conditional mean is µ
y|x
i = (α0 + α1µ

x
i )xi + λ′Ui. By constrast, if yi has

positive real support then its conditional expectation must be always positive. In this case,

the exponential function is a natural choice for g, i.e. µ
y|x
i = exp {(α0 + α1µ

x
i )xi + λ′1Ui}.

Note that is adequate whether yi is continuous or discrete. In effect, it is commonly used in
duration and count regressions. Lastly, if one is interested in modelling the probability that a

9



binary variable, yi, takes values 0 and 1, then the conditional expectation must be bounded
between 0 and 1, leading to the logistic function as a natural choice for g, namely

µ
y|x
i =

1

1 + exp {− (α0 + α1µxi )xi − λ′Ui}
.

In this fashion, it is possible to choose convenient functional forms for the conditional mean
for almost all the supports we may encounter in practice. For instance, if it happens to be
positive discrete with a finite number of values, the multinomial-type conditional mean is the
appropriate one, but this is just a straightforward extension of the binomial case discussed
above. By assuming a particular density in accord with the nature of the support of the
variable (namely Gaussian, exponential, binomial, multinomial or Poisson), the first-order
conditions are the same, up to some weighting factor depending on nuisance parameters. For
example, if yi has real, positive discrete, positive continuous or binary support, we can assume
a Gaussian, Poisson, exponential and binomial distributions, respectively. Thus, computation
of the corresponding FOC’s yields

N∑

i=1

∂µ
y|x
i

∂ψ

1

σ2

[
yi − µ

y|x
i

]
= 0 (10)

for a Gaussian distribution and

N∑

i=1

∂µ
y|x
i

∂ψ

[
yi − µ

y|x
i

]
= 0 (11)

for the other densities afore mentioned. In all cases the FOCs can be interpreted as the sum of
residuals weighted by some function depending on the nuisance parameters and the derivative
of the conditional mean with respect to ψ. They are indeed the same FOCs as in a weighted
least squares problem. Hence, if we specify correctly the conditional mean and the choice of
the density is constrained to the exponential family, the FOC’s are equivalent, up to some
weight, to the ones obtained in the Gaussian case.

This implies that, when constructing the score test, we can always use the same score

function iα1

y|x

(
θ̂yc
)
. Unfortunately, the same result does not hold for the Hessian since, for a

general LEF or GLEF, the second order condition is
∂2Ay|x(µy|x)

∂ψ∂ψ′ +
∂2Cy|x(µy|x)

∂ψ∂ψ′ y which depends

on the functional forms of Ay|x
(
µy|x

)
, Cy|x

(
µy|x

)
and g.

In Section 3.3 we provide several specific examples of the effects of different choices of the
previous functional forms and compute the score/LM test for weak exogeneity explicitly in
each case. We also show that the LM test may be also interpreted as a t-test in an augmented
regression model.

Some final clarifying remarks on consistency and efficiency are in order now. Throughout
the paper we have stressed that as far as i)the conditional mean is correctly specified, and
ii)the parameters of interest are in the first moment, the estimates are consistent in the PML
framework. Otherwise, that is if the conditional mean is incorrectly specified, the estimates

10



are inconsistent. The test that we propose is based on the correct specification of the condi-

tional mean. For example, suppose that there is weak exogeneity, then µ
y|x
i = g [α0xi + λ′Ui]

is a correctly specified conditional mean and the PML estimators of α0 and λ are consistent.
However, suppose that weak exogeneity does not hold but we estimate as if there were. Then

µ
y|x
i = g [α0xi + λ′Ui] would be a misspecified conditional mean leading to inconsistent α̂0 and

λ̂, as they converge to some pseudo-true values that depend on α1. Hence, testing for weak
exogeneity in a PML framework, where the parameters of interest are in the conditional mean,
boils down to testing consistency. The fact that, in a parametric framework and under the
alternative of lack of weak exogeneity, the estimates of ψ are not consistent while they are con-
sistent under the null, opens the possibility of using a Hausman-type test. This is certainly an
interesting avenue to explore. However, since our goal in this Section is to derive a parametric
test under the null and, in contrast to the LM test, the Hausman test requires estimation under
both the unconstrained and constrained parametric models, we do not pursue this line research
here. Nonetheless, and in spite of that, in next Section we propose a semiparametric likelihood
ratio test, which needs to estimate the model under both the null and the alternative.

3.3 Examples

In this Section we show two examples of some functional forms for the conditional and marginal
densities. As a benchmark we consider the well-known case where both are Gaussian, giving rise
to the classical t-test form of the LM test. The first example mixes two different distributions,
Poisson and Gaussian for the conditional and marginal, respectively. Therefore, the resulting
test would be the same if the marginal density would any other than Gaussian, though the
marginal density must belong to the exponential family and its conditional mean needs to be
correctly specified. The second example, closely related to the empirical applications below,
considers the case of two exponential densities.

3.3.1 Benchmark: Normal densities with linear model

As a benchmark, we start by reviewing the simplest case where it is assumed that the condi-
tional and marginal densities are Gaussian and that the conditional means are linear, i.e. g and
h are the identity. This case has been worked out by Boswijk and Urbain (1997), where they
examine how to test for weak exogeneity of variables for some set of parameters in cointegrated
systems with Gaussian error terms, and also by Engle and Hendry (1993), where strict exogene-
ity is tested by augmenting the conditional mean with dummies capturing structural breaks
(policy interventions) in the marginal process. The functions A, B and C in qLEFy|x

(
y, µy|x

)

are Ay|x

(
µ
y|x
i

)
= −(log σ

√
2π+ (µ

y|x
i /2σ2)), By|x (yi) = −y2

i /2σ
2 and Cy|x

(
µ
y|x
i

)
= 2µ

y|x
i /σ2,

and equivalently for qLEFx (x, µx). Then the quasi log-likelihood function is

QGLEF ∝ − 1

2σ̂2
y

N∑

i=1

ε2i −
1

2σ̂2
x

N∑

i=1

ϑ2
i

11



where εi =
(
yi − µ

y|x
i

)
and ϑi = (xi − µxi ), µ

y|x
i =

(
α0 + α1µ

y|x
i

)
xi+λ′Ui and µxi = β′Ui, and

σ̂2
y and σ̂2

x are strongly consistent estimates of the variances. In this simple case, those authors
have shown that the score corresponds to that of an augmented regression when we augment

the conditional mean µ
y|x
i = α0xi + λ′Ui to µ

y|x
i = (α0 + α1µ

x
i )xi + λ′Ui, so that the LM test

becomes
SGLEF = α̂′

1V ar (α̂1)
−1 α̂1,

which of course is equivalent to a t-test for H0 : α1 = 0 in the augmented regression estimated
by OLS (see Boswijk and Urbain, 1997, p 32).6

3.3.2 Poisson and Gaussian densities with exponential and linear models

In this example we assume that the conditional and marginal densities are Poisson and Gaus-
sian respectively. Therefore, the appropriate conditional means are exponential and linear
respectively, i.e. g is the exponential function and h is the identity. The functions A, B and C

in qLEFy|x

(
y, µy|x

)
are now Ay|x

(
µ
y|x
i

)
= −µy|xi , By|x (yi) = − log yi and Cy|x

(
µ
y|x
i

)
= logµ

y|x
i .

And for qLEFx (x, µx) the expressions are like in the the previous example. Hence, the quasi
log-likelihood function is

QGLEF ∝ −
N∑

i=1

µ
y|x
i + yi logµ

y|x
i − 1

2σ̂2
x

N∑

i=1

ϑ2
i ,

where µ
y|x
i = exp

{(
α0 + α1µ

y|x
i

)
xi + λ′Ui

}
and µxi = β′Ui and σ̂2

x is a strongly consistent

estimate of the variance of x. The score and the hessian, under the null hypothesis, are

î
(
θ̂c

)
=




îy|x

(
θ̂c

)

îx

(
θ̂c

)



 =





0

0
∑N

i=1 εixiµ
x
i

0





and

Î
(
θ̂c

)
= −





∑N
i=1 µ

y|x
i U2

i

∑N
i=1 µ

y|x
i xiUi

∑N
i=1 µ

y|x
i xiUiµ

x
i 0

∑N
i=1 µ

y|x
i xiUi

∑N
i=1 µ

y|x
i x2

i

∑N
i=1 µ

y|x
i x2

iµ
x
i 0

∑N
i=1 µ

y|x
i xiµ

x
i Ui

∑N
i=1 µ

y|x
i x2

iµ
x
i

∑N
i=1 µ

y|x
i (xiµ

x
i )

2 −∑N
i=1 µ

x
i xiUiεi

0 0 −∑N
i=1 µ

x
i xiUiεi

∑N
i=1 µ

x
i U

2
i




,

6Note that this result remains unchanged if we replace the marginal Gaussian density by any other dis-
tribution since, under H0, the score test is only based on the conditional density rather than on the joint
density.
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where the rows in the score are the FOC’s with respect to λ, α0, α1 and β respectively. Asuming
that −∑N

i=1 µ
x
i xiUiεi → 0,7 the score test is equivalent to the sum of two score tests, one for

the conditional density and another for the marginal density.

To show that it yields the t-test, we simplify the problem considering only the score and the
hessian for α0 and α1, since this simplification reduces greatly the complexity of the matrices.
The hessian for the conditional density is now

Îy|x

(
θ̂c

)
= −




∑N

i=1 µ
y|x
i x2

i

∑N
i=1 µ

y|x
i x2

iµ
x
i

∑N
i=1 µ

y|x
i x2

iµ
x
i

∑N
i=1 µ

y|x
i (xiµ

x
i )

2



 ,

where the inverted bottom-right element is

Îα1

y|x

(
θ̂c

)−1
= −

∑N
i=1 x

2
iµ

y|x
i

−
∑N

i=1

(
µ
y|x
i x2

iµ
x
i

)2
+
∑N

i=1 µ
y|x
i x2

i

∑N
i=1 µ

y|x
i x2

iµ
x2

i

,

which corresponds to the variance-covariance matrix of generalized least squares estimators,

with weighting matrix equal to µ
y|x
i in the augmented regression. It is equivalent to the

Gaussian case with heteroskedastic variance equal to µ
y|x
i , as the variance equals the mean in

a Poisson distribution. This is in line with with the above-mentioned result that the FOCs
are the same, up to some factor depending on the higher moments, for all the densities in the
exponential family. The score test in this case is

SLEF =

(
N∑

i=1

εixiµ
x
i

)2

Îα1

y|x

(
θ̂c

)−1
.

3.3.3 Exponential densities with exponential models

Lastly, we provide an example that we will use in the empirical applications. The densities are
both exponential and the conditional means are exponential. Thus, the functions A, B and C

in qLEFy|x

(
y, µy|x

)
are Ay|x

(
µ
y|x
i

)
= − logµ

y|x
i , By|x (yi) = 0 and Cy|x

(
µ
y|x
i

)
= −1/µ

y|x
i . And

likewise for qLEFx (x, µx). The quasi log-likelihood function is

QGLEF = −
N∑

i=1

logµ
y|x
i +

yi

µ
y|x
i

+ logµxi +
xi
µxi
,

where µ
y|x
i = exp

{(
α0 + α1µ

y|x
i

)
xi + λ′Ui

}
and µxi = exp {β′Ui}. Following the same steps

as in previous example, the score test is

SLEF =

(
N∑

i=1

(
yi

µ
y|x
i

− 1

)
µxi xi

)2

Îα1

y|x

(
θ̂c

)−1
(12)

7Boswijk and Urbain, 1997, justify this condition in the Gaussian case.
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where Îα1

v|d

(
θ̂c

)−1
is the bottom right side element of the inverse of

Îy|x

(
θ̂c

)
= −





∑N
i=1

yi

µ
y|x
i

U2
i

∑N
i=1

yi

µ
y|x
i

xiUi
∑N

i=1
yi

µ
y|x
i

xiUiµ
x
i

∑N
i=1

yi

µ
y|x
i

xiUi
∑N

i=1
yi

µ
y|x
i

x2
i

∑N
i=1

yi

µ
y|x
i

x2
iµ

x
i

∑N
i=1

yi

µ
y|x
i

xiµ
x
i Ui

∑N
i=1

yi

µ
y|x
i

x2
iµ

x
i

∑N
i=1

yi

µ
y|x
i

(xiµ
x
i )

2




.

3.4 The case when ψ is present in the variance

So far it has been assumed that either the variance of the conditional density is fully known,
as in PML, or that it has a known functional form, which depends upon parameters that
can be consistently estimated ad hoc, as in GPML. Thus, in either case, the parameters of
interest, ψ, are only present in the conditional mean. However, we may find some cases, like in
volatility models, where the parameters of interest are in the conditional variance. In this case,
the weak-exogeneity test is no longer based on the first moment but on the second moment.8

Further, a more general case can be envisaged when the parameters of interest are in both the
mean and variance. More precisely, let

µ
y|x
i = g1

[
α1 (µxi , ν

x
i )xi + λ′Ui

]
and ν

y|x
i = g2

[
α2 (µxi , ν

x
i )h (xi) + η′Ui

]
,

where g1 and g2 are known functions.9 Thus, for the conditional density we can use the
quadratic exponential family, QEF, defined by

qQEFy|x = exp
{
Ay|x

(
µ
y|x
i , ν

y|x
i

)
+By|x

(
yi, ν

y|x
i

)

+Cy|x

(
µ
y|x
i , ν

y|x
i

)
yi + y′iDy|x

(
µ
y|x
i , ν

y|x
i

)
yi

}
,

and, equivalently, for the marginal density

qQEFx = exp
{
Ax (µxi , ν

x
i ) +Bx (xi, ν

x
i ) + Cx (µxi , ν

x
i )x+ x′iDx (µxi , ν

x
i )xi

}
.

The quadratic-pseudo-log-likelihood (QPML) is now

QQEF (θy, θx) = log qQEFy|x

(
y;µy|x, νy|x

)
+ log qQEFx (x;µx, νx) ,

where α1 and α2 are now functions of µx and νx. Following Engle and Hendry (1993, p. 125)
we assume for the conditional mean

α1 (µxi , ν
x
i ) = α1,0 + α1,1µ

x
i + α1,2 (µxi )

2 + α1,3ν
x
i + α1,4ν

x
i µ

x
i ,

8For ease of exposition we still assume that the estimation of the marginal model focusses on the mean and
not on the variance. However, this assumption may be relaxed by allowing for dynamic conditional variance.

9Notice the difference between xi and h(xi). The latter function appears in the conditional variance. For
example, we may use h(xi) = x2

i instead xi.
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and for the conditional variance we propose

α2 (µxi , ν
x
i ) = α2,0 + α2,1 (µxi )

2 + α2,2ν
x
i + α2,3ν

x
i (µxi )

2 .

The estimates that maximize QQEF are consistent and asymptotically normal with variance-
covariance matrix that can be found in Gourieroux et al. (1984a, p. 697).10

In this setup, testing for weak exogeneity reduces to test the set of restrictions α1,1 = α1,2 =
α1,3 = α1,4 = α2,1 = α2,2 = α2,3 = 0. The form of the correponding test is equivalent to LEF
with the appropriate variance-covariance expressions, leading to a test-statistic with a limiting
χ2 distribution with the corresponding degrees of freedom (equal 7, in the previous case).

4 A CONSISTENT TEST FOR WEAK EXOGENEITY

The problem of choosing a functional form for α(·) appears in many examples. In Section
2, to implement the score test we propose LD, i.e, α(µxi ) = α0 + α1µ

x
i . In principle, there

is no reason to choose this functional form. One might choose other alternatives such as
α(µxi ) = α0 + α1µ

x
i + α1(µ

x
i )

2 or any other known relationship. In Section 3.4 we have the
same choice to make, where we have quadratic expressions for α1(·) and α2(·) in terms of µxi
and νxi . But, again, other possible alternatives are suitable. It is important to realize that if
the functional form for α(·) is not correctly specified, the particular score test developed in the
previous section may reject the weak exogeneity assumption when indeed the data generating
process might present this feature.

To prevent against this failure in our testing procedure we propose to leave unspecified the
functional form for α(·). In the null hypothesis we will test that α(·) is a constant function,
that is, it does not depend on µxi (weak exogeneity assumption). The alternative will be
the complementary set, i.e. any type of dependence, α (µxi ) (rejection of weak exogeneity
assumption). Although other possible tests based in moment conditions are available, we
propose a very simple test based in the Pseudo-likelihood ratio principle. Thus, under the null
hypothesis we will compute the pseudo-log-likelihood function by imposing that α (µxi ) = α for
any i. In fact, α and λ can be estimated under PML, as in previous section. Unfortunately,
estimation under the alternative is much more cumbersome. Under the alternative hypothesis
the conditional mean takes the following form

µ
y|x
i = g

[
α (µxi )xi + λ′Ui

]
, i = 1, · · · , N,

and the pseudo-likelihood function for the i-th observation is qLEFy|x (yi, g [α (µxi ) + λ′Ui]). Note
that standard pseudo-maximum likelihood estimation of λ may yield inconsistency and slow
rates of convergence (for examples of inconsistency, see Kiefer and Wolfowitz, 1956, and
Grenander, 1981, whereas for cases of slow rate of convergence, see Shen and Wong, 1994 and
Birgé and Massart, 1994) in the presence of infinite ”incidental” parameters, α (µx1),· · · ,α (µxN ).

In order to solve these proble ms many alternative solutions have been proposed. If the
function α(·) is estimated through splines, series, neural networks or wavelets then the method

10Since we do not use this family, and the variance-covariance expressions are quite cumbersome, we refer to
the reader to the appropriate reference.
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of sieve extremum estimation can be used. Chen and Shen (1998) give sufficient conditions for
splines and Fourier series under regularly spaced dependent data. If, instead, other methods
such as kernels or local polynomials are used, then the sieve method is no longer valid and
other non-sieve ML estimation methods are recommended. Among others, we adopt here the
so called generalized profile likelihood approach (see Severini and Wong, 1992 and Severini
and Staniswalis, 1994). Taking the approach introduced in a different context by Cai, Fan and
Li (2000) we proceed first to estimate α(µxi ) using a local linear modelling scheme. The local
linear fittings have several nice properties, such as high statistical efficiency, design adaptation
and good boundary behavior (cf. Fan and Gijbels, 1996). Under the assumption that α(µxi )
has a continuous second derivative, for each given point µx0 , it can be locally approximated by
a linear function α(µxi ) ≈ a+ b (µxi − µx0) for µxi in a neighborhood of µx0 . Then, the following
smooth pseudo-likelihood function is defined

gLEFy|x (a, b) =
N∑

i=1

log qLEFy|x

(
yi; g

[{
a+ b′ (µxi − µx0)

}
xi + λ′Ui

]) 1

h
K

(
µxi − µx0

h

)
,

where K(·) is a kernel function, h is the bandwidth, a = α(µx0) and b = ∂α
∂µx′

∣∣∣
µx=µx

0

. For given

values of µxi (estimated previously from the marginal model), λ and h the estimator of α(µx0)
is defined as

(
âλ,h, b̂λ,h

)
=

(
α̂λ,h(µ

x
0),

∂α̂(µx)

∂µx′

∣∣∣∣
µx=µx

0 ,λ,h

)
= argmaxa,b gLEFy|x (a, b),

and the local linear regression estimator is α̂λ,h(µ
x
0) = âλ,h. Repeating this procedure for

i = 1, · · · , N we obtain N estimates of the unknown curve, α̂λ,h(µ
x
1),· · · ,α̂λ,h(µxN ).

The estimator for the parametric part is obtained by maximizing the un-smooth likelihood
function

λ̂ = argmaxλ

N∑

i=1

log qLEFy|x

(
yi; g

[
α̂λ,h(µ

x
i )xi + λ′Ui

])
.

As in Section 3.2, assuming a convenient functional form for the conditional mean and the
density in accord with the nature of the support of the variable, the FOCs for the local pseudo
likelihood method are equivalent to (10) and (11) but now with the kernel function playing
the role of an additional weighting factor:

N∑

i=1

1

h
K

(
µxi − µx0

h

)
∂µ

y|x
i

∂ψ

1

σ2

[
yi − µ

y|x
i

]
= 0

for a Gaussian distribution and

N∑

i=1

1

h
K

(
µxi − µx0

h

)
∂µ

y|x
i

∂ψ

[
yi − µ

y|x
i

]
= 0

for the other densities.
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Under fairly standard conditions it is possible to show (see Cai, Fan and Li, 2000; Theo-

rem 1 and Severini and Staniswalis, 1994; Proposition 1) that both
{
α̂λ̂,h(µ

x
i )
}N
i=1

and λ̂ are

consistent and asymptotically normal under the appropriate rates.

Therefore, the following nonparametric likelihood ratio test statistic is proposed

LR = 2

{
N∑

i=1

log qLEFy|x

(
yi; g

[
α̂λ̂,h(µ

x
i )xi + λ̂′Ui

])

−
N∑

i=1

log qLEFy|x

(
yi; g

[
α̂xi + λ̂′Ui

])}
. (13)

For parametric models, the likelihood ratio statistic follows asymptotically a chi-square
distribution with degrees of freedom m − n, where m and n are the number of parameters
under the alternative and the null hypothesis respectively. Instead, when a nonparametric
alternative is present the number of parameters tends to infinity. Therefore, the asymptotic
distribution of LR will be gaussian and it will be independent of the parameters of interest.11

This suggests the use of a conditional bootstrap to construct the null distribution of LR (see
Cai, Fan and Li, 2000).

Finally, we briefly describe the bootstrap procedure. Since these models are dynamic with
long memory, standard bootstrap is unfeasible. We rely on Hall and Yao (2003) that show how
to bootstrap from a GARCH model with heavy tails.

1. Conditionally on the values of {xi, Ui}Ni=1 consider the pseudo-maximum likelihood esti-
mators of α and λ under the hypothesis of weak exogeneity, λ̂ and α̂.

2. Compute the residuals of the model, ε̃i.

3. Draw ε∗i by sampling randomly, with replacement, from ε̃i.

4. Finally, compute the conditional means and the bootstrap sample y∗i . We compute the
test statistic LR∗ in (13), substituting y∗i for yi.

Note that although this test has been implemented based on PML estimation techniques, it
can be easily extended to account for quadratic exponential families.

5 APPLICATIONS TO HIGH FREQUENCY DATA

In this section we apply the proposed testing approach for weak exogeneity to high- frequency
data. More precisely, we model tick-by-tick data of five stocks, traded at the New York Stock
Exchange (NYSE): Boeing, Coca Cola, Disney, Exxon and IBM. The data were extracted

11For the rigorous justification of this argument we refer to the articles by Shen and Wong (1994) and Shen,
Shi and Wong (1999) that considered nonparametric likelihood ratio tests in a very general setting.
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from the trades and quotes (TAQ) database pertaining to September, October, and November
1996. Trades and bid/ask quotes recorded before opening (9:30 am) and after closing (4:00
pm) were not used. This database consists of two parts: the first reports all trades, while the
second lists the bid and ask prices posted by the specialist. Hence, it contains a great deal of
information, as we may compute different types of durations (trade, price, volume) and the
associated variables to each trade and quote (ask, bid, price, volume size, etc).12

This database has been widely used in the literature; cf. Engle (2000), Engle and Russell
(1998) or Bauwens and Veredas (2004). In particular, Engle (2000) analyzes price volatility,
using transaction data, conditional on current trade duration. The marginal density is modelled
as an ACD type model (see below for a brief explanation of this model) while a GARCH model
is estimated for the conditional density of price changes (measured by the midquote). The
latter model includes the reciprocal of current duration and current expected duration, past
long-run volatility and dummy variables for spread and trade size. From the viewpoint of our
application, his most significant finding is that both current duration and expected duration are
(significantly) negatively related with volatility. An increase in the trading activity, reflected
by a shrunk of trade durations, implies an increase in volatility. By contrast, Engle and Russell
(1998) analyze the conditional density of price durations (midquotes as well) conditional on
several microstructure variables. They are interested in analyzing the argument made by Easley
and O’Hara (1992) about how the number of transactions influences the price duration process.
More concretely, they focus on the link between price durations and spread and volume per
transaction. They find that the higher the volume is, the smaller the price duration is. A
viceversa for the spread.

Here, despite using Engle’s (2000) factorization, we adopt a different approach. Specifically,
we study how market participant’s reactions on volume, measured as trade size and volume
per price changes, is affected by the timing of trades and price changes respectively. Timing is
measured by the durations, denoted by d. In fact, in our first application we model trade size,
defined as the volume traded in each transaction, conditional on trade durations, defined as the
time intervals between consecutive trades. Volume size and trade durations are closely related.
As a matter of fact, trade durations are a measure of the trading activity, i.e. the lower the
duration, the higher the trading activity. The analysis of this relation may shed some light
on the relation between trade size and trading intensity. In fact, two antagonist views may be
defended. One may argue that informed traders are impatient as they are eager to trade quickly
with large trade sizes as the private information they posses is highly perishable. By contrast,
stealth trading theorists and practitioners, cf. Barclay et al. (1993) and Chakravarty (2001),
argue that informed traders concentrate their trades of relatively small sizes (fragmentation of
trade size), in order to not fully disclose their private information.

In our second application, we model volume, defined as accumulated share volume within
a price durations, conditional on the latter duration. It is defined as the minimum duration
that is required to observe a price change not less than a given amount. The price we focus
on is the mid-price of the specialist’s quote, i.e. the average of the bid and ask prices, and
the threshold is equal to $0.125 (in 1996 the minimum tick size was $0.0625 and there was
numerous tick changes in the mid price; they are not taken into account as they are mainly

12See Bauwens and Giot (2001) for further details on the TAQ database and on the functioning of the NYSE.
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due to the short term component of the bid-ask quote updating process). The volume size is
divided by the number of transactions within the duration. Otherwise, it will increase with
the duration. Price durations are a measure of instantaneous volatility (see Engle and Russell,
1998, p 1153). Periods of high (low) volatility are related with periods of agitated (serene)
activity and hence with periods of short (long) price durations. In effect, this second model
tackles with the well-known issue of Clark’s Mixture of Distribution Hypothesis (MDH) that
establishes a joint dependence of returns and volume, as it hypothesize that both variables
are driven by some unobserved information flow; cf. Clark (1973. Empirically a number
of papers have found a positive relation between volume and volatility; cf. Lamoreux and
Lastrapes (1990), and Giot (2000). Andersen (1996) develops a modified MDH where the
covariance between square returns and volume size is positive, being a function of the common
dependence of the information flow modeled by the intensity of information arrivals during
the day. In a financial point process, price durations are a good proxy of the instantaneous
volatility, see Bauwens and Giot (2001). We should therefore expect, following the above
common dependence, that the parameters of the conditional and marginal densities derived
from the joint process of volume size and price durations would not satisfy the property of free
variation.

[TABLE 1 ABOUT HERE]

Descriptive statistics about the dataset are shown in Table 1. The number of observations
is much greater for the trade process (ranging from 60,454 for IBM to 23,930 for Boeing) than
for the price durations (ranging from 6,128 for IBM and 1,609 for Coca Cola). Durations
are overdispersed, i.e. standard deviations are larger than the mean. These dispersion ratios
cannot be captured by the exponential distribution. However, this is not a major concern
for us since we will only focus on the specification of the means in both the conditional and
marginal densities. The same reasoning applies to the two volume variables.

The sequences of trade size and volume per price change, as well as trade and price du-
rations, are shown in the top panel of Figures 1 and 2 (because of space limitations we only
report the plots for Boeing, but figures for other stocks are very similar). As is conventional
with this kind of data, clustering of small and large durations can be observed, creating serial
dependence. This can also be seen also through Spearman’s correlation coefficients for serial
dependence shown below the previous plots.

Volumes and durations also have a strong seasonal intra-daily pattern which should be
considered when modelling both processes. In fact, both processes can be thought of as con-
sisting of two parts: a stochastic component to be explained by some dynamic model, and a
deterministic part, namely the seasonal intra-daily pattern. This effect arises from the system-
atic variation of the market activity during the day. We model time-of-day adjusted volumes

vi = Vi/φ
v
i

(
t
′

i

)
and durations di = Di/φ

d
i

(
t
′

i

)
, where φvi

(
t
′

i

)
or φdi

(
t
′

i

)
are the time-of-day

effects at time t
′

i, the number of accumulated seconds since the opening, and Vi and Di are the
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observed volume and durations. They are estimated by a nonparametric regression

φvi

(
t
′

0

)
=

1
Nh

∑N
i=1K

(
t
′

0−t
′

i

h

)
Vi

1
Nh

∑N
i=1

(
t
′
0−ti

′

h

) (14)

where K(·) is a quartic kernel and h = 2.78SN−1/5, S being the sample standard deviation.

Equivalently for φdi

(
t
′

i

)
. Plots in the bottom of Figures 1 and 2 show the seasonal patterns

for volume (left-hand side) and durations (right-hand side). The central line is the estimated
seasonal pattern and the side lines show the 95% confidence intervals; cf., see Veredas et
al. (2001) for the computations of these intervals. Durations exhibit an inverted U-shaped
seasonality, meaning that trading activity during the opening and the closing is higher than
for the rest of the day. The seasonal patterns of trade size and volume size per price duration
present a decreasing pattern, meaning that the number of traded assets during the opening is
higher than during the closing.

[FIGURES 1 AND 2 ABOUT HERE]

Once the most salient features of the data have been described, we now turn to the ap-
plication of the proposed testing procedure. The process duration-volume is a point process,
namely a stochastic process in which the position in the space of each realization is stochastic.
It implies that not only the value of the variable we are interested in is stochastic, but also
its position in the space. This space, in our case, is uni-dimensional and it is indeed the time
line. Therefore, our observed process is a stochastic process in which each realization consists
of two values: the moment of time in which the trade, or price change, occurred and the
corresponding volume. In other words, the vector {zi}Ni=1 = {yi, xi}Ni=1 consists of a duration
process, say xi, and a volume process associated to each duration, yi.

As discussed in the Introduction, for a financial point process only one factorization of the
joint density is correct: the volume process must be conditional to the duration process. In
other words, this means that in factorization (1) yi is the mark and xi the duration, that is, the
same factorization as in Engle (2000). To homogenize notation hereafter yi = vi and xi = di.

The next step deals with how to specify the densities. Under the null of weak exogeneity, the
conditional and the marginal models can be estimated independently. For ease of exposition we
assume that the parameters of interest are only in the first moment (and hence we can use PML
or GPML, but not QPML) and that dim (θv∗) = 0. This implies that the variance is taken to be
constant, or identical to the mean as is the case of the exponential or Poisson distributions. For
the marginal density, we also assume that dim

(
θd∗
)

= 0. However, as explained in Section 3.4,
extensions to the case where parameters are present in higher moments are straightforward,
making use of QLEF.

Since durations are strictly positive, an exponential conditional mean, i.e. h (·) = exp (·),
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is the most natural choice within the exponential family.13 Further, we assume that the
conditional mean of the durations follows an accelerated time model, di = µdi ε

d
i = exp

(
βUdi

)
εdi ,

where εi follows an exponential distribution with parameter equal to unity. This implies that
durations also follow an exponential distribution with parameter 1/ exp

(
βUdi

)
. Additionally,

to account for the serial correlation, see Figure 1, we introduce lagged values of d in Udi . More
specifically, under an exponential density, we adopt the Log-ACD(1,1) model proposed by
Bauwens and Giot (2000), namely Udi =

(
1, ln di−1, µ

d
i−1

)′
. Therefore, the conditional mean to

estimate is µdi = exp
(
β1 + β2 ln di−1 + β3µ

d
i−1

)
.

Trade size and volume per price duration also have positive and continuous support. Again
an exponential distribution is a reasonable choice. Thus, we assume an exponential conditional
mean. As with durations, trade size and volume per price duration are serially correlated (see
Figures 1 and 2).14 We choose a ”volume” version of the Log-ACD model, the so-called Log-
ACV model, whose plain version, ACV, was introduced by Manganelli (2002). Therefore,
the Log-ACV model, including the component that is used to test weak exogeneity, is vi =

µ
v|d
i εvi = exp

((
α0 + α1µ

d
i

)
di + λUvi

)
εvi , where εvi is exponentially distributed with parameter

equal to 1. For Uvi we chose a specification that contains lagged information on volume and

a constant term, i.e. Uvi =
(
1, ln vi−1, µ

v|d
i−1

)′
. Therefore, the conditional mean to estimate is

µ
v|d
i = exp

((
α0 + α1µ

d
i

)
di + λUvi

)
, where λ = (λ1, λ2, λ3). As both densities are exponential

and the conditional expectations are also exponential, the parametric score test is (12). In turn,
the nonparametric likelihood ratio test is (13), where the number of draws in the bootstrap is
500.

Estimates of the Log-ACV and Log-ACD models, under the null, are reported in Table 2.
For the Log-ACD (bottom panel), they are in tune with the results found in the literature. All
the parameters are significant and those that account for persistence, µdi−1, are large, specially
for trade durations. The sum β2 + β3 is very close to unity, meaning that the process is very
persistent.

[TABLE 2 ABOUT HERE]

Regarding the Log-ACV model (top panel), some interesting conclusions can be drawn if
weak exogeneity were to hold. As expected, the persistence parameter is relatively large for
all trade sizes (Trade columms in Table 2). Conversely, the results for standardized volume
size per price duration (Price columns) are more mixed. While in three of the five models
(Boeing, Disney and IBM) the persistence parameter is large and significant, for the other two
models Coca Cola and Exxon) it is not. The coefficients on current duration are all negative

13The choice of exponential distributions for the conditional and marginal densities may be critized on the
grounds that many papers on financial durations have shown that this distribution is too simple to capture
the density aspects of the observed processes; cf. Bauwens and Veredas (2004) and Bauwens et al. (2004)
among others. But even a three parameter distribution, like the generalized gamma, fails to fit correctly the
trade durations density. However, since the exponential distribution belongs to the LEF and our parameters
of interest are solely in the conditional mean, the choice of the exponential density suffices to test for weak
exogeneity.

14Positive correlation of trade size has also been documented by Hasbrouck (1991).
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and significant, except for Boeing. But interestingly the coefficients on current duration in
Coca Cola and Exxon are much larger and negative. In all, it implies that an increase in the
instantaneous volatility causes an increase of volume size. This evidence could be interpreted
as supporting the MDH hypothesis.

Current trade duration has a positive effect on trade size for all cases except, again, Boeing.
It supports the stealth-trading hypothesis. Shorter durations (higher trading activity) leading
to smaller volume size implies that traders try to trade more quickly as it is more likely that
another trader will buy a small volume size rather than a big block when the trading is intense.
Conversely, that long durations lead to large volumes per transaction implies that in tranquil
periods, large volume sizes are traded only by liquidity (uninformed) traders; cf. Easley and
OHara (1992).

However, these results have been obtained, as in most of the literature, from separate
estimation of the parameteres in the conditional and marginal means, i.e. under the null of
weak exogeneity. It is therefore useful to test such a hypothesis using our proposed tests. On
the one hand, the values of the score/LM test are reported in the S row in Table 2. They
should be compared to 3.84, i.e., the 95% C.V. of a chi-squared with 1 degree of freedom. On
the other, the values of the nonparametric LR test are displayed in the LR∗ row and their
bootstrapped CVs in the 95%LR∗ row just below. The results are fairly striking: the null
hypothesis of weak exogeneity is rejected in seven out of ten cases with the S test and in eight
cases with the LR∗ test. For volume per price duration (Price), we only accept the null with
both tests in just one case, Coca Cola. And for volume size duration (Trade), only Exxon
and (almost) IBM pass the test. In the remaining cases, both parametric and nonparametric
test values are very far from their CVs. On the whole, therefore, the most relevant finding
is that weak exogeneity is rejected in seven of the ten models considered here. This means
that if we want to analyze traded volume size of volume per price changes conditional to
durations and the marginal distribution for durations, estimation should be done either done
jointly (if possible) or using the two-step procedure suggested by Engle (2000). Otherwise, an
inconsistency problem may arise.

6 CONCLUSIONS

In this article, we propose a test for weak exogeneity in misspecfied densities within the context
of financial point processes. Following the important results in Gourieroux et al. (1984 a,
b), the only conditions which are required are that the assumed distributions fall within the
exponential family and that the conditional mean is correctly specified. Under these conditions,
it is possible to derive a simple score/LM test-statistic to test weak exogeneity of the variables
in the marginal distribution for the parameters of interest in the mean of the conditional
distribution. This can be done for virtually any kind of point process, since the exponential
family encompasses distributions that account for most possible supports of a random variable
in the above-mentioned setup. Under a linearity assumption regarding functional dependence
between the parameters of the means in the conditional and marginal densities, the test has a
χ2(1) limiting distribution and, in most cases, can be interpreted as the t-ratio on the coefficient
of a linear combination of variables appearing in the mean of the marginal distribution (whose
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parameters are estimated separately from that distribution) in an augmented model of the
mean of the conditional density. The second test is nonparametric, in the sense that it does
not specify any specific functional form between the parameters of the means in both densities.
The test is a nonparametric LR test whose distribution is calculated using bootstrap.

We have applied these tests to tick-by-tick data which are, statistically speaking, realiza-
tions of a point process, which is fully characterized by the duration and their marks. Two
types of processes, linked with market microstructure theory, are considered. On the one hand,
we model the relationship between trade size and trade durations. On the other, we examine
the relationship between volume per price change and price durations. In general we reject the
null hypothesis of weak exogeneity, therefore questioning results in the literature which rely
on separate estimation of each density.
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Table 1: Data Information

Boeing Coca Cola Disney Exxon IBM

Trade Price Trade Price Trade Price Trade Price Trade Price

N 23930 2620 39620 1609 32821 2160 28371 2717 60454 6728

mean 60.72 533.5 36.66 839.5 44.28 646.9 51.13 513.0 24.14 214.9

sd 76.83 867.8 45.01 1168 56.25 966.3 64.46 721.0 34.59 365.4

% < mode 0.08 0.07 0.12 0.14 0.07 0.11 0.07 0.19 0.11 0.07

min 1.00 3.00 1.00 3.00 1.00 3.00 1.00 2.00 1 1

max 894 1359 772 11682 926 9739 892 10430 674 7170

N 23930 2620 39620 1609 32821 2160 28371 2717 60454 6728

mean 2293 2664 3062 3952 1790 2211 2362 2858 2436 2911

sd 2721 3066 7517 3546 4478 2750 4885 3351 5103 3329

% < mode 0.18 0.25 0.19 0.39 0.23 0.24 0.15 0.29 0.42 0.34

min 101 1 101 1 101 1 101 1 101 1

max 362201 50001 278101 39494 209701 60765 195201 71446 567101 77501

Descriptive statistics. Top part of the table are for trade and price durations. Bottom part for
trade size and volume per price change. N denotes the number of observations, sd the standard
deviation, % <mode the proportion of observations smaller than the mode, min and max are the
smallest and the largest values.
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From top to bottom and from left to right, observed trade size, trade size Spearman’s ρ coefficients, trade size

seasonal pattern, observed durations, durations Spearman’s ρ coefficients, durations seasonal pattern.

Figure 1: Descriptive data plots. Volume and trade durations for Boeing.
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From top to bottom and from left to right, observed volume, volume Spearman’s ρ coefficients, volume seasonal

pattern, observed durations, durations Spearman’s ρ coefficients, durations seasonal pattern.

Figure 2: Descriptive data plots. Volume and price durations for Boeing.
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Boeing Coca Cola Disney Exxon IBM

Trade Price Trade Price Trade Price Trade Price Trade Price

C 0.0771
[0.0022]

0.0074
[0.0020]

0.0957
[0.0019]

0.1464
[0.0269]

0.0312
[0.0005]

0.0358
[0.0070]

0.0146
[0.0004]

0.0940
[0.0216]

0.0565
[0.0008]

0.0134
[0.0018]

ln vi−1 0.0857
[0.0016]

0.0177
[0.0040]

0.0928
[0.0012]

0.1416
[0.0225]

0.0299
[0.0004]

0.0581
[0.0115]

0.0184
[0.0005]

0.0330
[0.0096]

0.0716
[0.0008]

0.0164
[0.0016]

µ
y|d
i−1 0.6589

[0.0074]
0.9710
[0.0074]

0.6155
[0.0062]

0.2816
[0.1546]

0.9566
[0.0007]

0.8820
[0.0247]

0.9676
[0.0011]

−0.178
[0.1465]

0.8140
[0.0030]

0.9451
[0.0091]

di 0.0112
[0.1197]

0.0004
[0.0005]

0.0238
[0.0008]

−0.097
[0.0231]

0.0009
[0.0002]

−0.011
[0.0038]

0.0037
[0.0002]

−0.059
[0.0075]

0.0026
[0.0004]

−0.004
[0.0009]

S 12.01 76.30 12.20 0.065 54.25 46.46 0.367 6.274 2.892 46.01

LR∗ 6.122 18.08 7.954 3.504 10.03 9.923 2.951 19.95 5.009 12.38

95%LR∗ 5.079 3.127 4.263 7.330 3.853 2.879 5.134 7.136 4.665 3.028

C 0.0277
[0.0016]

0.1293
[0.0158]

0.0272
[0.0022]

0.0938
[0.0174]

0.0225
[0.0016]

0.1055
[0.0202]

0.0276
[0.0019]

0.0756
[0.0148]

0.0305
[0.0016]

0.0871
[0.0066]

ln di−1 0.0445
[0.0025]

0.1773
[0.0211]

0.0430
[0.0035]

0.1360
[0.0210]

0.0362
[0.0027]

0.1520
[0.0276]

0.0438
[0.0030]

0.1149
[0.0214]

0.0598
[0.0031]

0.1566
[0.0114]

µd
i−1 0.9531

[0.0029]
0.7944
[0.0290]

0.9422
[0.0049]

0.7331
[0.0509]

0.9598
[0.0034]

0.8208
[0.0378]

0.9502
[0.0040]

0.8535
[0.0360]

0.9416
[0.0033]

0.8269
[0.0140]

Entries are LEF estimates –using the exponential distribution. Estimates for Log-ACV model, under the null α1 = 0, in the
top part of the table. Estimates for Log-ACD model in the bottom part of the table. Numbers in brackets are heteroskedastic-
consistent standard errors. C denotes the constant of the model. S denotes the score test. LR∗ denotes the nonparametric
log-likelihood ratio test. 95%LR∗ is its 95% quantile.
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