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Abstract

Wavelet thresholding is a natural and efficient approach for removing noise from
data in nonparametric function estimation. In order to achieve spatial adaptation and
benefit from the sparse representation of most signals in the wavelet domain, it is
crucial to choose the thresholds correctly. An important property of the universal
thresholding advocated by ? is that the reconstruction is noise-free, i.e. when the true
signal is constant, then, with high probability, the estimated function is also constant
and equal to the empirical mean of the data. Motivated by this noise-free reconstruction
property, we investigate a parametric thresholding procedure which takes advantage of
the increasing sparsity of the wavelet coefficients across scales. We show that our
estimator possesses the noise-free reconstruction property and achieves near-optimal
risk rates for a large variety of signals over the Besov scale. The paper ends with a
simulation study which demonstrates the excellent finite-sample performance of our
method in comparison to a selection of state-of-the-art, as well as classical, wavelet
denoising techniques.

Keywords: Wavelet decomposition, thresholding, noise-free reconstruction, Besov spaces, asymptotic

rates.

1 Introduction

We are studying the classical nonparametric regression problem of recovering the values of
an unknown function f : [0, 1] 7→ R from noisy observations on an equidistant grid:

yi = f(i/n) + εi, i = 1, . . . , n = 2J , (1)

where εi are independent and distributed as N(0, σ2). We measure the performance of
an estimate f̂ in terms of quadratic loss at the sample points. More specifically, let f =
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(f(i/n))i=1,...,n and f̂ =
(

f̂(i/n)
)

i=1,...,n
denote the vectors of true and estimated sampled

values, respectively. We measure the performance of f̂ by the Mean-Squared Error (MSE)

MSE(f̂ , f) =
1

n

n
∑

i=1

E

{

f̂(i/n) − f(i/n)
}2

, (2)

which we wish to make as small as possible. Although the notation f suggests a function of
a real variable u, in this paper we only work with the equally spaced sample points ui = i/n.

Throughout the paper, we are concerned with estimators f̂ based on wavelets: for an
overview of wavelet methods in statistics, the reader is referred to the monograph of ?.
Given an orthonormal discrete wavelet transform W : R

n 7→ R
n of regularity r and with the

low resolution cut-off J0 = 0, we denote the vector of noisy wavelet coefficients by yj,k = Wy,
the vector of noise-free wavelet coefficients by dj,k = W f , the vector of estimated wavelet

coefficients by d̂j,k = W f̂ , and the vector of “wavelet noise” coefficients by εj,k = Wεi,
where j = 0 (j = J − 1) is the coarsest (finest) detail scale. At any given scale j, the
detail coefficients are indexed by k = 1, . . . , 2j . The only smooth coefficient is indexed by
(j, k) = (−1, 1).

By the linearity of the wavelet transform W , in the wavelet domain (1) becomes

yj,k = dj,k + εj,k, (3)

where, due to the orthonormality of W , the εj,k’s are i.i.d. zero mean Gaussian variables
with a common variance σ2. For many signals f , the representation (3) is sparse, i.e.
only a few true coefficients dj,k are significantly different from zero, while most dj,k’s are
close, or equal, to zero. The main idea behind signal denoising via wavelets is to modify the
noisy wavelet coefficients yj,k by means of a particular mapping, to obtain d̂j,k: a “denoised”

version of yj,k. The estimate f̂ is then obtained upon applying the inverse wavelet transform

W−1 to d̂j,k.

Motivated by the sparsity of the representation (3), ? proposed thresholding as a way of
estimating dj,k from yj,k. Thresholding annihilates those empirical coefficients yj,k which
fall below a certain threshold t, and, provided that t is chosen “correctly”, turns out to be
an extremely effective denoising technique despite its simplicity. For the universal threshold
t = σ

√

2 log(n) (?), the following noise-free reconstruction property is achieved: when the

true signal f is constant, then, with high probability, the estimate f̂ is also constant and
equal to the empirical mean of {yi}n

i=1. This is an important and desirable property, for
example, in wavelet-based functional ANOVA tests (see ?). Asymptotically, it ensures
that no noise is present in the reconstructed signal, which implies that the reconstruction is
“visually appealing”. Universal thresholding has also been shown to be asymptotically near-
optimal in the minimax MSE sense over a variety of smoothness spaces (see ?). However,
even though the universal threshold is (asymptotically) the lowest threshold which satisfies
the noise-free reconstruction property, it is still “too high” in the sense that its application
often leads to oversmoothing.
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Motivated by the often observed decreasing sparsity of wavelet coefficients from finer to
coarser scales, some authors have proposed using scale-dependent thresholds tj which often
achieve improved MSE performance compared to scale-independent thresholds t, see e.g. ?.
One simple scale-dependent thresholding scheme is to set tj = σ

√

2 log(n)2(j−J+1)/2, j =
0, . . . , J − 1. It is easy to see, however, that the noise-free reconstruction property is then
lost.

In this paper, we aim to combine the two important issues mentioned above: the noise-free
reconstruction property, and scale-dependent thresholding. The above discussion leads to
an interesting question of whether it is possible to devise a scale-dependent thresholding
scheme tj which offers improved MSE performance compared to the universal threshold, but
still retains the noise-free reconstruction property. Moreover, we are particularly interested
in the case where we can impose some parametric dependence between the threshold values
{tj}J−1

j=0 , i.e. assume tj = βθ(j), where βθ is a family of functions parametrized by θ whose
dimension is (substantially) less that J . The rationale here is that by choosing tj “jointly”
(and not separately for each scale) we can potentially obtain a stable selection procedure
even for coarser scales where only a few wavelet coefficients are available. The function βθ

will often be referred to as a “threshold profile”.

The paper is organised as follows: in Section 2, we investigate a general noise-free recon-
struction property of scale-dependent thresholding, leading to a specific family of threshold
profiles. In Section 3, we investigate the risk properties of this new thresholding procedure,
and show that it attains near-optimal MSE rates for signals from a range of Besov spaces.
In Section 4, the performance of the new method (with a default choice of parameter θ)
is investigated in an extensive simulation study: comparisons are made to a selection of
state-of-the-art, as well as classical, wavelet denoising techniques. Finally, in Section 5, we
introduce a simple computational technique for selecting the parameter θ in a data-driven
way. Section 6 concludes the paper.

2 A generic noise-free reconstruction property

The estimator considered in this paper is the hard thresholding estimator

d̂
(h)
j,k (tj) = yj,k I{|yj,k| > tj}, (4)

for j = 0, . . . , J − 1 and k = 1, . . . , 2j . However, results analogous to those obtained in this
paper can also be derived for the soft thresholding case. We skip this case for simplicity,
and due to the inferior practical performance of soft thresholding estimators, see e.g. ?. We
leave the smooth coefficient unchanged: d̂−1,1 = y−1,1. Note that due to the orthonormality
of W we have

MSE(f̂ , f) =
1

n

∑

j,k

E

{

d̂
(h)
j,k (tj) − dj,k

}2
. (5)

For notational simplicity, we assume σ = 1 throughout the paper. In practice, the parameter
σ is often estimated from the data via the Median Absolute Deviation (MAD) estimator on
the finest resolution level J − 1, see e.g. ?.
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The normality and the i.i.d. nature of the “wavelet noise” coefficients in equation (3) are
the key ingredients of the denoising-via-thresholding theory developed by ?. In particular,
the most frequently used universal thresholding procedure is based on the following familiar
relation for i.i.d. standard normal variables εj,k:

P

(

max
j=0,...,J−1;k=1,...,2j

|εj,k| >
√

2 log n

)

→ 0 as n → ∞.

Using the above result, it can easily be shown that applying the scale-independent threshold
tj = t =

√
2 log n in (4) leads to the noise-free reconstruction property: if f is a constant

signal, then, with high probability, f̂ is also constant and equal to the empirical mean of
{yi}n

i=1. It can also be demonstrated that the choice t =
√

2 log n yields near-optimal MSE
rates over a range of signal smoothness classes, and produces visually appealing recon-
structions for relatively small sample sizes n. However, it is well known that the universal
threshold oversmooths: for non-zero signals f , too much signal gets killed in the process of
thresholding. There arises a need for lower thresholds; however, replacing tj = t =

√
2 log n

in (4) with tj = t =
√

a log n for a < 2 ruins the noise-free reconstruction property in the
sense that

P

(

max
j=0,...,J−1;k=1,...,2j

|εj,k| >
√

a log n

)

6→ 0 as n → ∞

if a < 2. Thus, the only way of obtaining thresholds which are lower than the universal
threshold t =

√
2 log n, but, possibly, still preserve the noise-free reconstruction property, is

to resort to scale-dependent thresholds tj .

As mentioned in Section 1, one other motivation for using scale-dependent thresholds tj
is the varying sparsity of the wavelet representation across scales. For many signals, their
wavelet coefficient vectors {dj,k}2j

k=1 are less sparse at coarser scales j, with more dj,k’s
significantly different from zero. Thus, in order to prevent the estimation of those dj,k’s
as zero in (4) (as this would unnecessarily kill significant information), the use of lower
thresholds should be considered at coarser scales. Indeed, the fact that the sparsity often
decreases from finer to coarser scales suggests using thresholding profiles which decrease
from finer to coarser scales.

In the remainder of this section, we derive a sufficient condition for scale-dependent thresh-
olds which (a) are lower than the universal threshold and decrease from finer to coarser
scales, and (b) preserve the noise-free reconstruction property. Let yj,k denote wavelet co-
efficients of a “pure Gaussian noise” signal and assume that (possibly) different thresholds
tj are applied at each scale j = 0, . . . , J − 1. It can easily be shown that the noise-free
reconstruction property occurs if and only if

P
(

|yJ−1,1| > tJ−1 ∨ . . . ∨ |yJ−1,2J−1| > tJ−1 ∨ . . . ∨ |y0,1| > t0
)

→ 0 (6)

as n → ∞. We now investigate when this is the case. Denoting the pdf (cdf) of a standard
normal by φ (Φ), we obtain

P
(

|yJ−1,1| > tJ−1 ∨ . . . ∨ |yJ−1,2J−1| > tJ−1 ∨ . . . ∨ |y0,1| > t0
)

=
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1 − P
(

|yJ−1,1| < tJ−1 ∧ . . . ∧ |yJ−1,2J−1| < tJ−1 ∧ . . . ∧ |y0,1| < t0
)

=

1 −
∏

j,k

P (|yj,k| < tj) = 1 −
J−1
∏

j=0

(2Φ (tj) − 1)2
j ≤ 1 −

J−1
∏

j=0

(

1 − 2φ(tj)

tj

)2j

=

1 −
J−1
∏

j=0







(

1 − 2φ(tj)

tj

)

tj
2φ(tj)

−1






2φ(tj )2j

tj−2φ(tj)

≤ 1 −
J−1
∏

j=0

exp

(

− 2φ(tj)2
j

tj − 2φ(tj)

)

=

1 − exp



−
J−1
∑

j=0

2φ(tj)2
j

tj − 2φ(tj)



 ,

using
(

1 − 1

x

)x−1

↓ e−1 (7)

as x → ∞. Note that for large J ,

1 − exp



−
J−1
∑

j=0

2φ(tj)2
j

tj − 2φ(tj)



 ≤ 1 − exp



−
J−1
∑

j=0

4φ(tj)2
j

tj



 , (8)

provided that min tj → ∞ as J → ∞, which is a very natural condition. Thus, a sufficient
condition for the “noise-free reconstruction” property is

lim
J→∞

J−1
∑

j=0

φ(tj)2
j

tj
= 0. (9)

We assume that our thresholds are of the form

tj =
√

2 log(n)tθ

(

j

J − 1

)

, (10)

where tθ(z) : [0, 1] 7→ [δ, 1] is a family of continuous, nondecreasing functions (δ > 0). Note
that setting tθ(z) ≡ 1 yields the classical universal threshold. Continuing from (9), we have

J−1
∑

j=0

φ(tj)2
j

tj
=

1
√

4πJ log(2)

J−1
∑

j=0

2−Jt2
θ
(j/(J−1))+j

tθ(j/(J − 1))

≤ 1

δ
√

4πJ log(2)

J−1
∑

j=0

2−Jt2
θ
(j/(J−1))+Jj/(J−1).

Since J → ∞, it is enough to investigate when the sum is bounded in J . The sum behaves
like

J

∫ 1

0
2J(x−t2

θ
(x))dx. (11)
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Clearly, if t2θ(x) ≤ x on any set of non-zero measure in [0, 1], then (11) is not bounded. Of
course, we cannot speak here of the “smallest permitted” t2θ(x), as any such that t2θ(x) ≥ δ
and t2θ(x) > x a.e. will do, but for simplicity we single out “almost the smallest permitted”
t2θ(x) of the following form:

t2δ(x) = δ + (1 − δ)x, (12)

which is a natural lower boundary for the following family of functions parametrized by a
one-dimensional parameter θ ∈ [δ, 1]:

tθ(x) =
√

θ + (1 − θ)x. (13)

Note that with t2δ(x) defined as in (12) the integral (11) is indeed bounded in J as we have

J

∫ 1

0
2J(x−t2

δ
(x))dx =

1 − 2−Jδ

δ log(2)
. (14)

To summarise, tδ(x) can be seen as “almost the smallest permitted” threshold profile which
still guarantees asymptotically noise-free reconstruction.

Motivated by the above discussion, we propose to estimate dj,k by the hard thresholding
estimator (4) with tj of the form

tj =
√

2 log(n)

√

θ + (1 − θ)
j

J − 1
. (15)

In the remaining part of the paper, we study the theoretical risk properties of the proposed
estimator, as well as its practical performance. Due to the particular form of the threshold
profile (13), we label the new estimator “SQRT”.

3 Risk properties of the SQRT estimator

In this section, we consider the Mean-Square Error properties of the SQRT estimator. We
assume that the unknown signal f belongs to a Besov ball of radius C > 0 on [0, 1], Bν

p,q(C),
where ν > 0 and 0 < p, q ≤ ∞. The parameter p can be viewed as the measure of inhomo-
geneity of f while ν measures its smoothness. Roughly speaking, the (not necessarily inte-
ger) parameter ν indicates the number of derivatives of f , where their existence is required
in the Lp-sense, while the additional parameter q provides a further finer gradation. Besov
classes have an exceptional expressive power. In particular, they include the traditional
Hölder and Sobolev classes of smooth functions (p = q = ∞ and p = q = 2, respectively)
but also various classes of spatially inhomogeneous functions like the class of functions of
bounded variation, “sandwiched” between B1

1,∞ and B1
1,1. In addition, note that if the

father and mother wavelets have regularity r > 0, then the corresponding wavelet basis is
an unconditional basis for the Besov spaces Bν

p,q([0, 1]) for 0 < rν < r, 0 < p, q ≤ ∞. This

allows one to characterise Besov balls in terms of the wavelet coefficients d̃j,k = dj,k/
√

n of
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the function f in the following way. Define the Besov sequence ball of radius C as

bν
p,q(C) =







d̃j,k :

∞
∑

j=0

2jsq‖d̃j‖q
p ≤ Cq







, (16)

where s = ν + 1/2 − 1/p and ‖d̃j‖p
p =

∑2j

k=1 |d̃j,k|p. The membership of f in Bν
p,q(C) can

be thought of as being equivalent to the membership of {d̃j,k}j,k in bν
p,q(C). The reader is

referred to ? for rigorous definitions and a detailed study of Besov spaces.

The following theorem establishes the MSE near-optimality of our SQRT estimator over a
wide range of Besov sequence spaces.

Theorem 3.1 Given the regression problem (1), let f̂ be the SQRT estimator of f , con-
structed by applying the inverse Discrete Wavelet Transform to the sequence of estimated

wavelet coefficients d̂
(h)
j,k (tj) with thresholds tj defined by (15), for any fixed θ ∈ [δ, 1]. Denote

˜̂
d
(h)

j,k (t) = d̂
(h)
j,k (t)/

√
n. If 0 < p, q ≤ ∞ and ν > 1/p, then

sup
d̃j,k∈bν

p,q(C)

MSE(f̂ , f) =
σ2

n
+ sup

d̃j,k∈bν
p,q(C)

J−1
∑

j=0

2j
∑

k=1

E

{

˜̂
d

(h)

j,k (tj) − d̃j,k

}2

≤ C0 log(n)n−
2ν

2ν+1 ,

where C0 is independent of n.

The rate O(n−
2ν

2ν+1 ) is the best possible MSE rate for Besov spaces, and SQRT achieves it
up to the logarithmic term: hence the name “near-optimality”. The above rate is identical
to that achieved by the classical universal thresholding estimator. The proof of Theorem
3.1 can be found in the Appendix.

4 Empirical performance of the SQRT estimator

In this section, we compare the finite-sample performance of the SQRT estimator to a
selection of state-of-the-art, as well as classical, wavelet denoising methods. The material
in this section is divided into 3 subsections. In section 4.1, we attempt to demonstrate that
the new method is superior to classical universal thresholding in terms of MSE, and that the
reconstructions have a similar visual quality. In section 4.2, we compare the translation-
invariant (TI) version of our technique to classical TI universal thresholding, as well as
to the empirical Bayes (eBayes) procedure of ?. Finally, in section 4.3, we compare our
procedure to denoising algorithms based on complex-valued wavelets, proposed by ?.
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UNI0 UNI3 SQRT

bumps 391 382 314

doppler 148 145 123

heavisine 99 91 70

blocks 204 202 165

Table 1: ISE averaged over 100 sample paths (×1000 and rounded) for the 3 competing
methods. Box indicates best result. See the discussion in Section 4.1.

4.1 Comparison with classical universal thresholding

The aim of this section is to argue that our method offers a good replacement for classical
universal thresholding, in that it produces estimates which are superior in terms of MSE
but have an equally high visual quality, due to the noise-free reconstruction property. Our
test functions are Donoho and Johnstone’s bumps, doppler, heavisine and blocks, sampled
at 1024 equispaced points, and rescaled in such a way that their (minima, maxima) are
(0, 10.11), (−2.49, 2.47), (−6, 4) and (−2, 5.2), respectively. The respective root signal-to-
noise ratios are: 1.33, 1.45, 2.97, 1.91 (note that these signal-to-noise ratios are relatively
low, i.e. the observed signals have a considerably noisy appearance). We use a randomly
selected smooth wavelet (Daubechies’ Extremal Phase with 5 vanishing moments) except
for blocks where we use Haar. Periodic boundary conditions are assumed. The standard
deviation of the noise is always 1 but it is unknown to the estimation procedures and always
estimated using Median Absolute Deviation on the finest detail level. All the procedures
are based on the Decimated Discrete Wavelet Transform and use hard thresholding. The
competitors are:

• UNI0 — universal thresholding with all levels thresholded;

• UNI3 — universal thresholding with all but the 3 coarsest levels thresholded;

• SQRT — our method with the thresholding profile defined by t0.01(x) =
√

0.01 + 0.99x.

Table 1 shows the ISE for each method averaged over 100 simulated sample paths (and
multiplied by 1000 and rounded for clarity of presentation). The best results for each signal
are indicated by a box. The new method outperforms the classical universal thresholding
by 15–23%.

Figure 1 goes some way to demonstrating that, as with classical universal thresholding,
reconstructions obtained using our method also enjoy a “noise-free” character. In all of
the plots, solid lines are estimates of the signals represented by the corresponding dotted
lines, contaminated by noise simulated in S-Plus with the random seed set to 11 (chosen
at random). The left column shows estimates obtained using the SQRT method, and the
right column — using the UNI3 method.
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Figure 1: Sample reconstructions using SQRT (left column) and UNI3 (right column). See
the discussion in Section 4.1.
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4.2 Comparison with other techniques in a translation-invariant setting

Despite its simplicity, the translation-invariant (TI) version of the universal hard thresh-
olding procedure (?) is a very powerful denoising tool. In a recent study assessing the
empirical performance of various wavelet-based denosing methods (?), TI universal hard
thresholding consistently performed the best, or nearly the best, among various modern
wavelet smoothing techniques. Its performance was particularly good for longer signals. At
the same time, it was shown to be a lot faster than several more sophisticated Bayesian
methods. The variant of the TI universal hard thresholding considered in ? uses thresholds
of the form

tj = σ̂
√

2J log(2) + 2 log(J), (17)

where σ̂ is the MAD estimate of the noise level. In this section, we compare the performance
of the TI version of our method to the classical TI universal hard thresholding, as well
as to the TI version of the empirical Bayes (eBayes) procedure of ? (in the simulation
study reported therein, eBayes is shown to outperform several other denoising techniques,
including the classical univeral thresholding (?), the SureShrink technique (?), techniques
based on the False Discovery Rate (FDR; ?), the block thresholding techniques of ? as well
as the QL method of ?).

The competitors considered in this section are:

• TI-UNI3-TITH — translation-invariant hard thresholding with all but the 3 coarsest
levels thresholded and thresholds of the form tj = σ̂(2J log(2) + 2 log(J))1/2;

• TI-UNI3 — translation-invariant hard thresholding with all but the 3 coarsest levels
thresholded and thresholds of the form tj = σ̂(2J log(2))1/2;

• TI-SQRT-TITH — translation-invariant version of our method with the thresholding
profile defined by tj = σ̂(2J log(2) + 2 log(J))1/2(0.01 + 0.99j/(J − 1))1/2;

• TI-SQRT — translation-invariant version of our method with the thresholding profile
defined by tj = σ̂(2J log(2))1/2(0.01 + 0.99j/(J − 1))1/2;

• TI-EB — translation-invariant version of eBayes (note: the number of levels thresh-
olded is equal to the maximum number of levels computable by the S-Plus routine
nd.dwt from the wavelets module).

The experimental setup is exactly the same as in Section 4.1. Table 2 shows the ISE for each
method averaged over 100 simulated sample paths (and multiplied by 1000 and rounded for
clarity of presentation). The best results for each signal are indicated by a box. TI-SQRT
outperforms TI-UNI3-TITH by 25–37%, TI-UNI3 by 10–26%, and TI-EB by 0–17%.

Figure 2, again produced with the random seed set to 11, shows sample reconstructions
obtained using TI-SQRT (left column) and TI-EB (right column). The visual quality of the
TI-SQRT estimates is clearly better than TI-EB for bumps and blocks, and very similar to
TI-EB for doppler. For the heavisine function, TI-SQRT produces a spurious spike around

10



0 200 400 600 800 1000

0
2

4
6

8
10

0 200 400 600 800 1000

0
2

4
6

8
10

0 200 400 600 800 1000

-2
-1

0
1

2

0 200 400 600 800 1000

-2
-1

0
1

2

0 200 400 600 800 1000

-6
-4

-2
0

2
4

0 200 400 600 800 1000

-6
-4

-2
0

2
4

0 200 400 600 800 1000

-2
0

2
4

0 200 400 600 800 1000

-2
0

2
4

Figure 2: Sample reconstructions using TI-SQRT (left column) and TI-EB (right column).
See the discussion in Section 4.2.
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TI-UNI3-TITH TI-UNI3 TI-SQRT-TITH TI-SQRT TI-EB

bumps 214 171 167 145 151

doppler 85 73 69 64 69

heavisine 59 50 39 37 37

blocks 98 80 80 72 87

Table 2: ISE averaged over 100 sample paths (×1000 and rounded) for the 5 competing
methods. Box indicates best result. See the discussion in Section 4.2.

the 100th observation. On the other hand, it indicates the second discontinuity in a clearer
fashion than TI-EB.

4.3 Comparison with techniques based on complex wavelets

? report excellent performance of their denoising algorithms based on complex-valued
wavelet decompositions. In a comprehensive simulation study, the proposed methods are
shown to outperform several techniques based on real-valued wavelets. The basic idea
underlying the proposed algorithms is as follows: decompose the n-element noisy vector into
n “real” and n “imaginary” wavelet coefficients, couple them together according to their
(scale, location) indices, and shrink the bivariate coefficients towards zero in a prescribed
fashion to ensure noise removal. The inverse discrete complex wavelet transform then yields
an estimate of the original signal.

When comparing the performance of a given denoising method based on complex-valued
wavelets to a method which uses real-valued wavelets, care must be taken not to give “unfair
advantage” to the former: it must be remembered that in the complex-valued wavelet case,
the arising estimate is built of 2n shrunk real-valued detail coefficients as opposed to n in
the real-valued wavelet case. Therefore, to ensure a fair comparison, it seems appropriate
to us to consider estimators which arise as averages of two estimators, each computed using
a different real-valued wavelet basis. Indeed, in this way, the final estimate is also built of
2n shrunk real-valued detail coefficients (like in the complex-valued wavelet case), and its
performance can now be meaningfully compared to the complex-valued wavelet technique
under consideration.

To compare our techniques with the methods proposed by ?, we reproduce the simulation
setup of ?: we still use Donoho and Johnstone’s bumps, doppler, heavisine and blocks
sampled at 1024 equispaced points, but this time we rescale them in such a way that their
sample variance equals 1. The standard deviation of the noise is set to σ = 1/3 to ensure
that the root signal-to-noise ratio equals 3 (as before, σ is unknown to the estimation
procedures and estimated via MAD). Table 3 shows the ISE for:

• BEST TI-CPLX — the best-performing translation-invariant method based on com-
plex wavelets; the ISE results quoted are taken from ?;

• BEST TI-SQRT — the best result obtained for TI-SQRT (see Section 4.2 for a de-
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BEST TI-CPLX BEST TI-SQRT 2nd BEST SQRT AVG 2 BEST TI-SQRT

bumps 1603 1695 (DEP2) 1803 (DEP1) 1496

doppler 710 830 (DLA9) 857 (DLA10) 832

heavisine 470 412 (DLA8) 416 (DLA6) 406

blocks 1727 744 (DEP1) 1691 (DEP2) 1064

Table 3: ISE averaged over 100 sample paths (×1000 and rounded) for the 2 competing
methods. Box indicates best result. See the discussion in Section 4.3.

scription of the method) across a range of real-valued wavelet filters: Daubechies
Extremal Phase (DEP) 1 to 10, and Daubechies Least Asymmetric (DLA) 4 to 10.
The abbreviation in brackets indicates the wavelet basis which attains the minimum
ISE;

• 2nd BEST TI-SQRT — as above, but 2nd best result;

• AVG 2 BEST TI-SQRT — estimator arising as the average of TI-SQRT for the two
filters which attain the best and 2nd best ISE.

The results in Table 3 can be briefly summarised as follows: the best method based on
complex-valued wavelets was outperformed by the technique which combined the best 2
TI-SQRT estimates, in 3 cases out of 4. Also, in 2 cases out of 4, the best complex-valued
wavelet technique was outperformed by the best TI-SQRT method.

A few remarks are in order:

1. The SQRT estimator is of computational order O(n), and the translation-invariant
TI-SQRT estimator — of computational order O(n log(n)). In practice, the software
is extremely fast, which is partly due to the fact that the threshold choice is straight-
forward and requires no computationally intensive procedures.

2. While in practice the “optimal” analysing wavelet for the signal at hand is obviously
unknown, a “good” wavelet can be chosen, for example, via the fast cross-validation
algorithm of ?.

3. The (TI-)SQRT algorithm is very easy to code in any package which implements the
Discrete Wavelet Transform, e.g. the WaveThresh package for the R environment
(both freeware).

5 Data-driven choice of θ

In the simulations reported in Section 4, we used the default value of θ = 0.01, having found
that it performed the best, or nearly the best, for a variety of spatially inhomogeneous
signals. However, small values of θ cannot be expected to perform well for all signals. As
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UNI0 SQRT SQRT-CV

zero 6 19 7
bumps 391 314 319

doppler 148 123 125
heavisine 99 70 75

blocks 204 165 170

Table 4: ISE averaged over 100 sample paths (×1000 and rounded) for the 3 competing
methods. See the discussion in Section 5.

a counterexample, consider the zero signal, where the MSE of the SQRT estimator is a
decreasing function of θ. Thus, there arises a need for a data-driven choice of θ.

In this section, we briefly describe a computational procedure, based on the “leave-half-out”
cross-validation procedure of ?, for choosing a “good” value of θ from the data. Given the
value θl from a pre-selected grid {θl}L

l=1, we split the data {yi}n
i=1 into the “odd” subsample

{y2i−1}n/2
i=1 and the “even” subsample {y2i}n/2

i=1. We then run the SQRT algorithm with
parameter θl on the two subsamples to obtain the “odd” and “even” estimates, respectively.
Finally, we measure the distance between the odd estimate and the even subsample, and
add it to the distance between the even estimate and the odd subsample. The selected value
of θl is the one which minimises the sum of these two distances. In practice, we have found
that the grid θl = l/10 for l = 2, . . . , 10 and θ1 = 0.01 performs well.

The version of our SQRT algorithm which includes the above “cross-validatory” procedure
for choosing θ is labelled SQRT-CV. To investigate the practical performance of SQRT-
CV, we revisit the simulation setup of Section 4.1. The ISE values for bumps, doppler,
heavisine, blocks, and the zero signal are given in Table 4. While SQRT-CV is never
the best performing estimator in terms of ISE, it is always extremely close to the best
one and is clearly the preferred option here, especially that the code is still fast, being of
computational order O(Ln) = O(10n) (or O(n(L + log(n))) = O(n(10 + log(n))) for the
translation-invariant version). The SQRT-CV algorithm is fully automatic, i.e. does not
require the choice of any parameters by the user.

6 Conclusion

In this paper, we have proposed a new method for selecting threshold values in wavelet
function estimation. Our proposed threshold values increase from coarser to finer scales, to
reach the level of the classical universal threshold at the finest scale. They are parametrized
by one scalar parameter, jointly for all scales.

The arising estimator, labelled SQRT due to the particular “square-root” shape of the
threshold profile, preserves the important property of the classical universal threshold: the
noise-free reconstruction property, which guarantees good visual quality of the SQRT esti-
mates. At the same time, it achieves the usual near-optimal Mean-Square Error convergence
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rates over a range of Besov smoothness classes.

In a detailed simulation study, we have investigated the finite-sample performance of our
SQRT estimator and demonstrated its high visual quality and improved Mean-Square Error
performance for a variety of spatially inhomogeneous signals, compared to the classical
universal thresholding. Also, we have shown that it outperforms a number of state-of-the-
art techniques in the translation-invariant setting. Those results have been obtained for the
“default” value of the parameter of our procedure. Furthermore, we have proposed a simple
and robust cross-validation-type technique for selecting the value of the parameter from the
data, and have shown it to perform well on simulated examples (the arising estimator was
labelled SQRT-CV).

Our SQRT algorithm and all of its variants investigated in this paper are fast and easy to
code. Moreover, the SQRT-CV algorithm is fully automatic, i.e. does not require the choice
of any parameters by the user.

The software implementing the SQRT, TI-SQRT and (TI)-SQRT-CV estimators is available
upon request from the second author.

A Proof of Theorem 3.1

The first equality is due to the orthonormality of the Discrete Wavelet Transform. For n
large enough (such that nθ ≥ 4), we apply the “oracle inequality” from Theorem 7 of ? to
obtain
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Note that I is at most of order
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which, incidentally, is of the same order as the corresponding quantity for the universal
threshold:
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We now focus on II. Since θ ∈ [δ, 1] and j ≤ J−1, note that II is less than the corresponding
quantity for the classical universal threshold, which is

(2.4 + log(n))

J−1
∑

j=0

2j
∑

k=1

min
{

n−1, d̃2
j,k

}

. (20)

Thus, instead of II, we shall consider (20). As bν
p,q(C) ⊂ bν

p,∞(C) for all q, we only have to

consider the case d̃j,k ∈ bν
p,∞(C), so we can assume

‖d̃j‖p :=≤ C2−js for all j, (21)

where C is a generic constant. The following argument was considered e.g. in ?. We need to
consider the cases p ≤ 2 and p > 2 separately. For p ≤ 2, we first note the simple inequality

min{|a|2, |b|2} = min{|a|p, |b|p} min{|a|2−p, |b|2−p} ≤ |a|2−p min{|a|p, |b|p}
= min{|a|2, |a|2−p|b|p}.

Applying it with a = n−1/2, b = d̃j,k, we bound the double sum in (20) as follows:
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min{2jn−1, Cp2−jspnp/2−1}. (22)

Note that
2jn−1 ≤ Cp2−jspnp/2−1 (23)

if and only if

j ≤ J∗ :=
2 log2(C) + J

2ν + 1
. (24)

Observe that asymptotically, we always have J∗ < J . Assuming that J∗ is an integer (it
has no impact on the rates), we split (22) into two parts

J∗−1
∑

j=0

2jn−1 +
J−1
∑

j=J∗

Cp2−jspnp/2−1. (25)

The first part is a partial sum of an increasing geometric series so, without going into
details, it is bounded from above by a multiple of n−12J∗

= O(n−2ν/(2ν+1)). The second
part is a tail of decreasing geometric series so it is bounded from above by a multiple of
np/2−12−J∗sp = O(n−2ν/(2ν+1)). This proves the rate for p ≤ 2.

For p > 2, first note that the Hölder inequality gives

‖d̃j‖2
2 ≤ 2j(1−2/p)‖d̃j‖2

p. (26)
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With this in mind, we bound the double sum in (20) as follows:

J−1
∑

j=0

2j
∑

k=1

min{n−1, d̃2
j,k} ≤

J−1
∑

j=0

min{2jn−1, ‖d̃j‖2
2}

≤
J−1
∑

j=0

min{2jn−1, C22−2js2j(1−2/p)}. (27)

As before, note that
2jn−1 ≤ C22−2js2j(1−2/p) (28)

if and only if j < J∗. Again splitting the sum in (27) into two, we obtain

J∗−1
∑

j=0

2jn−1 +

J−1
∑

j=J∗

C22−2js2j(1−2/p). (29)

As we have already noted, the first part behaves like O(n−2ν/(2ν+1)). The second part is a
decreasing geometric series, so it is bounded from above by a multiple of 2J∗(−2s+1−2/p) =
O(n−2ν/(2ν+1)). This proves the desired rate for p > 2. �
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