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The three-mode partitioning model is a clustering model for three-way three-mode data sets

that implies a simultaneous partitioning of all three modes of the data set. In the associated

data analysis, a data array D is approximated by a model array M that can be represented by

a three-mode partitioning model of a prespecified rank (P, Q, R), minimizing a least-squares

loss function in terms of differences between D and M. The present paper is concerned with

the estimation of the model. First, a framework for alternating least squares methods is

described for dealing with the estimation problem in question. Next, a number of algorithms

is proposed within this framework. An extensive simulation study is reported in which these

algorithms are evaluated and compared according to sensitivity to local optima and recovery of

truth underlying the data. When applying the algorithms to a collection of four empirical data

sets, the ordering of the algorithms with respect to performance in finding the optimal solution

appears to change as compared to the results obtained from the simulation study. This finding

is attributed to violations of the implicit stochastic model underlying the simulation study.

Support for the latter attribution is found in a second simulation study.
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1 Introduction

N-way data in general offer a wealth of information to the data analyst. However, this information

is usually very complex and hard to grasp. A way out for this can be to reduce one or more of

the involved modes to a small number of classes or dimensions. In this paper, we are concerned

with a simultaneous reduction of the three modes of a three-way three-mode data set. More in

particular, we will focus on the most simple case: the simultaneous partitioning of all three modes

involved in the data. Recently, the Three-mode Partitioning model was proposed independently

by several authors (Rocci & Vichi, 2003; Kiers, 2004; Schepers & Van Mechelen, 2004). The model

is in fact a direct generalization of the simultaneous two-mode partitioning models proposed by

Gaul and Schader (1996), Baier, Gaul and Schader (1997), Govaert (1995) and Vichi (2002). For a

comprehensive overview of two-mode clustering methods, see Van Mechelen, Bock and De Boeck

(2004). A problem that is still left unresolved is the estimation of the three-mode partitioning

model. More in particular, a number of k -means type algorithms have been proposed by the

different authors of the model, but so far, the performance of these algorithms is not yet clear, let

alone, what is the preferred method. One of the reasons to be careful in this regard is the well-

known fact that k -means type algorithms suffer from local minima problems (Selim & Ismail, 1984;

Steinley, 2003). Considering the increased complexity when clustering more than a single mode,

there seems to be an obvious need to assess the performance of algorithms for the three-mode

partitioning situation. The present paper will examine the performance of several three-mode k -

means type algorithms by means of a simulation study and by means of a test on four empirical

data sets. The remainder of the paper is organized as follows: Section 2 recapitulates the Three-

Mode Partitioning model. Section 3 presents a framework for alternating least squares methods

for estimating the model. In Section 4, a simulation study is presented in which several algorithms

are evaluated in terms of their capability of minimizing the loss function and in terms of their

capability to recover the truth underlying the data. In Section 5, we report the results of the
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application of the same algorithms to four empirical data sets. Unexpectedly, the latter results

will appear not to be in line with those of the simulation study. An explanation of this finding will

be looked for by means of parametric bootstrap tests. This explanation will further be tested in a

second simulation study that will be presented in Section 6. Section 7 will present a few concluding

remarks.

2 Three-Mode Partitioning

2.1 Data

A three-way data set defines a mapping from the Cartesian product of three sets of entities to some

value set (say the set of reals R). If the three sets of the Cartesian product are all distinct, the data

set is referred to as three-way three-mode (Carroll & Arabie, 1980). In many areas of sciences, this

type of data set often occurs. Examples include data in personality psychology pertaining to the

intensity of different behaviors as elicited by various situations for different persons, and data in

marketing research pertaining to the perceived usefulness of different products for different goals as

judged by diverse age groups. In the remainder of this paper, we will refer to the horizontal slices of

three-way three-mode data as objects, to the lateral slices as attributes and to the frontal slices as

sources. A three-mode partitioning model further requires array-conditionality, implying that any

two data entries are comparable. Furthermore, the particular set of partitioning models that we

will consider in the present paper also require three-way three-mode problems that imply the aim

of reconstructing the actual data values (rather than of summarizing dependency information, as

implied by a three-way three-mode contingency table, or of summarizing interaction information,

as implied by three-way three-mode data on the value of a criterion variable associated with all

combinations of values of three categorical predictor variables). In the following, we will denote

the data points by dijk, referring to the value of the i-th object on the j-th attribute according to
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the k-th source.

2.2 Models

A three-mode partitioning implies a decomposition of an I × J ×K real-valued model or recon-

structed data array M into an I×P object partition matrix A, a J ×Q attribute partition matrix

B, a K ×R source partition matrix C and a P ×Q×R real-valued array W, with (P, Q,R) being

the rank of the model. More in particular the model array can be written as:

mijk =
P∑

p=1

Q∑
q=1

R∑
r=1

aipbjqckrwpqr ∀i, j, k (1)

where aip, bjq and ckr indicate whether or not object i, attribute j and source k belong to cluster

p, q and r, respectively, and where wpqr is a real-valued number representing the strength of the

relation between clusters p, q and r. The rows of the matrices A, B and C are restricted to sum to 1

and no empty clusters (zero columns) are allowed so as to represent proper partitioning structures.

Equation (1) implies that mijk equals wpqr iff object i, attribute j and source k belong to object

cluster p, attribute cluster q and source cluster r, respectively. Of course, small deviations between

the actual and reconstructed data points are to be expected in practice. In order to link the model

to a given data set, an error term eijk is therefore assumed,

dijk = mijk + eijk ∀i, j, k (2)

In absence of further assumptions on eijk, (1) can be considered to denote a deterministic model.

Optionally, however, a stochastic version of (1) can be obtained by making additional assumptions

about the distribution of the error component in (2), e.g. that the eijk are iid normally distributed

with zero mean, yielding:

dijk
iid∼ N(mijk, σ2

ijk) (3)

where the mean mijk is defined as in (1) and the variance σ2
ijk is the variance of the error component.

Typically, further restrictions may be put on the error distribution. For example, all σ2
ijk can be
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assumed to be equal to a single σ2 (homoscedastic case). A less restrictive assumption could read

that σ2 depends on the data cluster (p, q, r) to which the data point (i, j, k) is assigned. Note that

in all cases as considered in the present paper the entries of the A, B and C matrices are considered

fixed constants (rather than as realizations of latent multinomially distributed variables), implying

that the stochastic models under study can be considered so-called fixed-partition models (Bock,

1996).

2.3 Graphical Representation

A three-mode partitioning model can be given a graphical representation in the form of a heat

map that visualizes the elements of the core array W in such a way that dark colors represent high

values and light colors low ones. An example of such a heat map for a three-mode partitioning

of a hypothetical data set is given in Figure 1. This type of visualization nicely illustrates the

data compression that is achieved by a three-mode partitioning: whereas the original data array

D consists of I × J ×K elements, the heat map of the core W includes only P ×Q×R different

cells.

insert Figure 1 here

In an alternative heat map representation, one may display the actual rather than the reconstructed

data values, after permuting the entities of all three modes in such a way that objects (resp.

attributes, sources) assigned to the same cluster are positioned adjacent to one another. The

advantage of the latter type of visualization is that, apart from the partitioning structure, it also

allows one to capture how well the model explains the data. Note that this type of visualization

fits within a non-destructive data analysis approach (Murtagh, 1989). Figure 2 illustrates this type

of representation for the same hypothetical example as in Figure 1.

insert Figure 2 here
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2.4 Data Analysis

In order to fit the deterministic model in (1) to a given data set D, the following loss function is

minimized:

f(M) =
I∑

i=1

J∑

j=1

K∑

k=1

(dijk −mijk)2. (4)

where dijk is the data value for object i, attribute j and source k, and mijk is defined as in (1).

Expression (4) shows that the model is fitted in terms of a least squares loss function implying that

one will try to find data clusters that are as homogeneous as possible in the least squares sense.

Constructing procedures for jointly estimating the partition matrices A, B and C in such a way

that (4) is minimized is not straightforward (see Section 3 below). However, the estimation of W,

conditionally on A, B and C follows directly from (1) and (4):

wpqr =

I∑
i=1

J∑
j=1

K∑
k=1

aipbjqckrdijk

(
I∑

i=1

aip)(
J∑

j=1

bjq)(
K∑

k=1

ckr)
∀p, q, r (5)

implying that the best possible estimate of wpqr is the mean of all the data points for which it holds

that the corresponding objects, attributes and sources belong to clusters p, q and r, respectively.

The stochastic version of the three-mode partitioning model implies to find a triple of partitions:

A = {A1, ...,AP }, B = {B1, ...,BQ} and C = {C1, ..., CR}, the array W and the parameters of the

error component distribution such that the likelihood

f(D; θ,A,B, C) =
P∏
p

Q∏
q

R∏
r

∏

i∈Ap

∏

j∈Bq

∏

k∈Cr

ψ(dijk;αpqr) (6)

is maximized. The function ψ is the density of the observation dijk, e.g., the normal density as in

(3) (In the latter case, the parameter vector αpqr consists of the mean and variance of the data

cluster to which dijk is assigned).

Taking the natural logarithm, (6) becomes:

L(θ,A,B, C) = log(f(D; θ,A,B, C))
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=
P∑
p

Q∑
q

R∑
r

∑

i∈Ap

∑

j∈Bq

∑

k∈Cr

log(ψ(dijk; αpqr)) (7)

The estimation problem as outlined above fits within the classification likelihood approach to

clustering (see e.g. John, 1970; Bryant & Williamson, 1978; McLachlan, 1982; Celeux & Govaert,

1992; Banfield & Raftery, 1993; Govaert & Nadif, 2003). A distinctive feature from the perhaps

better known mixture modeling approach to clustering, is that in the classification approach, the

partition class memberships show up in the likelihood and are treated as a set of parameters that

are to be estimated. For the one-mode partitioning situation, Scott and Symons (1971) pointed out

that several common deterministic clustering procedures, such as one-mode k -means, can be shown

to be special cases of a classification likelihood approach. An analogous relation holds for the three-

mode partitioning case: minimizing the loss function in (4) is in fact equivalent to maximizing (7)

when in the latter case ψ is assumed normally distributed with parameters (mijk, σ2) with mijk

being defined as in (1). In the remainder of this paper, we will focus on the specific situation where

minimizing (4) is equivalent to maximizing (7).

2.5 Uniqueness

The solution that minimizes loss function (4) is in general unique upon permutations of the parti-

tions A, B and C.

Proof:

It is convenient to write the model (1) in matrix notation: MA = AWA(C ′ ⊗ B′), where MA is

the matricized I × JK form of the model array M, WA is the matricized P × QR form of the

core W, and ⊗ represents the Kronecker product. The partition matrix A can be multiplied by

any non-singular matrix T without having an effect on the loss function (4), as long as the inverse

transformation is applied to the core WA: MA = (AT )(T−1WA)(C ′ ⊗ B′). However, in order to

retain a partitioning model, AT must be a partition matrix. Thus,
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- T must be a binary matrix in order for AT to be binary

- T can have only a single 1 per row, because otherwise AT will have rows with more than a

single 1, violating the partitioning structure

- T can also have only a single 1 per column, because otherwise, taking into account that T

can have only a single 1 per row, T would be singular

the only matrices that satisfy the previous three requirements are permutations matrices.

3 Framework for ALS Procedures

In the present paper, we will focuss on ALS (Alternating Least Squares) methods to estimate the

three-mode partitioning model. In this section, a framework for the latter methods is described.

Often used in data-analysis methods, ALS-procedures estimate one set of parameters, keeping

another set of parameters fixed. By alternatingly switching between the different parameter sets

(estimating one set keeping the other set fixed, and vice versa), the loss function decreases (or at

least stays the same) at every alternate step. Since the loss function (4) is bounded below, the

algorithm necessarily converges. Note however that the ALS-procedure is a heuristic method and

thus may arrive at local optima of the solution space.

In constructing an ALS algorithm for estimating a three-mode partitioning model, a choice has

to be made with respect to three parts. First, one needs an initial value for each parameter that

is to be estimated. This implies that an initial estimate is needed for each of the modes, and for

the core. Different procedures to obtain these initial values will be discussed in Subsection 3.1.

Second, the general updating scheme within the alternating sequence of obtaining conditional es-

timates of each parameter set may take different forms. This topic will be discussed in Subsection

3.2. Finally, in the progress of estimating the three-mode partitioning model, given a data set,

empty clusters might turn up. As already mentioned in Subsection 2.2, this is not allowed because



Three-mode partitioning 10

empty columns in the matrices A, B and C imply improper partitions. A variety of strategies

can be thought of as to how to deal with these empty clusters. This topic will be discussed in

Subsection 3.3.

3.1 Initialization of the Partition Matrices

Because all alternating least squares algorithms start with an initial estimate of the unknown pa-

rameters, the question arises as to what kind of initialization produces a high probability of the

final estimates equalling the global minimum of the loss function (4). In a general context of clus-

tering problems, a smart choice for the initial estimates, as opposed to starting from a randomly

drawn position in the solution space, is usually thought to provide better results with respect to

the final solution returned by the clustering algorithm. The general idea is that a smart initial

estimate usually lies close to the globally optimal solution and therefore the ALS-algorithm is,

while proceeding on its way to the optimal solution, less likely to get stuck in locally optimal so-

lutions. The idea of using a smart (rational) start has already received attention in the one-mode

partitioning literature and simulation results indeed suggest that better k -means solutions can be

obtained by using a rational start (Milligan, 1980). As a consequence, most statistical packages

for k -means clustering provide the user the ability to use a rational starting procedure. It must be

noted however that Steinley (2003), in a more thorough investigation, examined the local minima

problem for the k -means clustering method, as implemented in 3 well-known commercial software

packages (SPSS, SYSTAT and SAS), which all use a single rational starting configuration. By

comparing the results provided by these implementations with the results of using a multistart

procedure (with every single initial estimates representing a randomly drawn position in the solu-

tion space), he concluded that the methods implemented in the commercial packages are very likely

to end up in local optima. The author suggests that a procedure where the k -means method is run
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from several alternative starting points is more likely to provide the optimal estimates, and thus

more appropriate when faced with the problem of trying to find an optimal one-mode partitioning,

given a data set. The results of this study therefore suggest that, when it comes down to finding

the optimal k -means clustering, the ”quality of the starts” is less important than ”quantity of the

starts”.

In this paper, we will try to deal with the conclusions from the previous research on one-

mode k -means clustering by incorporating different kinds of rational starts, a random multi-start

procedure analogous to the one used by Steinley (2003), and also a rational multi-start procedure.

First, we will highlight the different types of rational starts considered in the present paper. Then,

the random multi-start procedure is explained and finally the construction of multiple rational

starts will be elaborated.

Three types of rational starts for the estimation of the three-mode partitioning model are

considered in the present paper. The first procedure to obtain a smart start is to perform separate

one-mode k -means analyses on the (appropriately) matricized forms of the three-way data array

and use their outcomes as initial estimates of A, B and C, respectively. For example, when a

rational choice for the initial matrix A is desired, one first ”flattens out” the three-mode data

array D to a data matrix D with dimensions I × JK, and then searches for the optimal one-mode

k -means partitioning of the objects, based on their patterns on the set of variables (which consists

of all elements of the Cartesian product of attributes and sources). Note that one faces the same

problem of choosing an initial estimate for the separate one-mode partitioning analyses. For a

discussion of the possibilities and some results with respect to the one-mode partitioning situation,

the reader is referred to Milligan (1980). We will further refer to this rational start as Independent

k-means Start.

The second type of rational start for the estimation of the three-mode partitioning model was

proposed by Kiers (2004) who suggested that a useful starting configuration can be obtained by
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performing a Tucker3 (see e.g. Kroonenberg & De Leeuw, 1980) analysis on the data set. This

leads to columnwise orthonormal component matrices for the three modes. Then, by performing

a varimax rotation of all three component matrices and finally, after multiplying columns having

negative sums by −1, a partition matrix is obtained by setting all rowwise highest elements to 1,

and all other elements to 0. We will further refer to this type of rational start as Tucker3 Start.

The final type of rational start considered in this paper was proposed by Rocci and Vichi (2004).

Their sequential k -means procedure first searches for example for an optimal one-mode k -means

partitioning of the objects. Then, an optimal partition of the attributes is obtained using the

matrix of centroids from the first clustering procedure, after being weighted by the cardinalities of

the object clusters, as the input data matrix. Finally, an optimal partition of the sources is found

using the centroid matrix from the second clustering procedure, weighted by the cardinalities of

object and attribute clusters. Note that, when searching for this type of initial triplet of partitions,

there are 6 different ways in which the sequential procedure can be applied. In this paper, we only

use the sequence as described above. We will further refer to this type of rational start as Sequential

k-means Start.

If the starting configuration is not obtained by a rational procedure but instead one leaves

the partitioning structure of the initial estimates to be determined completely by chance, one can

proceed in the following way: randomly assign each object (resp. attribute, source) to a cluster p

(resp. q, r), with the probability of being assigned to a cluster p (resp. q, r) equal for all p = 1, ..., P

(resp. q = 1, ..., Q, r = 1, ..., R). An advantage of this procedure is that a large amount of initial

starting points can be generated on which subsequently an ALS algorithm can be run from each

separate start. As already described, Steinley (2003) showed that this reduces the problem of

getting stuck in local minima. We will further refer to this type of start as Random Multi-Start.

Finally, since rational starting procedures only provide one single initial starting point, we use

the following procedure to obtain multiple alternative rational starting configurations: given a
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rational start (AR, BR, CR) for each of the partition matrices, randomly choose a proportion of

20% of the objects (resp. sources, attributes), identify to which cluster these elements are assigned

(according to the rational start), and reassign them to one of the other clusters corresponding to

that mode. This produces a slightly perturbed rational start (ApR, BpR, CpR). By repeating this

procedure N times, one obtains a set of N alternative starting points {(ApR
1 , BpR

1 , CpR
1 ),..., (ApR

N ,

BpR
N , CpR

N )}, all representing random perturbations of the single initialization obtained by applying

a rational procedure. In the remainder, we will denote the set of N perturbed rational starts

generated from the set (AR, BR, CR) as obtained by Independent k-means Start as Independent

k-means Multi-Start. When the N alternative starts were generated from the set (AR, BR, CR) as

obtained by Tucker3 Start, we will use the term Tucker3 Multi-Start and finally, in case of N starts

resulting from Sequential k-means Start, we will refer to this type of start as Sequential k-means

Multi-Start. Note that the use of rational multi-starts was already proposed by Ceulemans (??) in

a different clustering context. The author found a significant increase in performance in estimating

the HICLAS model (De Boeck & Rosenberg, 1988) when a rational multi-start procedure was used.

3.2 ALS-scheme

Assuming initial estimates for the partition matrices, a further choice has to be made concerning

the estimation of the three-mode partitioning model. The general ALS-scheme for estimating a

three-mode partitioning will be described in this subsection.

Four distinct sets of parameters can be distinguished in this optimization problem: A, B, C

and W. The sequence in which one of these four sets is estimated, keeping the other parameter

sets fixed, defines the nature of the ALS-scheme. We distinguish three types of ALS-scheme in this

paper.

If no distinction is made between the respective natures of one of these four sets of parameters,

it is normal to sequentially estimate one set, keeping the other sets fixed, and passing through each
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member of the four parameter sets in a one by one fashion. An example of this type of ALS-scheme

is to first estimate A (holding B, C and W fixed), then estimating B (holding A, C and W fixed),

then estimating C (holding A, B and W fixed), and finally estimating W (holding A, B and C

fixed). The latter procedure can be described by the following ALS-chain (ABCWAB...). In total,

4! of these chains are possible by taking all permutations of this sequence. In the present paper

however, we will take the specific sequence as described above as the representative instantiation

of this particular ALS-scheme.

It is clear that the nature of the parameters, from an optimization perspective, is not the same

for every single parameter set. More in particular, the cells of W may take any value from the set

of reals R, while the cells in A, B and C are constrained to the binary set. Moreover, the optimal

value for W (keeping A, B and C fixed) is, as described in Section 2.4, available in closed form by

formula (5). Similar to what is usually called the centroid matrix in one-mode k -means, W can

be considered to represent the cluster centers of the three-mode partitioning model. Therefore,

would it not be natural to update these centers whenever a difference in clustering structure is

observed? Following this line of reasoning, the second ALS-scheme that we consider in this paper

will again estimate each of the four parameter sets keeping the other three parameter sets fixed,

but as opposed to ALS-chain (ABCWAB...), W is reestimated after each estimation of one of the

partition matrices. An example of this second type of ALS-scheme is to first estimate A (holding

B, C and W fixed), then estimating W (holding A, B and C fixed), then estimating B (holding

A, C and W fixed), then again estimating W (holding A, B and C fixed), and then estimating

C (holding A, B and W fixed). The latter procedure can be described by the following ALS-

chain (AWBWCW...). In total, 3! of these chains are possible by taking all permutations of this

sequence. In the present paper however, we will take the specific sequence as described here as the

representative instantiation of this particular ALS-scheme.

The way in which the matrices A, B and C are estimated is necessarily the same in both
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ALS-schemes described above. This is due to the particular procedure of keeping the core and the

other partition matrices fixed while estimation one partition matrix. Consider the estimation of

A, conditionally on B, C and W. An analysis of the loss function (4) shows that it satisfies a

separability property (Chaturvedi & Carroll, 1994), implying that the contribution of the cluster

pattern of object i (ai.) to the loss function can be separated from the contribution of the cluster

patterns of the other objects. For the conditional estimation of A (keeping B, C, and W fixed),

this property is illustrated by the following decomposition of the loss function (4) in I separate

terms:

I∑

i=1

J∑

j=1

K∑

k=1

(dijk −
P∑

p=1

aip

Q∑
q=1

R∑
r=1

bjqckrwpqr)2

=
J∑

j=1

K∑

k=1

(d1jk −
P∑

p=1

a1p

Q∑
q=1

R∑
r=1

bjqckrwpqr)2 + ... +

J∑

j=1

K∑

k=1

(dIjk −
P∑

p=1

aIp

Q∑
q=1

R∑
r=1

bjqckrwpqr)2 (8)

Consequently, the conditionally optimal estimate of A can be found by independently optimizing

the pattern ai· (i = 1...I) in each of the I terms of (8). A conditionally optimal estimate of A can

thus be obtained by assigning each element i(i = 1...I) to the cluster for which it holds that the i’th

term in (8) is minimal. With respect to the conditional estimation of B and C, keeping all other

parameter sets fixed, a similar separability property holds when the loss function is decomposed

into J , respectively K terms.

Finally, the third ALS-scheme takes the reasoning of the second ALS-scheme to the limits. In-

stead of reestimating W after all objects (resp. attributes, sources) are assigned to their respective

closest cluster centers, one can instead consider to monitor the change in W with every possible

change in cluster assignment of each object (resp. attribute, source). Here, instead of fixing the

cluster centers, one allows these centers to drift while evaluating every possible cluster assignment.

Formally, this comes down to evaluating the loss function where the estimate of W (as computed
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by expression (5)) is plugged into (1),

f ′(M) =
I∑

i=1

J∑

j=1

K∑

k=1

(dijk −
P∑

p=1

Q∑
q=1

R∑
r=1

aipbjqckr

I∑
i=1

J∑
j=1

K∑
k=1

aipbjqckrdijk

I∑
i=1

aip

J∑
j=1

bjq

K∑
k=1

ckr

)2 (9)

Any change in A, B or C is now immediately accompanied by its corresponding update in the core.

Consider now the estimation of A, conditionally on B and C. Clearly, the separability property

as in (8) does not longer hold and it is thus no longer possible to obtain an optimal estimate

of A by evaluating each row separately. A possible representation of this type of ALS-scheme

is (AWBWCW...). From an analytical perspective, the conditional estimation in this ALS-

scheme boils down to the one-mode k -means problem because one simultaneously tries to find an

optimal least squares clustering of some set together with the cluster centers. From a conditional

optimization perspective, this procedure is a lot more difficult than the situation as described for

the first two ALS-schemes. In general, finding an optimal clustering for one-mode k -means is only

feasible when the number of objects to be clustered is small. However, even in the latter case these

methods take a lot of computation time to get to the solution. The same necessarily holds for the

conditional optimization within the last ALS-scheme. Note that for this final ALS-scheme there

are also 3! possible permutations of the sequence, but we only consider the one represented here

in the remainder of this paper.

Three different ALS-schemes were explained in detail in this Section: (ABCWAB...),

(AWBWCW...) and (AWBWCW...). The difference between these ALS-schemes can be

described in the amount of attention that is directed towards the estimation of the cluster centers.

The first scheme pays the least attention to this aspect of the estimation problem, the second

scheme an intermediate amount of attention and the third scheme the most.
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3.3 Empty Clusters

If, after estimating one of the individual partition matrices A, B and C, empty clusters are

present, the subsequent calculation of the core becomes problematic because the cluster centers

corresponding to the empty clusters are left undefined. Also, from an optimization perspective,

the best solution with (P, Q, R) clusters, given a data set, is necessarily better (or equally good)

in terms of its corresponding loss function (4) than the best solution with e.g. (P − 1, Q,R)

clusters (this reflects the case if one of the clusters of the objects mode is empty). Therefore, it

seems appropriate to constrain the partition matrices to have all columnwise sums greater than 0

(
∑I

i=1 aip > 0,∀p ;
∑J

j=1 bjq > 0, ∀q ; and
∑K

k=1 ckr > 0,∀r).

Within the context of the ALS estimation of the three-mode partitioning model, one therefore

has to detect the occurrence of empty clusters and subsequently undertake action to change this

problematic situation somehow into one where empty clusters are no longer present.

In the present paper, three types of methods to deal with empty clusters are considered. In the

following, one or more empty clusters are assumed to be present.

A first way for dealing with empty clusters is to search for the object that lies furthest away

from its cluster centroid and to place this element in a singleton cluster. Furthest away is in this

case formalized as follows: Consider the partition matrix A. If this matrix has a zero column, the

element i of A is identified for which it holds that
∑J

j=1

∑K
k=1(dijk −mijk)2 is the highest. The

empty cluster is then changed into the singleton cluster containing only element i. If more than one

empty clusters were present, the element which lies second furthest away from its cluster centroid

is put into the second empty cluster, and so on, until no further empty clusters are present. We

will further refer to this procedure for handling empty clusters as the singleton procedure.

Kiers (2004) proposed another procedure for dealing with empty clusters in the three-mode

partitioning problem. Consider the estimation of A, after each element is assigned to its closest

cluster centroid, and one or more empty clusters are present, then it follows that the elements of
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the core W that correspond to the empty clusters in A have no contribution to the loss function

(4). They can thus be replaced by any value without affecting the loss function (4). Therefore, the

author proposed to multiply these elements by −1, whereafter the partition matrix A is reestimated

using the transformed core W’. If this procedure again yields empty clusters in A, both A and

the core are reset to their previous values, and thus no update of A has occurred. We will further

refer to this procedure as the mirror procedure.

In the third approach to deal with empty clusters, Rocci and Vichi (2004) proposed a splitting

procedure. Consider again the estimation of A, if an empty cluster Ae turns up, the procedure

used here identifies the elements i′ that belong to the cluster Am, the cluster that has the largest

within cluster variability, and redistributes these elements by splitting them in two groups by ap-

plying a one-mode k -means clustering with k = 2 to the reduced data array containing only the

elements i′ identified earlier, and using an initial start for the latter procedure by assigning the

first half of the set of elements i′ to the first cluster, and the second half to the second cluster. If

there are more than one empty clusters, this procedure is repeated until no more empty clusters

are present. We will further refer to this procedure as the splitting procedure.

In general, heuristics for estimating a three-mode partitioning can be made up by a combination

of any type of initialization, ALS-scheme and procedure to deal with empty clusters. One exception

however occurs when it is chosen to use ALS-scheme AWBWCW. In this case no specific

constraint needs to be imposed for preventing empty clusters because of the simple fact that due

to continuous updating of the core this will not occur. Consider the situation where a cluster

consists of one element only. When evaluating every possible allocation of this element (and

allowing the core to drift correspondingly), it is always better, in terms of minimizing the loss

function, to leave this element in the singleton cluster because in that case, the cluster mean will

equal the observations, adding nothing to the loss function.
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4 Simulation Study

Because the heuristic algorithms considered in this paper do not perform a full enumerative search

on the entire solution space, we never know if a certain solution is truly the global optimum

of the solution space. Therefore, in this section, we present a simulation study to examine the

local minima problem for the three-mode partitioning model, when estimated by a number of

ALS-algorithms put together using the elements of the framework presented in Section 3, under a

number of conditions pertaining to the characteristics of the data. Second, we are also interested

in the extent to which the optimal solutions resemble the true clustering structures underlying the

data.

In Subsection 4.1, the design of the simulation study and the specific questions it is intended

to answer are outlined. Next, the results are presented in Subsection 4.2 (local optima) and Sub-

section 4.3 (goodness of recovery).

4.1 Questions, Design and Procedure

The specific questions which we will try to answer with this simulation study are:

1. What is the performance, in terms of minimizing the loss function (4), of several ALS-

algorithms? Is there an effect of the size of the data set, the underlying true rank, the error

level and/or the number of clusters?

2. To which extent does, for each given data set, the optimal solution (across all combinations

of Algorithm and Start) resemble the true structure underlying the data?

In order to deal with these different questions, we set up a simulation study. To explain its design,

three different types of real-valued I×J×K arrays must be distinguished in this simulation study:

a true array T, which can be represented by a three-mode partitioning model of rank r; a data
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array D, which is T perturbed with error; and the model array M yielded by an estimation ALS

algorithm, which can be represented by a three-mode partitioning model of the same rank as the

true array T.

The design of the simulation study was fully crossed, the factors being as follows:

(1) the Size, I × J ×K, of T, D, and M, at 3 levels: 48× 48× 48, 96× 48× 48, 96× 96× 48;

(2) the Rank, r, of the three-mode partitioning model for T, at 5 levels: 2 × 2 × 2, 2 × 2 × 4,

4× 2× 2, 2× 4× 4, 4× 4× 4;

(3) the Error, ε, which is the proportion of variance in D unaccounted for by T, or the proportion

of random noise present in the data, at 5 levels: .00, .01, .05, .20, .60;

(4) the Equality of Cluster Sizes, the number of modes that contain a cluster of considerable

smaller cardinality than the other clusters pertaining to the same mode. At level one, all

clusters corresponding to the same mode contain an equal amount of elements. At level two,

the cardinality of one object cluster is five times as small as the cardinality of the other

clusters of the objects mode while all cluster sizes corresponding to the other two modes are

equal. At level three, both the elements of the objects and attributes mode are distributed

amongst a number of clusters in which one has a cluster size five times as small as the other

clusters. Finally, at level four, all three modes correspond to a set of clusters in which one is

five times as small as the other clusters pertaining to the same mode.

For each combination of these four independent variables, 3 replicates were studied, yielding 3 ×

3 (Size) × 5 (Rank) × 5(Error) × 4(Equality of Cluster Sizes)= 900 simulated data sets.

For each combination of the levels of Size, Rank, Error and Equality of Cluster Sizes, the 3

true arrays T corresponding to the 3 replicates were constructed as follows: Partition matrices A,

B and C are held constant within the same condition. The entries in the core array W were all



Three-mode partitioning 21

independent realizations of a uniformly distributed variable on the real interval [0,1]. The true

array T resulted from combining A, B, C and W by (1). Subsequently, a data array D was

constructed by adding error to each true array T using the following expression:

dijk =
P∑

p=1

Q∑
q=1

R∑
r=1

aipbjqckrwpqr + eijk ∀i, j, k (10)

where eijk is sampled from N(0, σ2). Note that if Error equals ε, then

σ = (variance of the true array T× ε

1− ε
)

1
2

Finally, all data arrays D were analyzed in the true rank by each combination of the following two

factors:

(5) the Type of Start, at 4 levels: Random Multi-Start, Independent k-means Multi-Start, Tucker3

Multi-Start and Sequential k-means Multi-Start ; For each data set and each of these four

different types of initial starts, 50 multistarts were generated by the procedures as discussed

in Subsection 3.1. Aside from these multistarts, we will also report on the analyses using the

three types of single rational starts (Independent k-means Start, Tucker3 Start and Sequential

k-means Start) discussed in Subsection 3.1.

(6) the Algorithm, at 7 levels: As depicted in Figure 3, a subset of 6 of these algorithms exist of

taking all combinations of the first two ALS-schemes as described in Subsection 3.2 and the

three types of procedures to deal with empty clusters as described in Subsection 3.3. MIRR1

was proposed by Kiers (2004) and SPLIT2 by Rocci and Vichi (2004). DRIFT was proposed

by Schepers and Van Mechelen (2004) and uses the third ALS-scheme (AWBWCW...) as

described in Subsection 3.2. For the estimation of any one of the individual cluster matri-

ces simultaneously with W, the particular procedure in DRIFT takes on a similar form as

the k -means algorithm described by Hartigan (1975) for the case of one-mode partitioning

of a two-way data matrix. More in particular, consider the simultaneous estimation of A



Three-mode partitioning 22

and W. Starting with the first object in A, every possible move of this object to another

cluster, together with the corresponding update in W, is considered and the loss function

(9) is evaluated. The move that decreases the loss function the most is taken as the new

estimates of A and W and the algorithm proceeds to the next object where the same process

is repeated. After the algorithm has passed through all objects, two possible situations arise:

either there has been a decrease in the loss function during the pass through all the objects

and the procedure is repeated, or there has been no decrease in the loss function during the

last pass through all the objects, the procedure stops and moves on to the next partition

matrix. Note that these ’iterations within one mode’ are possible because of the fact that any

reallocation of any object of A can possibly affect the best assignment of any other object

in A to a certain cluster. Note further that due to this dependency, the issue of choosing

an initial estimate of A becomes relevant whenever the ALS-scheme moves from one parti-

tion matrix to another. In this algorithm, at iteration n > 1, the previous estimate An−1

is taken as a starting configuration. The conditional estimation of B and C is performed

completely analogous to that of A. Finally, the algorithm stops when no further decrease in

the loss function (4) is observed after the successive estimation of all three partition matrices.

Each analysis per data set yields 7 (Algorithm) × 4 (Type of Start) × 50 (multistarts) model arrays

M for each data array D. As a result of this procedure 3 (replicates) × 3 (Size) × 5 (Rank) × 5

(Error) × 4 (Equality of Cluster Sizes) × 7 (ALS-scheme) × 4 (Type of Start) × 50 (multistarts)

different triplets (T,D,M) were obtained.

4.2 Minimization of the loss function

In this section, the local minima problem for three-mode partitioning is investigated and related

to Size, Rank, Error and Equality of Cluster Size on the data side, and Algorithm and Type of
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Start on the estimation side.

We discuss the results for analyses in true rank because we know that in that specific case, the

error level is an upper bound for the BOF of the global optimum.

First, we examine for how many data sets it holds that at least one of the combinations of the

levels of Type of Start and Algorithm, a solution was found that satisfies the criterion of having a

BOF less than or equal to the error level in the data. It turns out that for all data sets, this was

the case. As a consequence, we will further use the BOF of the best solution as a proxy for the

BOF of the globally optimal solution for a given data set.

Second, we counted for each Type of Start/Algorithm combination and each data set how many

times this optimal solution was found within the 50 multistarts. The higher this number, the more

likely the optimal solution is found within any run of the multistart procedure, and thus the better

the Type of Start/Algorithm combination is at minimizing the loss function (4).

An analysis of variance with the latter measure as dependent variable; Size, Rank, Error and

Equality of Cluster Sizes as between-subjects variables and Type of Start and Algorithm as within-

subjects variables revealed an intraclass coefficient ρI (Haggard, 1958) of .46 for the effect of

Algorithm. Regarding only effect sizes larger than .10 as sizeable, Rank (ρI = .28) and the

interaction between Rank and Algorithm (ρI = .11) remain. All other effects together only explain

the remaining 16% of the variance in the dependent measure.

Figure 4 shows that algorithms SPLIT1 and SPLIT2 are most likely to return the optimal

solution and that their performance is near perfect. Also, the optimal solution is less likely to

be found when Rank increases, and this is more pronounced for algorithms MIRR1 and MIRR2,

whereas algorithms SPLIT1 and SPLIT2 are far less sensitive to this effect. These results suggest

that it is best to use either one of algorithms SPLIT1 or SPLIT2. The high performance of these

two algorithms further suggests that one should suffice with some 5 multistarts (be it random or

rational) to find the best solution, given a data set.
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insert Figure 4 here

In order to investigate the quality of the single rational starts (Independent k-means Start,

Tucker3 Start and Sequential k-means Start), we investigated, for each data set, whether or not

the BOF of the solution returned using one of these types of starts is equal to the BOF of the

optimal solution as identified earlier. Overall, for all the data sets analyzed by using Independent

k-means Start as initialization, followed by an analysis using each Algorithm, 52% of these analyses

ended in a solution as good as the optimal solution. For Sequential k-means Start and Tucker3

Start, this was equal to 73% and 99%, respectively. Apparently, using the single rational Tucker3

Start provides a very good initialization for estimating a three-mode partitioning, since it leads to

the optimal solution in almost every case.

4.3 Goodness of Recovery

With respect to evaluating the agreement of the partitioning structures between the true underlying

partition of the set of objects (resp. attributes, sources) in the three-mode partitioning model for

T and the estimated partition of the set of objects (resp. attributes, sources) for the optimal

solution (over all combinations of Type of Start and Algorithm), for each data set, the corrected

Rand index (Hubert & Arabie, 1985) was used. This index equals 1 if the two partitions are

identical and 0 if the two partitions do not correspond more than expected by chance. A combined

corrected Rand index (c-CRI) was calculated by taking the average corrected Rand index for the

object, the attribute and the source partitions, weighted by the number of objects, attributes and

sources, respectively.

Over all 900 data sets, in none of the cases the c-CRI between the true partitioning and the

partitioning corresponding to the optimal solution was not equal to 1, implying that the true

partitions and the estimated partitions of the best fitting model are identical in every case. Note

that in this simulation study, the highest level of ε is .60, implying that the data are quite far from
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the truth. The results found here can not be attributed to an artificial effect due to manipulating

an insufficient range of Error.

5 Four Empirical Data Sets

5.1 Minimization of the loss function

In this section we report the results of analyses of four empirical three-way three-mode data sets

by each combination of Algorithm and Type of Start. These data sets were the following ones:

1. Anger-Consequence data (Van Coillie & Van Mechelen, 2004): A set of 139 respondents

indicated for a set of 8 consequences to what extent they expected them to change after they

would have executed each behavior out of a set of 16 anger-related behaviors.

2. Anger data (Kuppens & Van Mechelen, in press): Respondents indicated to what degree

they experienced a list of 24 anger related responses in 14 different situations. Leaving out

all subjects for which missing values are observed, 357 respondents remain.

3. Chopin data (Murakami & Kroonenberg, 2003): 38 Japanese university students rated 24

short piano solo pieces composed by Frederik Chopin on a set of 20 bipolar scales.

4. Archetypal patients (Mezzich & Solomon, 1980): Each of 22 psychiatrists was invited to

think of a typical patient for each of 4 diagnostic categories and characterize each patient in

terms of severity on 17 psychiatric symptoms.

All data sets were analyzed in each level of Rank by taking all possible combinations of 2 to 5

clusters for each mode except for the patient mode in the archetypal patient data set for which the

highest number of clusters in the analyses was limited to 3 due to the small number of elements in

this mode. For each rank, every combination of Algorithm and Type of Start was run, each using

50 multistarts out of which the best solution found was retained. Next, for each combination of
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Algorithm and Type of Start, it was examined how many times the optimal solution was found

within these 50 multistarts.

An analysis of variance performed per data set, with the levels of Rank as blocks and Type of

Start and Algorithm as fully crossed independent variables, shows a significant effect of Algorithm

(p < .0001) but not for Type of Start, for each data set. This confirms what we expected from

the results of the simulation study. Figure 5 shows the box plots of the number of times the best

solution was found by each algorithm, over all levels of Rank and Type of Start, for each data

set. A surprising finding when analyzing any one of these four empirical data sets is the fact that

algorithm DRIFT now does a better job than algorithms SPLIT1 and SPLIT2. Moreover, the

performance of any of the algorithms other than DRIFT is highly unsatisfactory.

5.2 Parametric bootstrapping

In the following, we present a further investigation by highlighting one of the data sets presented

in Subsection 5.1, the Anger data (Kuppens & Van Mechelen, in press). We will focus on only

one instance of Rank, 2× 2× 4, because this is one of the levels of Rank where the reversal effect

in performance of the algorithms is particularly clear: DRIFT returns the optimal solution in

almost every run here, while the other algorithms almost never do. In order to get an idea of what

might cause this reversal of performance as compared to the results of the simulation study, we

investigated in what way the optimal solution corresponding to this data set differs from the ones

in the simulation study.

Recall that the stochastic version of the model with independently and identically distributed

normal error distributions for each data cluster leads to the same loss function as the determin-

istic model (4). The artificial data sets described in the simulation study in Subsection 4.1 were

generated in accordance to this stochastic model formulation. In order to investigate the influence

of departures from the assumptions in the stochastic model, we assessed to what extent the dif-
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ferent subpopulations corresponding to the data clusters returned in the optimal solution of rank

2× 2× 4 of the Anger data differed from the stochastic model assumptions implied by (6). More

in particular, we investigated (i) the within-cluster variance, (ii) the within-cluster skewness, and

(iii) the proneness to outliers of the within-cluster residual distributions. Finally, we explored (iv)

the covariance structure between the residuals.

To examine possible discrepancies between the optimal solution given the observed data set

and the optimal solution under the null model with iid N(0, σ2) distributed residuals, we used

a parametric bootstrapping procedure. First, we obtained the reconstructed data M by using

the estimates A, B, C and W, returned by the optimal solution. Then, we estimated the pooled

within-cluster variance corresponding to the optimal solution, σ̂ε, and drew 1000 bootstrap residual

distributions with all values iid from N(0, σ̂ε). By adding these bootstrap residual populations to

M, we obtain 1000 bootstrap data sets that are all generated from the null model.

(i) with respect to the variance of the residuals, we wanted to investigate whether the within-

cluster variances were more variable in the empirical data set as compared to data generated under

the null model. We computed the ratio of the highest within-cluster variance over the smallest

within-cluster variance for the empirical data set and for all bootstrap data sets. (ii) With respect

to skewness, we calculated the average skewness of the distributions of residuals corresponding to

each data cluster, for the empirical data set and for all bootstrap data sets. (iii) With respect to

proneness to outliers, we calculated the average kurtosis value over the distributions of residuals

corresponding to each data cluster. Finally, (iv) we calculated the variance-covariance matrix of

the I × JK matricized array of residuals, and summed the squared values of the above-diagonal

elements of this matrix. Figure 6 shows the results for these four statistics calculated for the

bootstrap data sets (boxplots), and the empirical data set (stars).

insert Figure 6 here
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Clearly, the values of all 4 statistics calculated for the Anger data are highly unlikely to be

observed should the residuals in fact be drawn in accordance to the stochastic model assumptions.

We conclude that the within-cluster variances corresponding to the Anger data are not equal, that

the within-clusters distributions of residuals are on average skewed and more prone to outliers, and

finally that there is a covariance between the residuals stemming from elements of the third and

second mode. These types of violations are generally observed in analyzing the four empirical data

sets and it rises the suspicion that one of these violations, or a combination of several of them,

may affect algorithmic performance. In order to get more insight into this, a second simulation

study was conducted which is discussed in the next section.

6 Second Simulation Study

In order to test whether violations of the implicit stochastic model could affect algorithmic perfor-

mance, we generated a new group of artificial data sets, each of them in some way violating the

assumptions of model (6).

All data sets had Size = 20×20×20, Rank = 4×4×4, and Error = 0.3. Table 1 shows the list of

distributions from which the error was drawn, and the value of their respective parameters. After

generating the residuals from these distributions, they were rescaled in order to control for the error

level in the data. Within each level of Residual Distribution, three different levels of Inequality in

within cluster variance, pertaining to the number of clusters with different within-cluster variances,

were generated. Either 0, 16 or 32 out of the total of 64 clusters had a within-cluster variance which

was 9 times as large as the within-cluster variance of the remaining clusters. For each combination

of Residual Distribution and Inequality in within cluster variance, 10 data sets were generated.

Each data set was then analyzed with 50 random multistarts by each of the seven algorithms. We

only used random starts in order to reduce computational costs and because we could not find an
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effect of Type of Start in the previous investigations.

insert Table 1 here

In all of the above conditions, the same pattern of performance as in the first simulation study

was found. This suggests that the ordering of algorithms in terms of performance in minimizing

the loss function is robust against violations of the implicit stochastic model, such as different

within-cluster variances, more outlier prone and more skewed residual distributions.

Finally, an additional condition in which the independence assumption was violated, was exam-

ined. For the data sets in this last condition, the residuals were drawn from the normal distribution

as in (10), but now with a nondiagonal covariance matrix (in particular, a variance-covariance ma-

trix of all attribute-source combinations with anti-robinson form, with successive entries in this

matrix, when moving away from the main diagonal, defined by linearly spaced intervals between

1 and 0). Figure 7 shows the results on 100 data sets analyzed in this condition. It can be seen

that DRIFT returns the optimal solution more frequently than the other algorithms. Particularly

striking is also the large decrease in performance (as compared to the results of the first simula-

tion study) of algorithms SPLIT1 and SPLIT2. As is the case for the four empirical data sets, a

reversal of the ordering of the different algorithms in terms of performance in minimizing the loss

function can be observed.

insert Figure 7 here

7 Conclusion and Discussion

This paper recapitulates the three-mode partitioning model, which yields a simultaneous parti-

tioning of all three modes of a three-way three-mode data array. This paper further presented a

framework for alternating least-squares algorithms for fitting a three-mode partitioning model to
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a data set.

A simulation study was conducted to examine whether the model can be estimated and also to

evaluate and compare seven different algorithms, combined with four different initializations. For

the results of the first simulation study, a comparison between the seven algorithms with respect

to their BOF showed that algorithms SPLIT1 and SPLIT2 were most successful in minimizing

the loss function since they succeeded in finding the optimal solution in almost every run of a

multistart procedure. Generally, the results discussed in this paper always point to the fact that

it does not matter whether the core is updated after each estimation of a partition matrix or after

the successive estimation of all three partition matrices. What does matter is the procedure for

dealing with empty clusters. Apparently, the splitting procedure for dealing with empty clusters

is very efficient with respect to finding the optimal solution of the solution space. The mirror

procedure and to a lesser extent the singleton procedure provide worse results.

Next to Algorithm, only Rank and the interaction between Rank and Algorithm showed up

as important effects in explaining the variability in the number of times the best solution was

found. Figure 4 showed that this is due to the fact that all algorithms, but to a lesser extent

algorithms SPLIT1 and SPLIT2, perform worse when the underlying rank of the data increases.

All other factors such as Type of Start, Size, Error and Equality of Cluster Sizes did not turn out

to be important factors in determining the number of times the best solution was found within a

multistart procedure.

The results of analyses on a number of real data sets provide a different perspective. For

these data sets, it turns out that algorithm DRIFT returns a better solution more frequently

than algorithms SPLIT1 and SPLIT2. A second simulation study in which all conditions in some

way violated the assumptions of the stochastic equivalent of (4), showed that in the case were

additional systematic error in the form of a covariance was present, we were able to replicate a

similar reversal in performance of the algorithms as observed in the real data sets. Considering
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the fact that often three-way three-mode data sets are gathered through questionnaires in which

respondents sequentially answer a set of questions, some form of additional dependency, such as a

covariance between successive questions, can be expected quite frequently. Therefore, these results

suggest that in a practical situation, where we do not know the characteristics of the individual

cluster distributions in advance, it is best to use a combination of both DRIFT on the one hand

and SPLIT1 or SPLIT2 on the other hand, when given an empirical data set. Note that in using

the first, one does have to accept a larger computation time since this algorithm generally takes

more time to converge to a stable solution.

Possibly, the violation on the stochastic model as described in the covariance condition and as

observed in a number of real empirical data sets, in some way generates a specific structure in the

solution space that causes the algorithms that no not continuously update the core to end up more

often in locally suboptimal solutions whereas algorithm DRIFT does not seem to suffer from the

same problem. We are not yet able to explain this finding.

Finally, the analyses performed on four empirical data sets also indicate that one should not

be too economical with respect to the amount of multistarts. In contrast to the results of the

simulation study, experience on four empirical data sets discussed in this paper suggest that at

least 50 multistarts is not always an exaggerated amount.

As a possible direction of future research, performance of other types of optimization algorithms

such as genetic algorithms, simulated annealing and other local search strategies, for an overview

see Aarts and Lenstra (1997), might be explored and compared to the algorithms discussed in this

paper. We would like to emphasize that the latter should be done not only on artificial data but

also on a range of real data sets since our experience suggests that quite different pictures might

evolve from both approaches.
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Figure 1: heat map of a hypothetical three-mode partitioning with nr of object clusters = 4, nr of

attribute clusters = 3 and nr of source clusters = 2.
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Figure 2: Non-destructive heatmap of the same hypothetical example as in figure 1. In this case,

the number of sources (cardinality of the third mode) is equal to 5.
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Figure 3: Graphical representation of how the seven algorithms are situated within the ALS

framework.
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Figure 4: Line plots of the mean number of times (Y) the optimal solution is found within 50 runs,

for each Algorithm and each level of Rank.
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Figure 5: Box plots of the number of times (Y) the best solution was found, over all combinations

of ranks, by each of the different algorithms, for each empirical data set.
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Figure 6: Box plots of the parametric bootstrap tests for (1) the ratio of the largest versus the

smallest within-cluster variances, (2) the average within-cluster kurtosis of the residual distribu-

tions, (3) the average within-cluster skewness of the residual distributions, and (4) the sum of

squared residual covariances. The ∗ indicates the value of the calculated test statistic for the

Anger data.
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Figure 7: Box plots of the number of times (Y) the best solution was found by each of the different

algorithms in the covariance condition.

Table 1: distributions used in the second simulation study

distribution parameters

t ν = 5 symmetric, thicker tails than normal distribution

beta α = 2, β = 3 skewed to the right

lognormal µ = .5, σ = .3 skewed to the right

poisson λ = 2 skewed to the right, non-continuous

uniform α = −.25, β = .25 symmetric

weibull β = 1, γ = 2 skewed to the right

χ2 ν = 4 skewed to the right


