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Abstract

We show that Taskinen et al. (2003)’s normal-score rank test for multivariate in-
dependence uniformly dominates—in the Pitman sense—the classical Wilks (1935)
test, which establishes the Pitman-inadmissibility of the latter. We also extend the
Hodges-Lehmann (1956) result to this context, by providing, for any fixed space
dimensions p, q of the marginals, the lower bound for the asymptotic relative effi-
ciency of Taskinen et al. (2003)’s Wilcoxon type rank test with respect to Wilks’
test.
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1 Introduction.

Rank-based inference long has been considered as a somewhat heteroclite col-
lection of “quick-and-easy” methods applicable under a broad range of as-
sumptions, but showing poor performances when compared to their parametric
competitors. This opinion was partly dispelled by two famous papers—Hodges
and Lehmann (1956) and Chernoff and Savage (1958)—establishing that, con-
trary to widespread opinion, rank-based methods, with adequate score func-
tions, not only compete very well, but even outperform their parametric coun-
terparts.
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In their celebrated “.864 result”, Hodges and Lehmann (1956) proved that,
in the two-sample location model (but this extends to most location prob-
lems, such as one-sample, c-sample, ANOVA, regression problems, etc.), the
Pitman asymptotic relative efficiency (ARE) of Wilcoxon (i.e., linear-score)
rank tests with respect to their normal-theory competitors (namely, standard
two-sample t-tests) is never less than .864. In other words, Wilcoxon tests,
asymptotically never—that is, irrespective of the distribution of the underly-
ing noise—need more than 14.6% observations more than t-tests to achieve
the same power (see, e.g., Pratt and Gibbons (1981) for a more formal defi-
nition of ARE). No less celebrated is the Chernoff and Savage (1958) result
proving the amazing fact that, in the same type of models, the ARE of van der
Waerden (i.e., normal-score) rank tests, still with respect to the corresponding
standard Gaussian tests, is always larger than 1, and that this minimal value
is reached at Gaussian distributions only. It should be stressed, however, that
these results deal with the “worst cases”: both for the Wilcoxon and the van
der Waerden tests, it is possible to show that there is no “best case”, that is,
it is possible to construct a sequence of underlying distributions along which
AREs (still with respect to standard Gaussian tests) go to infinity.

One should not believe, though, that these Chernoff-Savage and Hodges-
Lehmann results are just some isolated miracles, a happy accident specific
to location problems involving univariate observations. Indeed, Hallin (1994)
showed that the van der Waerden version of the serial rank tests proposed by
Hallin and Puri (1994) also uniformly beats (in the Pitman sense) the corre-
sponding everyday practice parametric Gaussian test. These serial rank tests
allow for testing for randomness against serial dependence, for testing the ad-
equacy of an ARMA model, or for testing linear restrictions on the parameter
of an ARMA model. As for the extension of the Hodges-Lehmann (1956) re-
sult to this time series setup, the lower bound of the linear-score version of
those tests, still with respect to the parametric Gaussian tests, was shown to
be .856 by Hallin and Tribel (2000).

Extensions to (possibly serial) problems involving multivariate observations
were recently obtained by Hallin and Paindaveine (2002a, b, and 2003), who
showed that their various multivariate van der Waerden rank tests uniformly
dominate the corresponding parametric Gaussian procedures in a broad class
of problems (culminating in the problem of testing linear restrictions on the
parameter of the multivariate general linear model with vector ARMA er-
rors); the Pitman non-admissibility of the associated everyday practice Gaus-
sian tests (one-sample and two-sample Hotelling tests, multivariate F -tests,
multivariate Portmanteau and Durbin-Watson tests, etc.) follows. Hallin and
Paindaveine (2002a) (resp., Hallin and Paindaveine (2002b)) also extended
Hodges-Lehmann’s result to the multivariate location (resp., serial) setup,
providing, for any fixed dimension of the observations, the lower bound for
the AREs of the proposed multivariate linear-score rank tests with respect to
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the parametric Gaussian tests.

In this paper, we consider the problem of testing for multivariate indepen-
dence between two (elliptically symmetric) random vectors, and focus on the
asymptotically distribution-free rank score tests recently proposed by Taski-
nen et al. (2003). We prove two results confirming the excellent asymptotic
efficiency behavior of the van der Waerden and Wilcoxon versions of their
tests. The first one is a Chernoff-Savage result, showing that the parametric
Gaussian test—namely Wilks (1935) test—is uniformly dominated by their
van der Waerden test, which establishes the Pitman-inadmissibility of Wilks’
test (hence, in the univariate case, of the classical correlation test). The second
one is an extension of the Hodges-Lehmann (1956) “.864 result”, providing,
for any fixed space dimensions p, q of the marginals, the lower bound for the
asymptotic relative efficiency of the Taskinen et al. (2003) Wilcoxon test with
respect to Wilks’ test.

The paper is organized as follows. In Section 2, we define the notation to
be used in the sequel, describe the problem of testing for independence be-
tween elliptically symmetric marginals, and briefly recall the rank score tests
developed by Taskinen et al. (2003). In Section 3, we establish the Pitman
non-admissibility of Wilks’ test for multivariate independence. The analog of
Hodges-Lehmann (1956)’s result for the problem under study is derived in
Section 4.

2 Rank score test for multivariate independence.

2.1 Elliptical symmetry.

Recall that the distribution of a random k-vector X is said to be elliptically
symmetric with parameters µµµ, ΣΣΣ, and f , if and only if its pdf is given by

f
µµµ,ΣΣΣ;f

(x) := ck,f (detΣΣΣ)−1/2f
(

(

(x −µµµ)TΣΣΣ−1(x −µµµ)
)1/2

)

, x ∈ R
k, (1)

for some k-vector µµµ (the centre of the distribution), some symmetric positive
definite real k × k matrix ΣΣΣ = (Σij) with Σ11 = 1, and some function f :
R

+
0 −→ R

+ such that f > 0 a.e. and µk−1;f :=
∫∞
0 rk−1f(r) dr < ∞ (ck,f is

a normalization factor depending on the dimension k and f). We will denote
this distribution by Ek(µµµ,ΣΣΣ, f).

The shape parameterΣΣΣ determines the orientation and shape of the equidensity
contours associated with f

µµµ,ΣΣΣ;f
, which are hyper-ellipsoids centered at µµµ. The

problem of testing for multivariate independence is invariant under (block-
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)affine transformations, and so are all tests considered in this paper. Therefore
we can restrict—without loss of generality—to the class of centered spherical
distributions, for which µµµ and ΣΣΣ do coincide with the origin 0 in R

k and the
k-dimensional identity matrix Ik, respectively.

Under Ek(0, Ik, f), the radial function f determines the distribution of ‖X‖.
More precisely, the probability density function of ‖X‖ is f̃k(r) := (µk−1;f)

−1

rk−1f(r) I[r>0] (IA stands for the indicator function of the set A); denote by

F̃k the corresponding distribution function.

To guarantee that (1) is a density, we need to assume that µk−1;f < ∞. The
classical Gaussian procedure for testing multivariate independence—Wilks
(1935)’s test—requires the underlying distribution to have a finite variance;
consequently, when considering AREs with respect to Wilks’ test, we will re-
strict to radial functions satisfying the stronger condition µk+1;f :=

∫∞
0 rk+1

f(r) dr < ∞, under which the distribution Ek(0, Ik, f) has finite second-order
moments. One can associate with each radial function f the radial function
type of f defined as the class {fa, a > 0}, where fa(r) := f(ar), for all
r > 0. By affine-invariance, one could restrict to parameters of the form
(µµµ,ΣΣΣ, f) = (0, Ik, fa0

) for which the variance of the associated elliptical distri-
butions is equal to Ik. However, it will be convenient in the sequel to consider
all possible radial functions, so that we will only fix (µµµ,ΣΣΣ) = (0, Ik) but let
f range over its radial function type. Some extremely mild smoothness con-
ditions on f—that we will throughout assume to be fulfilled—are required to
derive AREs. We refer to Taskinen et al. (2003) for details.

The radial function f is said to be Gaussian if and only if f = φa for
some a > 0, where φ(r) := exp(−r2/2). Under Ek(0, Ik, φ), the pdf of ‖X‖
is φ̃k(r) := (2(k−2)/2Γ(k/2))−1rk−1φ(r)I[r>0] (where Γ(.) stands for the Euler

gamma function), and we denote by Φ̃k the associated cdf. Under Ek(0, Ik, φ),
the distribution of ‖X‖2 = (Φ̃−1

k (U))2 (throughout, U stands for a random
variable that is uniformly distributed over (0, 1)) is χ2

k, so that the cdf of ‖X‖
is simply Φ̃k(r) = Ψk(r

2), where Ψk denotes the distribution function of a
chi-square variable with k degrees of freedom.

2.2 Testing for multivariate independence.

Consider an i.i.d. sample (x T
11, x

T
21)

T , (xT
12, x

T
22)

T , . . . , (xT
1n, xT

2n)T of (p + q)-
random vectors with the same distribution as (x T

1 , xT
2 )T , where x 1 and x 2

are elliptically symmetric random vectors, with distribution Ep(µµµ1,ΣΣΣ1, f) and
Eq(µµµ2,ΣΣΣ2, g), respectively. The problem we consider is that of testing, on the
basis of this sample, the null hypothesis of independence between x 1 and x 2.
As already metioned, there is no loss—since the testing problem under study
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is invariant under block-diagonal affine transformations—in restricting to cen-
tered spherical marginal distributions, that is, assuming (µµµ1,ΣΣΣ1) = (0, Ip) and
(µµµ2,ΣΣΣ2) = (0, Iq).

The standard parametric Gaussian procedure (the likelihood ratio test) is
Wilks (1935)’s test φN , which rejects the null (at asymptotic level α) as soon
as

−n log
|S|

|S11||S22|
> χ2

pq,1−α,

where we write

S :=







S11 S12

S21 S22







for the partitioned sample covariance matrix, and where χ2
pq,1−α denotes the

α-upper quantile of the chi-square distribution with pq degrees of freedom.

Taskinen et al. (2003) recently proposed the following rank score competitors
of Wilks’ test. Define the standardized subvectors ẑ 11, . . . , ẑ 1n associated with
original subvectors x 11, . . . , x 1n as

ẑ 1i := Σ̂ΣΣ
−1/2

1 (x 1i − µ̂µµ1) , i = 1, . . . , n,

where µ̂µµ1 and Σ̂ΣΣ
−1/2

1 are chosen in such a way that the so-called standardized
spatial signs û1i = ẑ 1i/‖ẑ 1i‖ satisfy

avei û1i = 0 and avei

(

û1iû
T
1i

)

=
1

p
Ip;

denote further by R̂1i the rank of ‖ẑ 1i‖ among ‖ẑ 11‖, . . . , ‖ẑ 1n‖. The statis-
tics û2i and R̂2i are defined in the same way within the sample x 21, . . . , x 2n.
Letting K1, K2 : (0, 1) → R be two square-integrable score functions, the
(K1, K2)-score version of the rank test statistics for multivariate independence
proposed in Taskinen et al. (2003) is

TK1,K2
:=

npq

σ2
K1

σ2
K2

∥

∥

∥

∥

∥

avei

{

K1

(

R̂1i

n + 1

)

K2

(

R̂2i

n + 1

)

û1i û
T
2i

}∥

∥

∥

∥

∥

2

,

where σ2
K := E[K2(U)] (U uniformly distributed over (0, 1)) and where ‖A‖2 =

tr (AAT ) is the squared Frobenius norm of A. Under the null distribution of
independence (with elliptical marginals), this rank score statistic is asymptot-
ically chi-square with pq degrees of freedom, and the associated test φK1,K2

rejects the null as soon as TK1,K2
> χ2

pq,1−α (at asymptotic level α).

As shown in the sequel, two particular cases (corresponding to two specific
types of score functions) of the above rank score tests exhibit a remarkably
good uniform efficiency behaviour.
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3 Pitman non-admissibility of Wilks’ test.

The van der Waerden (normal-score) version of the above rank score test
statistics is obtained with the score functions K1 = Φ̃−1

p = (Ψ−1
p )1/2, K2 =

Φ̃−1
q = (Ψ−1

q )1/2 :

TvdW := n

∥

∥

∥

∥

∥

avei

{

Φ̃−1
p

(

R̂1i

n + 1

)

Φ̃−1
q

(

R̂2i

n + 1

)

û1i û
T
2i

}∥

∥

∥

∥

∥

2

.

To compute asymptotic relative efficiencies of the van der Waerden test φvdW

with respect to Wilks’ test φN , a model of dependence (and related local
alternatives) must be adopted. As in Gieser and Randles (1997) and Taskinen
et al. (2003), we consider the local alternatives of the model of dependence
generated by the transformation







y1i

y2i





 =







(1 − n−1/2δ) Ip n−1/2δ M1

n−1/2δ M2 (1 − n−1/2δ) Iq













x 1i

x 2i





 , i = 1, . . . , n, (2)

of mutually independent random vectors x 1i, x 2i, with respective elliptic
distributions Ep(0, Ip, f) and Eq(0, Iq, g), say. Above, M1,M2 are fixed non-
random arrays with appropriate dimensions. If one restricts to the special case
for which M1 = MT

2 = M, the asymptotic relative efficiency of the rank score
test φK1,K2

with respect to Wilks’ test does not depend on M. In particular,
as shown in Taskinen et al. (2003), the asymptotic relative efficiency of the
van der Waerden test φvdW based on TvdW with respect to Wilks’ test, under
the sequence of local alternatives in (2), is

AREp,f
q,g (φvdW /φN ) =

1

4p2q2

(

Dp(φ, f)Cq(φ, g) + Dq(φ, g)Cp(φ, f)
)2

,

where, denoting by ϕf(r) := −f ′(r)/f(r) the optimal location score function
associated with some radial function f , we let

Ck(φ, f) := E
[

Φ̃−1
k (U) ϕf(F̃

−1
k (U))

]

and Dk(φ, f) := E
[

Φ̃−1
k (U) F̃−1

k (U)
]

.

Some numerical values of these AREs, under multivariate t- and normal dis-
tributions, are provided in Table 1. All these values are larger or equal than 1,
and seem to be equal to 1 only if both marginals are Gaussian.

Taskinen et al. (2003) pointed out that it is remarkable that, in the multi-
normal case, the limiting Pitman efficiency of the van der Waerden score test
φvdW equals that of Wilks’ test. But, it is even more remarkable that, as we
shall see, the multinormal case is actually the least favourable one to the above
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van der Waerden procedure. Theorem 1 below indeed states that, as soon as
one of the marginal is not Gaussian, the van der Waerden test strictly beats
Wilks’ test (Table 1 provides an empirical corroboration of this result). The
Pitman inadmissibility of Wilks’ test follows.

Theorem 1 For all integers p, q ≥ 1 and all radial functions f, g satisfying
µp+1;f < ∞ and µq+1;g < ∞, we have

AREp,f
q,g (φvdW /φN ) ≥ 1,

where equality holds iff f and g do coincide and are Gaussian.

To prove this theorem, we need the following intermediate result; see Pain-
daveine (2003) for an elementary proof.

Lemma 1 For all integer k ≥ 1 and all radial function f satisfying µk+1;f <
∞, we have Dk(φ, f)Ck(φ, f) ≥ k2, where equality holds iff f is Gaussian.

Proof of Theorem 1. The proof is based on the decomposition

(

Dp(φ, f)Cq(φ, g) + Dq(φ, g)Cp(φ, f)
)2

= Ap,f
q,g + Bp,f

q,g ,

where we let

Ap,f
q,g := 4 Dp(φ, f)Cp(φ, f)Dq(φ, g)Cq(φ, g), and

Bp,f
q,g :=

(

Dp(φ, f)Cq(φ, g) − Dq(φ, g)Cp(φ, f)
)2

.

It directly follows from Lemma 1 that

AREp,f
q,g (φvdW /φN ) ≥ 1

4p2q2
Ap,f

q,g ≥ 1. (3)

Let us now show that equality holds iff f and g do coincide and are Gaussian,
i.e., are Gaussian with the same scale. For the equality to hold, we need to
have Ap,f

q,g = 4p2q2 and Bp,f
q,g = 0. From Lemma 1, Ap,f

q,g = 4p2q2 implies that
both f and g are Gaussian (f = φa and g = φb, say). Now, since Dk(φ, φa) =
a−1Dk(φ) = a−1k and Ck(φ, φa) = aCk(φ) = aDk(φ) = ak for all k, we have
Bp,φa

q,φb
= p2q2((b/a) − (a/b))2, which is equal to zero iff a = b. Consequently,

equality holds iff f = g = φa, for some a > 0. 2
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4 A Hodges-Lehmann result for multivariate independence.

Consider now the Wilcoxon test statistic

TW :=
9npq

(n + 1)4

∥

∥

∥ avei

{

R̂1i R̂2i û1i û
T
2i

} ∥

∥

∥

2
,

which is associated with the score functions K1(u) = K2(u) = u for all u ∈
(0, 1). The asymptotic relative efficiency of the corresponding Wilcoxon test
φW with respect to Wilks’ test φN , under the sequence of local alternatives
in (2) (still with M1 = MT

2 ), is given by

AREp,f
q,g (φW/φN ) =

9

4pq

(

Dp(I , f)Cq(I , g) + Dq(I , q)Cp(I , f)
)2

,

where we let

Ck(I , f) := E
[

U ϕf(F̃
−1
k (U))

]

and Dk(I , f) := E
[

U F̃−1
k (U)

]

.

Some numerical values of these AREs, under multivariate t- and normal dis-
tributions, are provided in Table 2. The uniformly good asymptotic efficiency
behavior of the Wilcoxon test in Table 2 holds more generally, as shown by
the following result which provides the lower bound of these AREs for any
fixed values of the dimensions p, q of the marginals (some numerical values of
this lower bound are presented in Table 3).

Theorem 2 Let p, q ≥ 1 be two integers. Then, letting

ck := inf

{

x > 0

∣

∣

∣

∣

∣

(√
x J√

2k−1/2(x)
)′

= 0

}

, k ∈ N0,

where Jr denotes the first-kind Bessel function of order r, the lower bound for
the asymptotic relative efficiency of φW with respect to φN , for fixed subvector
dimensions p, q, is

inf
f,g

AREp,f
q,g (φW/φN ) =

9

210pqc2
pc

2
q

(

2 c2
p + p − 1

)2 (

2 c2
q + q − 1

)2
, (4)

where the infimum is taken over the collection of radial functions f, g for which
µp+1;f < ∞ and µq+1;g < ∞. The infimum is reached at the couples of radial
functions

(f, g) ∈
{(

hp,σ(r), hq,σ(r)
)

:=
(

hp,1(σr), hq,1(σr)
)

, σ > 0
}

,

where hk,1 denotes “the” radial function associated with the radial cumulative

8



distribution function

Hk,1(r) :=

√
r J√

2k−1/2 (r)
√

ck J√
2k−1/2(ck)

I[0<r≤ck] + I[r>ck]

(IA denotes the indicator function of the set A).

To prove this theorem, we need the following result, which is established in
the proof of Proposition 7 in Hallin and Paindaveine (2002b).

Lemma 2 Let k ≥ 1 be a fixed integer. Then,

inf
f

{

Dk(I , f)Ck(I , f)
}

=
1

25c2
k

(

2 c2
k + k − 1

)2
,

where the infimum is taken over the collection of radial functions f for which
µk+1;f < ∞, and the infimum is reached at the radial functions f ∈ {hk,σ(r), σ >
0}. Moreover, letting ωk := (2 c2

k + k − 1)/(8ck), we have Dk(I , hk,ωk
) = 1.

Since we have Dk(I , fa) = a−1Dk(I , f) and Ck(I , fa) = aCk(I , f) for all k, the
quantity Dk(I , fa)Ck(I , fa) does not depend on a. This allows for identifying
a particular member hk,σk

of the radial function type {hk,σ(r), σ > 0} such
that Dk(I , hk,σk

) = 1. According to Lemma 2, σk = ωk.

Proof of Theorem 2. Proceeding as in the proof of Theorem 1, we consider
the decomposition

AREp,f
q,g (φW/φN ) = Ap,f

q,g + Bp,f
q,g ,

where

Ap,f
q,g :=

9

pq
Dp(I , f)Cp(I , f)Dq(I , g)Cq(I , g),

Bp,f
q,g :=

9

4pq

(

Dp(I , f)Cq(I , g)− Dq(I , g)Cp(I , f)
)2

.

Lemma 2 directly yields that, for all couple (f, g) of radial functions,

AREp,f
q,g (φW/φN ) ≥ Ap,f

q,g ≥ 9

210pqc2
pc

2
q

(

2 c2
p + p − 1

)2 (

2 c2
q + q − 1

)2
. (5)

We now show that the right hand side in (5) does actually coincide with the
infimum, by determining the (non-empty) collection of couples (f, g) achieving
the bound in (4). For the couple (f, g) to achieve the bound, we only need
equalities in (5) to hold, i.e., we need to have

Ap,f
q,g =

9

210pqc2
pc

2
q

(

2 c2
p + p − 1

)2 (

2 c2
q + q − 1

)2
, and (6)

Bp,f
q,g = 0. (7)
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Lemma 2 shows that (6) holds if and only if

(f, g) ∈
{(

hp,a(r), hq,b(r)
)

:=
(

hp,1(ar), hq,1(br)
)

, a, b > 0
}

.

Now, using the fact that Dk(I , hk,1) = ωk for all k, we have

B
p,hp,a

q,hq,b
=

9

4pq

(

b

a
Dp(I , hp,1)Cq(I , hq,1) −

a

b
Dq(I , hq,1)Cp(I , hp,1)

)2

=
9

4pq

(

ωpb

a
Cq(I , hq,1) −

ωqa

b
Cp(I , hp,1)

)2

=
9

4pq

(

ωpb

ωqa
Dq(I , hq,1)Cq(I , hq,1) −

ωqa

ωpb
Dp(I , hp,1)Cp(I , hp,1)

)2

=0

if and only if

(

ωqa

ωpb

)2

=
Dq(I , hq,1)Cq(I , hq,1)

Dp(I , hp,1)Cp(I , hp,1)
=

c2
p(2 c2

q + q − 1)2

c2
q(2 c2

p + p − 1)2
=
(

ωq

ωp

)2

,

i.e., if and only if a = b. 2
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νp νp

q νq 3 4 6 12 ∞ q νq 3 4 6 12 ∞

1 3 1.378 1.295 1.266 1.281 1.339 4 3 1.430 1.332 1.292 1.298 1.348

4 1.293 1.190 1.141 1.135 1.167 4 1.336 1.223 1.167 1.156 1.183

6 1.267 1.144 1.078 1.054 1.067 6 1.294 1.165 1.096 1.069 1.080

12 1.285 1.141 1.058 1.019 1.016 12 1.295 1.149 1.064 1.024 1.020

∞ 1.343 1.174 1.072 1.017 1.000 ∞ 1.343 1.174 1.072 1.017 1.000

2 3 1.400 1.311 1.277 1.289 1.343 6 3 1.448 1.345 1.301 1.304 1.351

4 1.311 1.204 1.152 1.144 1.174 4 1.353 1.236 1.177 1.163 1.189

6 1.277 1.152 1.085 1.060 1.072 6 1.306 1.175 1.103 1.075 1.085

12 1.289 1.144 1.060 1.021 1.017 12 1.300 1.153 1.068 1.027 1.023

∞ 1.343 1.174 1.072 1.017 1.000 ∞ 1.343 1.174 1.072 1.017 1.000

3 3 1.417 1.323 1.286 1.294 1.346 10 3 1.471 1.361 1.312 1.311 1.353

4 1.325 1.214 1.161 1.150 1.179 4 1.375 1.252 1.190 1.173 1.196

6 1.286 1.159 1.091 1.065 1.076 6 1.323 1.188 1.114 1.084 1.092

12 1.292 1.146 1.062 1.023 1.019 12 1.308 1.159 1.073 1.032 1.027

∞ 1.343 1.174 1.072 1.017 1.000 ∞ 1.343 1.174 1.072 1.017 1.000

Table 1
AREs of the van der Waerden rank score test φvdW for multivariate independence
with respect to Wilks’ test φN , under standard multivariate Student (with 3, 4, 6,
and 12 degrees of freedom) and standard Gaussian densities, for subvector dimen-
sions p = 2 and q = 1, 2, 3, 4, 6, and 10, respectively.
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νp νp

q νq 3 4 6 12 ∞ q νq 3 4 6 12 ∞

1 3 1.305 1.227 1.193 1.193 1.222 4 3 1.248 1.192 1.175 1.191 1.235

4 1.239 1.147 1.099 1.085 1.098 4 1.174 1.101 1.068 1.066 1.090

6 1.208 1.104 1.044 1.018 1.018 6 1.149 1.059 1.011 0.993 1.002

12 1.204 1.086 1.015 0.978 0.969 12 1.165 1.056 0.992 0.961 0.955

∞ 1.219 1.087 1.006 0.959 0.940 ∞ 1.228 1.095 1.013 0.966 0.947

2 3 1.305 1.237 1.211 1.219 1.257 6 3 1.211 1.161 1.150 1.168 1.215

4 1.237 1.152 1.111 1.102 1.121 4 1.134 1.067 1.038 1.039 1.066

6 1.211 1.111 1.055 1.033 1.037 6 1.105 1.022 0.978 0.963 0.974

10 1.219 1.102 1.033 0.997 0.989 12 1.122 1.019 0.959 0.930 0.927

∞ 1.257 1.121 1.037 0.989 0.970 ∞ 1.198 1.068 0.988 0.943 0.924

3 3 1.274 1.213 1.193 1.206 1.248 10 3 1.173 1.129 1.121 1.144 1.193

4 1.203 1.125 1.089 1.084 1.106 4 1.090 1.029 1.005 1.009 1.038

6 1.179 1.084 1.032 1.013 1.020 6 1.056 0.979 0.940 0.929 0.941

12 1.192 1.079 1.013 0.980 0.973 12 1.069 0.973 0.918 0.892 0.891

∞ 1.245 1.110 1.027 0.979 0.960 ∞ 1.158 1.033 0.955 0.911 0.893

Table 2
AREs of the Wilcoxon the rank score test φW for multivariate independence with
respect to Wilks’ test φN , under multivariate Student (with 3, 4, 6, and 12 degrees of
freedom) and normal densities, for subvector dimensions p = 2 and q = 1, 2, 3, 4, 6,
and 10, respectively

p/q 1 2 3 4 6 10 ∞

1 0.856 0.884 0.867 0.850 0.826 0.797 0.694

2 0.913 0.895 0.878 0.853 0.823 0.717

3 0.878 0.861 0.836 0.807 0.703

4 0.845 0.820 0.792 0.689

6 0.797 0.769 0.669

10 0.742 0.646

∞ 0.563

Table 3
Some numerical values, for various values of the dimensions p, q of the subvectors,
of the lower bound for the asymptotic relative efficiency of the Wilcoxon rank score
test φW for multivariate independence with respect to Wilks’ test φN .
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