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abstract
Hierarchical classes models are quasi-order retaining 
Boolean decomposition models for N-way N-mode binary 
data. These models are fitted to data by means of rationally 
started alternating least squares algorithms. The results of 
extensive simulation studies show that these algorithms, 
although succeeding quite well in recovering the underlying 
truth, end quite often in a local minimum. In this paper we 
investigate whether these local minima-problems are due 
to the starting configuration of the algorithms and/or the 
alternating character. In particular, the effect of using (1) 
other types of initial configurations and (2) simulated 
annealing-based algorithmic variants is evaluated. Initial 
simulation results for the original two-way HICLAS-model 
show that a (noisy) rationally started simulated annealing-
based algorithm yields the most promising results. 
Directions for further research are discussed.
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overview

1. HICLAS recapitulation

a. model

b. algorithm

2. the local minimum problem: JOC simulation study

3. two possible solutions

a. changing initial configuration of ALS algorithm

b. simultaneous optimization via simulated annealing

4. results

5. discussion

1.a. HICLAS recapitulation: model

• model for I by J binary D

• D is approximated by same-sized binary M

• M is decomposed into I by R binary A and J by R binary B
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1.a. HICLAS recapitulation: model

• model for I by J binary D

• D is approximated by same-sized binary M

• M is decomposed into I by R binary A and J by R binary B

• A and B represent two types of relations in M

– association
– quasi-order
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1.b. HICLAS recapitulation: algorithm

• loss function:

• algorithm consists of two steps

– ALS procedure: look for A, B that minimize loss 
function

– closure operation: modify A, B so as to represent the 
quasi order relations in M

( )
1 1

( ) ²
I J

ij ij
i j

f d m
= =
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• ALS procedure

– starts from initial configuration for A (resp. B): A0

– initial configuration can be rational, random or user 
provided

– conditional upon A0, B1 is estimated conditionally 
optimal by means of branch-and-bound Boolean 
regression

– conditional upon B1, A1 is estimated by means of 
Boolean regression

– conditional updating of A and B continues until no 
further improvement in the loss function is observed

2. JOC simulation study
• 3 types of I by J matrices involved

– true matrices T
– data matrices D: T perturbed with error
– model matrices M: yielded by rationally started ALS 

algorithm

• 3 independent variables were orthogonally crossed
– size: 15 by 25, 20 by 20, 80 by 20, 40 by 40 (+ 2 big sizes)
– rank underlying T: 3, 5, 8
– error level: 0, 5, 10, 15, 20, 25 %

• 25 replications per cell
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• of the 1800 analyses, 1295 or 72% ended in a solution 
with f(M) ≤ number of discrepancies T-D

• as number of discrepancies T-D constitutes an upper 
bound for f(M) of global minimum: in at least 28% of the 
cases rationally started ALS algorithm ends in local 
minimum

3.a. changing initial configuration of ALS algorithm

• often, one deals with local minima problems by means of a 
multistart procedure

• implies rerunning the algorithm using a user-specified 
number of random starts (i.e., 100) and retaining the best 
solution only

• two types of random starts:
– pseudo-random start: the columns of A0 consist of 

randomly chosen columns of D
– truly-random start: air

0 are independent realizations of a 
Bernoulli variable with the probability parameter 
depending on the number of ones in D
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• however, (1) vastness of HICLAS solution space (i.e., 2IR 

possible initial configurations) and (2) generally, low 
number of iterations before convergence is reached => 
will random multistart procedure solve the problem?

• therefore, smart random multistart procedure: rational 
start perturbed with a small amount of error (i.e., 10 %)

3.b. simulated annealing

• a random-search technique, which exploits the analogy 
between  the way that liquids freeze into a minimum 
energy structure (the annealing  process) and the search 
for a minimum in a more general system



10

• annealing:

– at high temperatures, the molecules of a liquid move 
freely with respect to one another

– if the liquid is cooled slowly, thermal mobility is lost 
and the atoms are able to form a pure crystal; this 
crystal is the state of minimum energy

– if the liquid is cooled quickly, the obtained crystal will 
contain imperfections; such a crystal has a somewhat 
higher energy

• simulated annealing
input & assess initial solution

estimate initial temperature

generate new solution

assess new solution

accept new solution?

update stored solution

adjust temperature

terminate serach

stop

yes

no

yes

no
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• simulated annealing
input & assess initial solution

estimate initial temperature

generate new solution

assess new solution

accept new solution?

update stored solution

adjust temperature

terminate serach

stop

yes

no

yes

no

is repeated a number of times: 
one chain

• a solution: A and B

• initial solution: rational, noisy rational, pseudo-random, 
truly random

• generation of new solutions: alter the entries of A and B
with probability 1/((I+J)*R)

• assessing a solution: calculate the loss function value f(M)

• acceptation decision: 
– better solution is always accepted
– worse solution is accepted with probability

exp(( ( ) ( ) ) / )curr newp f f T= −M M
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• estimating the initial temperature T0: 
– a suitable initial temperature results in an average 

probability of accepting a ‘worse’ solution of .8
– is estimated by conducting an initial search in which 

all increases are accepted
–

• length of chain: (I+J)*2R solutions or .1*((I+J)*2R) 
solutions accepted 

• adjusting the temperature: Tk+1=.95Tk

• termination criterion: Tk has a very low value or the final 
solution of ten subsequent chains is the same
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4. results

• 8 analyses of JOC simulated data sets

• percentage of data sets with f(M) ≤ number of 
discrepancies T-D

algorithm

94.494.9noisy rational
69.894.6truly-random
76.493.2pseudo-random
95.171.9rational

simulated annealingALSstart

• percentage of data sets with lowest f(M) 

algorithm

61.351.2noisy rational
31.351.0truly-random
34.151.4pseudo-random
63.719.1rational

simulated annealingALSstart
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• badness of recovery of the association relation

algorithm

.084.087noisy rational

.095.086truly-random

.091.087pseudo-random

.083.099rational
simulated annealingALSstart

• goodness of recovery of the quasi order relations

algorithm

.905.903noisy rational

.892.904truly-random

.896.902pseudo-random

.906.880rational
simulated annealingALSstart
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5. discussion
• for ALS, almost no difference between multistart 

procedures, which all work better than rational start

• for SA, best results with rational and noisy rational start

• hence, best combination: perform rationally started ALS 
procedure and use output as input for SA

• question: difference between random ALS and random 
SA due to 100 starts for ALS vs 1 start for SA?

• what about other global optimization procedures, like 
genetic algorithms and tabu search?

• ALS results do not generalize to three-way case, noisy 
rational > rational > random

• three-way SA?


