<u>TECHNICAL</u> <u>REPORT</u>

0472

AN EVALUATION OF VARIOUS INITIAL CONFIGURATIONS AND SIMULATED ANNEALING-BASED ALGORITHMIC VARIANTS FOR HIERARCHICAL CLASSES ANALYSIS

CEULEMANS, E. and I. VAN MECHELEN

<u>IAP STATISTICS</u> <u>NETWORK</u>

INTERUNIVERSITY ATTRACTION POLE

http://www.stat.ucl.ac.be/IAP

An evaluation of various initial configurations and simulated annealing-based algorithmic variants for hierarchical classes analysis

> Eva Ceulemans & Iven Van Mechelen Katholieke Universiteit Leuven

overview

- 1. HICLAS recapitulation
 - a. model
 - b. algorithm
- 2. the local minimum problem: JOC simulation study
- 3. two possible solutions
 - a. changing initial configuration of ALS algorithm
 - b. simultaneous optimization via simulated annealing
- 4. results
- 5. discussion

1.a. HICLAS recapitulation: model

- model for *I* by *J* binary **D**
- **D** is approximated by same-sized binary **M**
- **M** is decomposed into *I* by *R* binary **A** and *J* by *R* binary **B**

objects a1 a2 a3 a4 a5							
objects a1 a2 a3 a4 a5	attributes						
	a6						
o1 1 1 0 1 1	1						
o2 1 1 0 1 1	1						
o3 1 0 0 1 0	1						
o4 1 0 0 1 0	1						
o5 1 1 0 1 1	1						
06 0 1 0 1 1	0						
07 0 0 0 0 0	0						

	model matrix M											
						attrik	outes	;				
			objects	a1	a2	а3	a4	а5	a6			
			01	1	1	0	1	1	1			
			o2	1	1	0	1	1	1			
A			о3	1	0	0	1	0	1			
objects	I	II	o4	1	0	0	1	0	1			
01	1	1	o5	1	1	0	1	1	1	В		
02	1	1	06	0	1	0	1	1	0	attributes	I	II
02		0	07	0	0	0	0	0	0	a1	1	0
03	1	0		0	0	0	0	0		a2	0	1
04	1	0								a3	0	0
05	1	1								a4	1	1
06	0	1								a5	0	1
о7	0	0								a6	1	0

1.a. HICLAS recapitulation: model

- model for *I* by *J* binary **D**
- D is approximated by same-sized binary M
- **M** is decomposed into *I* by *R* binary **A** and *J* by *R* binary **B**
- A and B represent two types of relations in M
 - association
 - quasi-order

	model matrix M										
						attrik	outes	;			
			objects	a1	a2	a3	a4	а5	a6		
			o1	1	1	0	1	1	1	-	
			o2	1	1	0	1	1	1		
A			03	1	0	0	1	0	1		
objects	Ι	П	04	1	0	0	1	0	1		
o1	1	1	05	1	1	0	1	1	1	В	
o2	1	1	06	0	1	0	1	1	0	attributes I I	I
03	1	0	07	0	0	0	0	0	0	a1 1 0)
05		0		•	Ū	•	•	•		a2 01	
04	1	0								a3 0 0)
o5	1	1				R	1	,		a4 1 1	I
06	0	1	m_{ij}	_	- H) a	$l_{ir}l$	7 _{jr}		a5 0 1	I
о7	0	0			r	=1				a6 1 0)
			•								

	model matrix M									
				110						
						attric	outes	5		
			objects	a1	a2	а3	a4	а5	a6	
			01	1	1	0	1	1	1	
			o2	1	1	0	1	1	1	
Α			о3	1	0	0	1	0	1	
objects	I	П	o4	1	0	0	1	0	1	
01	1	1	о5	1	1	0	1	1	1	B
o2	1	1	06	0	1	0	1	1	0	attributes I II
03	1	•	07	0	0	0	0	0	0	a1 1 0
03	-	0								a2 0 1
04	1	0								a3 0 0
05	1	1				R	. 1	L		a4 1 1
06	0	1	m_{ij}	; =	- H) (7 _{jr}		a5 0 1
07	0	0			r	= 1				a6 1 0

						attrik	outes	;				
			objects	a1	a2	a3	a4	а5	a6			
			o1	1	1	0	1	1	1			
			o2	1	1	0	1	1	1			
Α			о3	1	0	0	1	0	1			
objects	I	П	04	1	0	0	1	0	1			
01	1	1	05	1	1	0	1	1	1	В		
02	1	1	06	0	1	0	1	1	0	attributes	I	II
03	1	0	07	0	0	0	0	0	0	a1	1	0
03		0								a2	0	1
04	1	0								a3	0	0
o5	1	1	$\int \mathbf{m}_{i} \leq$	≤ m	۱ _، , ۲	\Rightarrow	a ; :	≤ a	<i>i</i> '	a4	1	1
06	0	1	$\int \mathbf{m} \leq \mathbf{m}$	m	<		b .	≤ b)	a5	0	1
о7	0	0	(j -		. J '		j.	_ ~	J'.	a6	1	0

				mo	del n	natrix	×М					
						attrib	outes	5				
			objects	a1	a2	a3	a4	а5	a6			
			01	1	1	0	1	1	1			
			o2	1	1	0	1	1	1			
A			о3	1	0	0	1	0	1			
objects	Ι	II	o4	1	0	0	1	0	1			
01	1	1	о5	1	1	0	1	1	1	В		
o2	1	1	06	0	1	0	1	1	0	attributes	Ι	II
03	1	0	07	0	0	0	0	0	0	a1	1	0
03		0					Ŭ	Ŭ	•	a2	0	1
04	1	0								a3	0	0
05	1	1	$\left(\mathbf{m}_{i} \right) \leq$	≤ m	۱ _i , <	\Rightarrow	\mathbf{a}_i :	≤ a	<i>i</i> '	a4	1	1
06	0	1	$m \leq m$	m	. <	\Rightarrow	b .	≤ b) .,	a5	0	1
07	Λ	0	(j -		. J '		J.	_ ~	J^{\prime} .	a6	1	0

1.b. HICLAS recapitulation: algorithm

• loss function:
$$f(\mathbf{M}) = \sum_{i=1}^{I} \sum_{j=1}^{J} (d_{ij} - m_{ij})^2$$

- algorithm consists of two steps
 - ALS procedure: look for A, B that minimize loss function
 - closure operation: modify A, B so as to represent the quasi order relations in M

2. JOC simulation study

- 3 types of *I* by *J* matrices involved
 - true matrices T
 - data matrices D: T perturbed with error
 - model matrices M: yielded by rationally started ALS algorithm
- 3 independent variables were orthogonally crossed
 - size: 15 by 25, 20 by 20, 80 by 20, 40 by 40 (+ 2 big sizes)
 - rank underlying T: 3, 5, 8
 - error level: 0, 5, 10, 15, 20, 25 %
- 25 replications per cell

- of the 1800 analyses, 1295 or 72% ended in a solution with *f*(**M**) ≤ number of discrepancies **T**-**D**
- as number of discrepancies T-D constitutes an upper bound for *f*(M) of global minimum: in at least 28% of the cases rationally started ALS algorithm ends in local minimum

3.a. changing initial configuration of ALS algorithm

- often, one deals with local minima problems by means of a multistart procedure
- implies rerunning the algorithm using a user-specified number of random starts (i.e., 100) and retaining the best solution only
- two types of random starts:
 - pseudo-random start: the columns of A⁰ consist of randomly chosen columns of D
 - truly-random start: *a_{ir}⁰* are independent realizations of a Bernoulli variable with the probability parameter depending on the number of ones in **D**

- however, (1) vastness of HICLAS solution space (i.e., 2^{IR} possible initial configurations) and (2) generally, low number of iterations before convergence is reached => will random multistart procedure solve the problem?
- therefore, smart random multistart procedure: rational start perturbed with a small amount of error (i.e., 10 %)

3.b. simulated annealing

 a random-search technique, which exploits the analogy between the way that liquids freeze into a minimum energy structure (the annealing process) and the search for a minimum in a more general system

- annealing:
 - at high temperatures, the molecules of a liquid move freely with respect to one another
 - if the liquid is cooled slowly, thermal mobility is lost and the atoms are able to form a pure crystal; this crystal is the state of minimum energy
 - if the liquid is cooled quickly, the obtained crystal will contain imperfections; such a crystal has a somewhat higher energy

4. results								
 8 analyses of JOC 	C simulated da	ta sets						
 percentage of data sets with <i>f</i>(M) ≤ number of discrepancies T-D 								
·		algorithm						
	ALS	algorithm						
start	ALS 71.9	algorithm simulated annealing 95.1						
start rational pseudo-random	ALS 71.9 93.2	algorithm simulated annealing 95.1 76.4						
start rational pseudo-random truly-random	ALS 71.9 93.2 94.6	algorithm simulated annealing 95.1 76.4 69.8						

 percentage of data 	a sets with lowe	est <i>f</i> (M)
		algorithm
start	ALS	algorithm simulated annealing
start rational	ALS 19.1	algorithm simulated annealing 63.7
start rational pseudo-random	ALS 19.1 51.4	algorithm simulated annealing 63.7 34.1
start rational pseudo-random truly-random	ALS 19.1 51.4 51.0	algorithm simulated annealing 63.7 34.1 31.3

		algorithm
start	ALS	algorithm simulated annealing
	ALS .099	algorithm simulated annealing .083
start rational pseudo-random	ALS .099 .087	algorithm simulated annealing .083 .091
start rational pseudo-random truly-random	ALS .099 .087 .086	algorithm simulated annealing .083 .091 .095

goodness of recovery	very of the qua	si order relations
		algorithm
start	ALS	simulated annealing
rational	.880	.906
pseudo-random	.902	.896
truly-random	.904	.892
noisy rational	.903	.905

5. discussion

- for ALS, almost no difference between multistart procedures, which all work better than rational start
- for SA, best results with rational and noisy rational start
- hence, best combination: perform rationally started ALS procedure and use output as input for SA
- question: difference between random ALS and random SA due to 100 starts for ALS vs 1 start for SA?
- what about other global optimization procedures, like genetic algorithms and tabu search?

- ALS results do not generalize to three-way case, noisy rational > rational > random
- three-way SA?