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Summary. The Akaike Information Criterion, AIC, is one of the most frequently used methods
to select one or a few good, optimal regression models from a set of candidate models. In case
the sample is incomplete, the naive use of this criterion on the so-called complete cases can
lead to the selection of poor or inappropriate models. A similar problem occurs when a sample
based on a design with unequal selection probabilities, is treated as a simple random sample.
In this paper we consider a modification of AIC, based on reweighing the sample in analogy
with the weighted Horvitz-Thompson estimates. It is shown that this weighted AIC criterion
provides better model choices for both incomplete and design-based samples. The use of the
weighted AIC criterion is illustrated on data from the Belgian Health Interview Survey, which
motivated this research. Simulations shows its performance in a variety of settings.

Keywords: Akaike Information Criterion, Complex Designs, Missing Data, Model Selection,
Weighted Likelihood

1. Introduction

In a regression analysis, starting from a rich enough family of models and based on the
data at hand, one or a few good models can be selected, e.g. using the Akaike Information
Criterion (AIC). In case of missing data, simple deletion of the subsample of incomplete
observations and treating the resulting subsample of so-called complete cases as a simple
random sample has been shown to possibly lead to biased estimates, even when using a
correct model (see e.g. Little 1992, Zhao et al. 1996). A similar problem occurs when
the observations come from a complex survey design, i.e. when sampling from a finite
population with unequal selection probabilities. Indeed, the probability that an observation
is incomplete can also be considered as a selection probability for that observation to be
included in the sample or not. Analyzing such design-based data as a simple random sample
can also introduce bias (Horvitz and Thompson 1952).

There is a vast literature on parametric and nonparametric models in case of incomplete
or design-based samples, but most of it concerns estimation (assuming a correct model)
rather than model selection. The naive use of model selection criteria however turn outs
to be unreliable in case of the aforementioned complications in the data. Indeed, treating
the complete cases or the design-based sample as just a simple random sample can invoke
some effects to appear or disappear and thus suggest another (incorrect) model to be more
adequate for the data at hand.

In the context of incomplete data, selection methods like the predictive divergence for
incomplete observations (PDIO, Shimodaira 1994) and the complete data AIC (AICcd, Ca-
vanaugh and Shumway 1998) have been proposed. These methods rely on modelling the
complete data likelihood, which introduces an additional model selection problem, namely
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the selection of an appropriate model for the missingness mechanism (if not missing com-
pletely at random). In this paper we focus on selecting appropriate models for the mea-
surement part, while treating the missingness mechanism as a nuisance. We propose a
modification of the AIC-criterion for regression models, based on reweighing the complete
cases by their inverse selection probabilities. The latter selection probabilities, if unknown,
are preferably estimated non-parametrically (using e.g. splines), in this way avoiding the
selection of a parametric model with its assumptions for the missingness process. This
weighing of completely observed cases can be seen as an implicit imputation of missing ob-
servations and is valid when the probability to be missing depends upon the observed values
but not on the unobserved values (MAR in the terminology of Little and Rubin 1987).

For the closely related situation of design-based samples, model selection has not been
really investigated. In the next section, the motivating study illustrates both complications
of missingness and design-based sampling. In Section 3, the weighted AIC-criterion is in-
troduced and discussed, mainly for parametric models, but its applicability is also extended
to nonparametric models. Indeed, analogous to the selection of an optimal model from a
set of parametric candidate models, one can choose the optimal smoothing parameter in
nonparametric regression based on an AIC criterion, as shown by Hurvich et al. (1998). We
will modify this criterion to handle incomplete and design-based samples. An application to
the cervix cancer screening data is shown in Section 4 while, in Section 5, a simulation study
shows the improved performance of the modified AIC-criterion. Finally, Section 6 discusses
some other weighted model selection criteria and possible avenues of further research.

2. HIS Example: Cervix Cancer Screening

To outline an evidence-based health policy, one is often interested in the profiles of persons
who are at risk to obtain certain diseases and do not respond to prevention programs, e.g.
cervix cancer screening. In the Belgian Health Interview Survey (HIS) of 1997, one of the
questions investigated is in what respect the group of women, aged 25-64, not having a smear
is different from the group of women that did have a smear taken in the past three years.
For this purpose discrimination based on civil status, drug consumption, age, educational
level and financial status was of interest. In this particular dataset, two complications
arise. Firstly, sampling in the HIS was based on a combination of stratification, multistage
sampling and clustering (Kish 1995). Secondly, about 30% of the 2893 women had one or
more missing covariates for the variables of interest. These design issues, together with the
likely occurrence of data to be missing, are inherent to surveys and should be taken into
account when selecting an optimal model from a candidate set of models.

In Table 3 an overview of twelve different models, based on the variables given in Table
1, is given together with the original AIC-criterion and three weighted versions. The first
modification, ’AICW1

’, corrects for the survey design, the second version, ’AICW2
’, corrects

for incomplete data and the combination of both can be found in version, ’AICW1,W2
’. Table

3 shows that different models are chosen by the different versions of the AIC-criterion; so
it indicates that ignoring missingness or ignoring the sampling design can possibly lead to
inappropriate model choices. We refer to Section 4 for a more thorough discussion.

Based on a theoretical justification, the weighted AIC’s are defined in the next section.
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Table 1. HIS Example: Variables used in the candi-
date models.

Variable Abbreviation Coding

Screening Status SC binary
Civil Status CS nominal

Drug Consumption DR ordinal
Age Age continuous

Educational Level EL nominal
Financial Status FS nominal

3. Weighted Akaike Information Criterion

Based on observations (xi, yi), i = 1, ..., n, consider the regression model

y ∼ f(y;θ,η) (1)

where

y = (y1, . . . , yn)T , θ = (θ(x1), . . . , θ(xn))T , η = (η(x1), . . . , η(xn))T .

Here f denotes the joint density of y (given x), θ the parameter of interest and η a nuisance
parameter. The aim is to select an optimal or a few good models amongst a set of candidate
models. Several model selection criteria have been developed, in different settings and with
different types of complexities in data and models (see e.g. Akaike 1973, Takeuchi 1976,
Schwarz 1978, Spiegelhalter et al. 2002).

Assume we start from a collection of models, in particular we consider models of the
form (1) . The well-known AIC criterion (Akaike 1973)

AIC = −2L(θ̂, η̂) + 2K (2)

with L(θ,η) denoting the loglikelihood of the model and (θ̂, η̂) the maximum likelihood
(ML) estimator of (θ,η), originates from information theory. Here K stands for the total
number of estimated parameters, nuisance parameters included. The second term in the
AIC formula is often interpreted as a penalization for complexity. The AIC was designed
to be an approximately unbiased estimator of the expected Kullback-Leibler Information

(KL). In general, the KL information between model f0 (denoting the ‘true’ model) and
model f (the approximating model (1)) is defined as (ignoring an ‘historical’ factor 2)

I(f0, f) = E{ log(
f0(y)

f(y;θ,η)
)} (3)

(expectation with respect to the true model) and can be interpreted as the information loss
using f to approximate f0, or as the distance from f0 to f . This KL distance is not a
metric, but it has the property that I(f0, f) ≥ 0 with equality only if f ≡ f0.

3.1. Missing Data
In case of missing data, the naive use of only complete cases in the definition of I(f0, f) can
lead to serious deficiencies in its applicability to measure the distance between models (and
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consequently also in the use of its empirical version, the AIC criterion). For simplicity, let
us consider classical regression and suppose data are generated by a true model

y ∼ Nn(µ0, σ
2
0In), (4)

where µ0 = (µ0(1), . . . , µ0(n))T , Nn denotes an n-variate normal distribution and In the
n × n identity matrix . Consider the approximating, or candidate, family of models

y ∼ Nn(µ(θ), σ2In), (5)

where µ = (µ(x1;θ), , . . . , µ(xn;θ))T .
For this setting, E{log f(y;θ,η)} can be written as (f now denoting the univariate

normal density)

E{
n
∑

i=1

log f(yi;µ(xi), σ
2)} = −

n

2
log(2πσ2) − E

[

{y − µ(θ)}T {y − µ(θ)}
]

/(2σ2). (6)

Using an analogous expression for E{log f0(y)}, it is easy to verify that

I(f0, f) =
n

2
log(σ2/σ2

0) + n{
σ2

0

σ2
− 1} + {µ0 − µ(θ)}T {µ0 − µ(θ)}/(2σ2). (7)

It follows that this measure is minimized as a function of σ2 and µ(θ) (and equals 0) by
taking σ2 = σ2

0 and µ(θ) = µ0.
Now, let us introduce the missingness process. For i = 1, . . . , n, define the indicator

δi = 1 if (xi, yi) is fully observed and 0 otherwise. In general it is possible that πi = P (δi =
1) = π(xi, yi, zi), so the probability that the ith observation is not fully observed is allowed
to depend on xi, yi or even on the value zi of another, completely ignored variable. In this
paper we restrict attention to the MAR setting, implying that πi does not depend on zi,
that it additionally does not depend on xi (resp. yi) in case xi (resp. yi) might be missing.

The use of complete cases (CC) only (those for which δi = 1) (and hence ignoring the
missing data mechanism) is translated in a replacement of (6) by

E{
n
∑

i=1

δi log f(yi;µ(xi;θ), σ2)} = −
E{trace(D)}

2
log(2πσ2)−E

[

{y − µ(θ)}T D{y − µ(θ)}
]

/(2σ2)

(8)
where D = diag(δ1, . . . , δn). As a function of σ2 and µ(θ), and using a saturated model
µ(θ) = θ = (θ1, . . . , θn) for the mean function, this expression (8) is maximized and the
corresponding CC version of the KL distance

ICC(f0, f) = E{
n
∑

i=1

δi log[(f0(yi)/f(yi;µ(xi;θ), σ2)]}

=
E{trace(D)}

2
log(

σ2

σ2
0

) + E
[

{µ0 − µ(θ)}T D{µ0 − µ(θ)}
]

/(2σ2)

+E{zT Dz}
1

2

(

σ2
0

σ2
− 1

)

+ E{zT D}(µ0 − µ(θ))
(σ0

σ2

)

,

(9)
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(with z = (y − µ0)/σ0) is minimized at

θ̃i =
E{yiπi}

E{πi}
= µ0(i) +

Cov(yi, πi)

E{πi}
(10)

and

σ̃2 =

n
∑

i=1

E[πi{yi − θ̃i}
2]

n
∑

i=1

E{πi}

. (11)

In the above expressions and in the what follows, moment related operators like the ex-
pectation E or the covariance (Cov) act on the random variables yi and δi and treat xi as
nonrandom.

First of all, under a MCAR (missing completely at random) mechanism, πi = π and the
above solutions simplify and are equal to the ‘true’ values, µ0(i) and σ2

0 respectively. The
same holds in the MAR case that yi is missing with probability πi = π(xi), only depending
on xi. If however πi does depend on yi in a way that Cov(yi, πi) 6= 0, ICC(f0, f) reaches
a different minimum at (10) and (11). In fact, since by definition ICC(f0, f0) = 0, this
minimal value is negative (which is undesirable for a distance measure). If e.g. yi and πi

are positively correlated, then µ̃i > µ0(i). This is to be expected since observations with
smaller values of yi are discarded with higher probability. Also for nonsaturated models for
µ(θ), such kind of anomalies can be shown.

The AIC criterion (2) based on the complete cases is given by

AICCC = −2

n
∑

i=1

δi log[f(yi;µ(xi; θ̂CC), σ̂2
CC)] + 2K, (12)

where θ̂CC and σ̂2
CC are the ML estimators, maximizing the CC-loglikelihood (as described

by the first term in (12)). For classical regression and ignoring constants, this can be
simplified to

AICCC =

(

n
∑

i=1

δi

)

log(σ̂2
CC) + 2K. (13)

In case of MCAR, criterion (12) (or 13) is an approximately unbiased estimate of ICC(f0, f)
and is expected to behave appropriately (the missingness just results in an implicit sample
size reduction). But for the MAR setting with missingness probabilities depending on the
response, nothing guarantees that the above AIC criteria will serve any longer as useful
model selection criteria.

The shortcomings of a CC approach, as described above, can be circumvented by a
simple modification of the KL distance ICC(f0, f) and corresponding AICCC criterion.
This modification is inspired by the technique of weighted estimation. Assuming a correct
model is used, Flanders and Greenland (1991) and Zhao and Lipsitz (1992) showed that
the use of weighted estimators, solving the weighted estimating equations (WEE)

n
∑

i=1

wiΨ(yi;θ,η) = 0, (14)
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with Ψ the derivative of the log(quasi)likelihood and with weights wi inversely proportional
to the missingness probabilities, are consistent and asymptotically unbiased. The idea
of WEE was inspired by the Horvitz-Thompson estimator in the closely related setting
of design-based samples with unequal selection probabilities (see Horvitz and Thompson
1952). In Section 3.2, we further exploit this setting and its similarity with missing data
for model selection.

Analogous to (14), a weighted KL distance can be defined as

I(f0, f ;w) = E{
n
∑

i=1

wi log[(f0(yi)/f(yi;µ(xi;θ), σ2)]}. (15)

Taking the weights
wi = δi/πi, (16)

the deficient distance ICC(f0, f) is rectified and turned into the original data KL distance
(‘original’ referring to the ‘full’ data, before introducing missingness). Indeed,

E{
n
∑

i=1

δi

πi

log[(f0(yi)/f(yi;µ(xi;θ), σ2)]} =
n
∑

i=1

E{log[(f0(yi)/f(yi;µ(xi;θ), σ2)]}.

In a similar way, the weighted AIC criterion

AICW = −2
n
∑

i=1

wi log[f(yi;µ(xi; θ̂W ), σ̂2
W )] + 2K, (17)

with wi as in (16) and with θ̂W and σ̂2
W the weighted ML estimators (maximizing the

weighted maximum likelihood), is expected to behave appropriately, i.e. to correct for the

missing data. Indeed, denote θ̂o and σ̂2
o the ML estimators based on the original data, and

consider the Taylor expansion (linear terms canceling out)

−2

n
∑

i=1

wi log[f(yi;µ(xi; θ̂o), σ̂2
o)] (18)

≈ AICW − 2
(

(θ̂o − θ̂W ) (σ̂2
o − σ̂2

W )
)

In(θ̂W , σ̂2
W )
(

(θ̂o − θ̂W ) (σ̂2
o − σ̂2

W )
)T

,

where the matrix In is the matrix of second derivatives of the weighted log-likelihood,
evaluated at (θ̂W , σ̂2

W ). The expected value of the left-hand side equals the expected value

of the AIC criterion based on the original data. Since both estimates, the ‘original’ (θ̂o, σ̂2
o)

and the ‘weighted’ (θ̂W , σ̂2
W ), are estimating the same parameter (being the true value

(θ0, σ
2
0) in case the model under consideration is a correct model), the second term in the

right hand side is negligible, at least in a first order approximation.
For a normal regression model with µ(xi,θ) = xiθ, i = 1, . . . , n, where xi = (1 xi1 . . . nip)

and θ = (θ0 θ1 . . . θp)
T , the weighted AIC criterion can be rewritten in terms of squared

residuals

AICW = (

n
∑

i=1

wi) log

(∑n

i=1
wie

2
i

∑n

i=1
wi

)

+ 2(p + 2), (19)

where ei are the residuals from the fitted model, using weighted ML. In the context of
robust model selection procedures, Agostinelli (2002) introduced a robust modification of
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the Akaike Information Criterion (AIC), based on the weighted likelihood methodology. He
proposed a similar weighted AICW criterion, but with weights downplaying the contribution
of highly influential outliers.

Of course, typically the missing probabilities are unknown and have to be estimated,
introducing essentially two further complications: i) finding appropriate estimates π̂i which
is again a model selection problem and ii) the effect on the characteristics of AICW when
using weights

ŵi = δi/π̂i. (20)

Regarding the first complication, we suggest the use of a nonparametric or flexible
semiparametric estimator (generalized additive models (gam) or e.g. regression trees for
more complicated data structures, as illustrated in Section 4 and Section 5). This avoids the
need for another model selection step. It is also important to note that, since the estimation
of the missingness probabilities is a step prior to the envisaged model selection exercise,
and hence is common to all candidate models under consideration, it has no effect on the
penalization term in the expression of AICW . Concerning the second complication: rather
than focusing on a theoretical study of the effect of estimating πi on the expected value
of AICW (a Taylor expansion immediately shows highly ‘untractable’ bias expressions), we
opted for examining the finite sample performance of AICW with estimated weights by a
simulation study (see Section 5).

In analogy to its expression based on the original data (Hurvich and Tsai 1989), we
define a bias-corrected weighted AIC as

AICcor
W = AICW +

2K(K + 1)
∑n

i=1
wi − K − 1

. (21)

This small-sample correction (second-order bias adjustment) has been especially recom-
mended in a setting where there are many parameters in relation to the size of the sample
n (for more details see Burnham and Anderson 2002). Its performance in some simulations
is briefly discussed in Section 5.1.3.

3.2. Design-Based Samples
Assume a finite population consisting of N units with measurements M = {y1, . . . , , yN}. A
particular sampling plan leads to the random variable δi = 1 if the ith unit is included in the
sample (and 0 otherwise) with n =

∑N

i=1
δi the total sample size. The selection probabilities

are defined as πi = P (δi = 1), for i = 1, . . . , N . The choice πi = n/N corresponds to a
simple random sample. In this finite population setting, only the δi are to be considered as
random; the set M is to be considered as unknown but fixed.

Supposing that the population y = (y1, . . . , yN )T is a single realization of a true ‘super-
population’ model f0(·), using the approximating model f(·;µ(xi;θ), σ2) and treating the
sample indicated by the δi as a random sample, a KL distance similar to the ICC(f0, f)
measure in (9) can be defined as (with now the expectation E with respect to the δi’s,
conditional on the ‘realized’ population)

IDB(f0, f) = E{
N
∑

i=1

δi log[(f0(yi)/f(yi;µ(xi;θ), σ2)]} (22)

=

N
∑

i=1

πi log[(f0(yi)/f(yi;µ(xi;θ), σ2)]. (23)
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For true and approximating models as in (4) and (5), with now µ = (µ(x1;θ), , . . . , µ(xN ;θ))T

and µ0 = (µ0(1), . . . , µ0(N))T and with z = (y − µ0)/σ0 as before, we get

IDB(f0, f) =
trace(Π)

2
log(

σ2

σ2
0

) + {µ0 − µ(θ)}T Π{µ0 − µ(θ)}/(2σ2) (24)

+zT Πz
1

2

(

σ2
0

σ2
− 1

)

+ zT Π(µ0 − µ(θ))
(σ0

σ2

)

.

As an example, consider a simple two-valued true superpopulation model

µ0 = (µ0(1), . . . , µ0(N1), µ0(N1 + 1), . . . , µ0(N))T = (µ1, ..., µ1, µ2, ..., µ2)
T

with µ1 6= µ2, and the incorrect constant model µ(θ) = (θ, ..., θ)T . For this incorrect model,
the minimal distance IDB(f0, f) is at least as small as its value at σ̃2 = σ2

0 and

θ̃ =

∑N

i=1
πiyi

n
. (25)

Using the correct two-parameter mean model with σ2 = σ2
0 , IDB(f0, f) is minimized at

µ̃1 =

∑N1

i=1
πiyi

n1

, µ̃2 =

∑N2

i=1
πiyi

n2

, (26)

where n1 =
∑N1

i=1
δi and n2 =

∑N

i=N1+1
δi. Now, in the particular case that the selection

probabilities induce a bias resulting in µ̃1 = µ̃2, the KL distance IDB(f0, f) is exactly the
same for both models and hence the incorrect model is indistinguishable from the correct
model.

Identical to the case of missing data, the weighing of the KL distance and corresponding
AIC criterion, with weights as in (16), can be used to correct both measures. Note that in
general the selection probabilities can depend on both xi and yi. In most applications the
selection probabilities πi are determined by the design of the sample and hence are known.

3.3. Design-Based Samples with Missing Observations
In typical surveys, as in the cervix cancer screening example introduced in Section 2, both
complications occur together. In this case δi, indicating whether or not the ith unit is in
the sample and is fully observed, can be written as

δi = δD
i δM

i , (27)

where δD
i = 1 if the ith unit is included in the sample (as in Section 3.2) and δM

i = 1 if the
ith unit is fully observed (as in Section 3.1). The weighted AIC (17) can now be based on
weights wi = δi/πi where

πi = P (δi = 1) = P (δM
i = 1|δD

i = 1)P (δD
i = 1). (28)

These latter probabilities can be estimated by the product of the (known) probabilities
P (δD

i = 1) and the (nonparametrically) estimated probabilities P (δM
i = 1|δD

i = 1).
In the next section, we show how the idea of a weighted AIC can be extended to select

a smoothing parameter for nonparametric regression.
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3.4. Smoothing Parameter Selection using AICW

Assume
yi = µ0(xi) + ǫi, i, . . . , n (29)

where µ0(·) is an unknown smooth function and ǫi, i = 1, . . . , n, are independent error terms
with mean 0 and variance σ2

0 . Different linear smoothers for µ are available: orthogonal
series, kernel estimators, splines, ... (see e.g. Simonoff, 1996). The most crucial choice for
any smoother is the choice of the smoothing parameter. Hurvich, Simonoff and Tsai (1998)
proposed to select this parameter α by minimizing the AIC-criterion

AICα = n log(σ̂2) +
n + trace(Sα)

1 − {trace(Sα) + 2}/n
, (30)

where Sα is the smoother matrix for which ŷ = Sαy.
In case of an incomplete or design-based sample, this criterion can be turned into a

weighted version

AICα,W = (

n
∑

i=1

wi) log

(∑n

i=1
wie

2
i

∑n

i=1
wi

)

+

∑n

i=1
wi + trace(SW,α)

1 − {trace(SW,α) + 2}/(
∑n

i=1
wi)

. (31)

where SW,α is the smoother matrix from the weighted fit. Taking SW,α the classical regres-
sion ‘hat matrix’, (31) reduces (up to a constant) to (21).

4. The HIS 1997 Revisited

Since the design of the Health Interview Survey follows a complex multistage probability
sampling scheme, it is necessary to incorporate this in the model selection procedure. A
second complication is the substantial amount of missing covariate data (about 30%) spread
over several covariates. Let us consider the candidate models given in Table 2. In Table 3,
the models are ranked according to their AIC-criterion based on the complete cases (second
column). For all other columns, the three models with lowest AIC-values are indicated by
their ranks.

In the third column, a first weighted version, AICW1
, takes into account the complex

design. Individual weights, W1, reflecting the stratification at provincial level and the differ-
ential selection probabilities within households were available. This results in a somewhat
different ordering of the models. The best model now is the model with original rank 8.

Similarly, the fourth column shows the modified AIC-value, AICW2
, incorporating miss-

ing covariate data (assuming MAR). Because of the high dimensional covariate space, a
classification tree with surrogate splitting was used to obtain estimates of the missingness
probabilities and thus the weights W2. This leads to only minor changes, as compared to
the second column. The best model now is model 2.

In the fifth column both complications have been taken into account by multiplying
both weights in AICW1,W2

. Again the same models appear to be the best ones; model 8
showing up again, now as the third best model, while model 3 is having the lowest value.

Although the same set of models reappears as the set of best models, this example
illustrates that differently weighted AIC criteria can select different models as best ones.
Since the choice of the final model or the set of final models used for e.g. model averaging
is affected by missing data and by the design, we recommend in general the use of the
weighted criteria (at least as a sensitivity tool).
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Table 2. His Example: Overview of the candidate
models.

Model Structure

(1) SC∼ Age+Age2+log(DR)+CS
(2) SC∼ Age+Age2+log(DR)+EL+DR*EL
(3) SC∼ Age+Age2+DR+EL+EL*DR
(4) SC∼ Age+Age2+log(DR)
(5) SC∼ Age+Age2+log(DR)+log(Age)
(6) SC∼ Age+Age2+DR
(7) SC∼ Age+Age2+CS+CS*Age
(8) SC∼ CS+Age+EL+DR+Age*EL
(9) SC∼ Age+Age2

(10) SC∼ CS+Age+EL+DR+Age*EL+DR*EL
(11) SC∼ FS+CS+DR+Age+EL
(12) SC∼ FS+CS+DR+AGe+Age*FS

Table 3. His Example: The different (weighted) AIC-values and,
between brackets, the rank of the three best models.

Model AIC AICW1
AICW2

AICW1,W2

(1) 1489.02(1) 975.31 2614.04(2) 1451.19
(2) 1489.81(2) 969.04 2606.71(1) 1441.53(2)
(3) 1490.70(3) 963.26(2) 2617.82(3) 1440.44(1)
(4) 1492.39 965.66(3) 2625.36 1445.89
(5) 1494.10 967.60 2625.73 1447.96
(6) 1495.86 967.64 2632.11 1449.03
(7) 1496.19 984.37 2631.01 1461.50
(8) 1496.84 961.57(1) 2628.85 1441.77(3)
(9) 1496.97 969.54 2636.47 1451.42
(10) 1502.31 967.35 2632.49 1447.34
(11) 1504.01 970.94 2648.48 1460.69
(12) 1516.75 980.92 2676.15 1477.45
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To study the effects of weighing more closely, a simulation study in a variety of settings
was conducted. The next section summarizes our main findings. All computations were
conducted in R 1.9 (R Development Core Team 2003).

5. Simulations

In the first two scenarios, we consider a setting with missing covariate data. The third sce-
nario focuses on design-based samples and the last scenario on the selection of the smoothing
parameter in nonparametric regression.

5.1. Scenario 1: Parametric Model Selection for Incomplete Data
In the initial setting, the set of candidate models contains the true model.

5.1.1. Initial Setting

In this first scenario, uniform[0, 10] x-values were generated, together with (independently)
Bernoulli(0.5) z-values. Given x and z, response y-values were generated from a normal
distribution with mean µ0(x, z) = −3 + 3x + 5x2 and variance σ2

0 = exp(5). x-observations
were then turned missing with conditional probability (see left bottom panel in Figure 1),

π(y, z) = 1 − [1 + exp{1 − 0.009(y − 300)}]−1. (32)

Not depending on unobserved x-values, the missingness process is MAR. Let n denote the
total sample size and nc the number of complete observations. We generated 1000 different
samples {(xi, zi, yi), i = 1, . . . , n}, with fixed design {xi, zi, i = 1 . . . , n}. For each sample, 8
different regression models were fit, all submodels of µ(x, z) = β0+β1x1+β2x

2+β3z+β4xz.
Four different ‘strategies’ are compared: i) AIC on the original data, before introducing

missingness (what we would get if no values were missing), ii) (unweighted) AIC on the
complete cases only (ignoring missingness), iii) weighted AIC using the true weights (16)
and iv) weighted AIC, using the estimated weights (20). The probabilities (32) are estimated
by gam estimates π̂(y, z) (using the R package mgcv). On average 35% of the x-values were
missing. In Figure 1, a typical dataset for scenario 1 is shown together with the missingness
probabilities and the estimated weights. This latter figure shows a double curve, as a
consequence of the additive model in x and z (being binary). The upper part of Table 4
displays the results for n = 100. Each column (from 2 to 9) corresponds to a particular
model and the numbers show how often the respective model has been selected by AIC
under the four strategies mentioned above. Models more complex than the true quadratic
model {x, x2} can be considered as correct models, the others as incorrect models. The last
rightmost column shows the total number of times a correct model was chosen. The table
shows that for the initial setting, the unweighted AIC applied on the complete cases, very
often selects the incorrect simpler model {x}. This is to be expected since the missingness
is mainly located at the larger y-values (which of all response values mostly represent the
quadratic effect). The weighted versions correct for that, especially the one with true
weights which selects about 9% more often a correct model (though it less often selects the
true model).

The other parts of Table 4 show similar results for variations on scenario 1: a smaller
sample, larger error variance, larger quadratic effect and more missingness, Figure 2 up to
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Fig. 1. For an arbitrary chosen sample under scenario 1: (a) original sample, complete cased (white
bullets) and unobserved data (black bullets); (b) missingness probabilities; (c) estimated weights.

Table 4. Scenario 1. The numbers indicate how often a model has been selected,
for the four strategies. The last column shows how often a correct model has been
chosen, out of 1000. This scenario is repeated for different settings.

1 x z x, x2 x, z x, z, x, x2, x, x2, correctly
xz z z, xz classified

Scenario 1: Initial Setting
(n = 100, σ2

0 = exp(5), slope = 5, %(miss) = 35)

Original Data 0 114 0 666 31 18 106 65 837
Complete Cases 0 312 0 452 65 35 91 45 588
True Weighted 0 199 0 371 67 61 129 173 673
Est. Weighted 0 228 0 416 70 56 110 121 647

Scenario 1: Sample Size 50

Original Data 0 329 0 408 61 48 95 59 562
Complete Cases 1 477 1 267 94 63 61 36 364
True Weighted 0 330 1 247 116 107 92 107 446
Est. Weighted 2 373 0 271 102 90 90 80 441

Scenario 1: Variance exp(5.3)

Original Data 0 304 0 471 58 35 77 55 603
Complete Cases 0 482 0 279 106 59 48 26 353
True Weighted 0 274 0 239 102 137 89 159 487
Est. Weighted 0 313 0 270 94 115 85 124 479

Scenario 1: Larger Quadratic Effect: slope = 7

Original Data 0 28 0 728 1 11 144 88 960
Complete Cases 0 258 0 493 66 33 96 54 643
True Weighted 0 129 0 327 77 77 148 242 717
Est. Weighted 0 140 0 386 72 53 154 197 737

Scenario 1: Missingness 50%

Original Data 0 143 0 649 21 24 105 58 812
Complete Cases 1 457 0 314 74 59 68 27 409
True Weighted 3 151 1 181 113 201 115 235 531
Est. Weighted 2 200 3 224 101 161 114 195 533
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ent sigma-values.
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Fig. 4. Correctly selected models for differ-
ent quadratic effects.
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Fig. 5. Correctly selected models for differ-
ent missingness percentages.

Figure 5 display the number of correct models as a function of sample size n, error variance
σ2

0 , quadratic effect of x in µ0(x, z) and missingness percentage (by changing the coefficient
of y in equation (32)). All curves show the decrease in selecting a correct model when
using the unweighted AIC on the complete cases. The difference gets more pronounced
for increasing error variance, increasing missingness and increasing quadratic effect of x in
µ0(x, z). Note that this latter increasing effect implicitly generates more missingness via, on
average, increasing response values y (see equation (32)). The use of the weighted version
improves the performance of the AIC and the version with known weights is consistently
doing better than with estimated weights. One might argue that the gain by using the
weighted AIC is not so spectacular but rather moderate. On the other hand, we have to
realize that correcting for missing information is often a hard exercise, since information in
available data might be very scarce.
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Table 5. Scenario 1, initial setting. Model selection using different smoothers
to estimate the weights.

x x, x2 x, z x, z, x, x2, x, x2, correctly
xz z z, xz classified

Complete Cases 312 452 65 35 91 45 588
NW h=150 (y, z) 255 426 72 45 112 90 628
NW h=150 (y) 253 431 69 47 116 84 631
NW CV (y, z) 221 403 74 59 120 123 646
NW CV (y) 237 417 79 59 112 96 625
gam CV(y, z) 228 416 70 56 110 121 647
gam CV (y) 191 387 74 72 130 146 663
True Weights 199 371 67 61 129 173 673

Table 6. Scenario 1 with sample size 30. Model selection using the corrected AIC-
criterion.

1 x z x, x2 x, z x, z, x, x2, x, x2, correctly
xz z z, xz classified

Original Data 0 435 0 392 77 31 40 25 457
Complete Cases 16 616 3 217 80 34 26 8 251
True Weights 6 398 1 260 129 77 61 68 389
Est. Weights 8 442 0 275 122 53 56 63 394

5.1.2. Nonparametric Weighting Methods

Different smoothers can be used to estimate the missingness probabilities π(y, z). In scenario
1, equation (32) shows that these probabilities only depend on y. In Section 5.1.1, these
probabilities were estimated with a gam model, as a function of both y and z. In this
section we illustrate how results differ when using different smoothers: gam using y only,
Nadaraya-Watson (NW) kernel estimate using both y and z or y only, with fixed or with
data-driven bandwidth (cross-validation).

The results in Table 5 show that the best results are obtained when using the penalized
spline as a function of y only. The other numbers are more or less similar. The fixed
bandwidth h = 150 for the NW-estimator was chosen by visual inspection of some of the
generated samples. Main conclusion is that the choice of smoother and smoothing parameter
is not unimportant. It is also recommendable to examine the missingness process carefully,
so that accurate estimation of the probabilities is possible.

5.1.3. Corrected AIC

For small sample sizes, the use of the corrected AIC-criterion (21) is recommended. The
results in Table 6 are based on the corrected AIC-criterion for the initial setting of Scenario
1 but with n = 30. The improvement is considerable. The true model is chosen more often
using the weighted AIC, especially when the weights are estimated (this latter phenomenon
was also noticeable in Table 4).

5.2. Scenario 2: Generating Model Not Included
We now consider the (more realistic) setting that the set of candidate models does not
contain the true model. The response y is generated as in scenario 1, but now with mean
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function µ0(x) = −3 − 3 log(x + 1) + 5x2. The same set of candidate models is considered.
Since now direct comparison with the true model, nor a categorization in correct or incorrect
models is possible anymore, we computed the average of the fitted values based on the
selected model, together with 95% pointwise confidence intervals, using AIC on the original
data, (unweighted) AIC on the complete cases, and weighted AIC on the complete cases.
The resulting curves are shown in Figure 6 together with the true underlying function µ0(x)
(solid curve). Again, as before, gam was used to estimate the weights. The middle figure
clearly shows the bias when using the unweighted AIC on the complete cases. The use of the
weighted AIC nicely corrects the average best model in the direction of the true underlying
curve. In Figure 7, boxplots of the simulated average squared errors, (1/n)

∑n

i=1
(µ̂(xi) −

µ0(xi))
2 for the three methods, confirm the correction provided using the weighted AIC-

criterion.
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unweighted AIC (middle) and with weighted AIC (right).
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5.3. Scenario 3: Model Selection for Design-Based Samples

To illustrate the use of the weighted AIC for design-based samples, a population {y1, . . . , yN}
of size N = 1500 was generated, as a single realization from the superpopulation model f0,
being a normal distribution with variance σ2

0 and mean µ0(i) = µ1 for i = 1, . . . , 500 (group
1), µ0(i) = µ2 for i = 501, . . . , 1000 (group 2), µ0(i) = µ3 for i = 1001, . . . , 1500 (group 3).

In a first setting 1000 samples were taken by dividing this population into three strata
based on the ordered population y values: the 200 smallest y-values, the middle 900 y-values
and the 400 largest y-values. The sample was then taken as follows: a population unit i
(yi) is selected for the sample with probability p1f when it belongs to the first or third
stratum and with probability p2f when it belongs to the second stratum. When p1 < p2,
this results in an oversampling of the second stratum.

The (single) population was generated with µ2 = µ3 = κ = −µ1 with κ > 0. The
simulation parameters κ, σ0, f, p1 and p2 were set to different values as shown in Table
7. For each of the samples, 5 different models were fit: (1) µi = µ, i = 1, . . . , 3, (2)
µ1 = µ2 6= µ3, (3) µ1 6= µ2 = µ3, (4) µ1 = µ3 6= µ2, and (5) µi 6= µj for i 6= j. Model (3) is
the true model, model (5) is another correct model. The other models assume µ1 = µ2 or
µ1 = µ3 and are incorrect (for κ 6= 0).

In a first setting, where {κ, σ0, f} = {0.5, 3, 0.5}, sampling was done according to differ-
ent choices of (p1, p2), ranging from simple random sampling p2/p1 = 1 to highly unequal
stratified sampling p2/p1 = 11. The results in Table 7 show an improved selection for
the AICW -criterion compared to the AIC-criterion. Models (3) and (5) are chosen more
frequently by the AICW -criterion.

Increasing σ0 (more noise) results in model (1) to be chosen more frequently. Also to
be expected, a larger choice of κ (group 1 more different) leads more often to correct model
choices. The fraction parameter f was initially chosen 0.5, resulting in a sample of size
225. To reflect the behavior for a smaller sample, f was set to 0.2, resulting in a larger
variability due to the smaller sample size (= 90). For all variations of the basic setting,
AICW improves the selection from slightly to substantially (according to the ratio p2/p1),
except for κ = 1.

In a second setting, the same population was taken but now design-based sampling was
based on two strata, the 300 largest y-values of the third group and the remaining 1200
y-values. Sampling was done as follows: a population unit i is selected with probability p1f
when it belongs to the first stratum and with probability p2f when it belongs to the second
stratum. If p1 < p2 this results in an undersampling of units in the third group with the
larger y values. The results for 1000 such samples are shown in Table 8, again for the same
basic setting and variations thereof. One can see that the AIC-criterion very often chooses
the incorrect model (4) µ1 = µ3 6= µ2 and the AICW -criterion corrects this choice to model
(3) µ1 6= µ2 = µ3, which is the true model. For all variations of this setting, the AICW

outperforms AIC in all cases. The differences are much more pronounced as in previous
setting. One can also observe that the number of times a correct model is selected by the
AICW -criterion is more or less the same for all different choices of (p1, p2). When sampling
probabilities are equal and thus a simple random sample is taken, the choices made using
AIC and AICW are essentially the same.
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Table 7. Scenario 3, first setting: The number of models chosen by AIC and AICW , for different
variations of the basic setting and different choices of p1 and p2.

AIC AICW

p1 p2 1 2 3 4 5 Cor 1 2 3 4 5 Cor

Basic

0.05 0.55 321 110 445 107 17 462 128 192 277 133 270 547
0.10 0.50 284 101 498 92 25 523 155 146 424 136 139 563
0.20 0.40 191 116 594 63 36 630 156 132 572 60 80 652
0.30 0.30 133 108 639 64 56 695 125 108 648 63 56 704

σ0 = 4

0.05 0.55 467 108 301 115 9 310 134 205 281 189 191 472
0.10 0.50 428 117 325 118 12 337 209 199 328 161 103 431
0.20 0.40 331 121 450 75 23 473 259 144 471 72 54 525
0.30 0.30 305 136 445 86 28 473 295 137 455 86 27 482

κ = 1

0.05 0.55 13 31 817 25 114 931 27 89 397 62 425 822
0.10 0.50 6 8 841 11 134 975 9 23 604 20 344 948
0.20 0.40 2 5 850 2 141 991 2 6 786 2 204 990
0.30 0.30 0 1 842 0 157 999 0 1 840 0 159 999

f = 0.2

0.05 0.55 494 113 249 133 11 260 116 211 240 204 229 469
0.10 0.50 481 142 241 128 8 249 227 193 280 189 111 391
0.20 0.40 440 130 304 112 14 318 351 158 321 129 41 362
0.30 0.30 364 133 360 123 20 380 368 130 364 118 20 384

Table 8. Scenario 3, second setting: The number of models chosen by AIC and AICW , for different
variations of the basic setting and different choices of p1 and p2.

AIC AICW

p1 p2 1 2 3 4 5 Cor 1 2 3 4 5 Cor

Basic

0.05 0.55 92 120 56 596 136 192 66 175 510 52 197 707
0.10 0.50 189 19 392 381 19 411 46 171 590 12 181 771
0.20 0.40 126 131 651 31 61 712 60 197 615 7 121 736
0.30 0.30 133 108 639 64 56 695 125 108 648 63 56 704

σ0 = 4

0.05 0.55 162 266 27 389 156 183 156 307 377 56 104 481
0.10 0.50 370 59 215 349 7 222 144 276 475 28 77 552
0.20 0.40 289 168 472 44 27 499 137 283 500 14 66 566
0.30 0.30 305 136 445 86 28 473 295 137 455 86 27 482

κ = 1

0.05 0.55 0 0 316 599 85 684 0 0 613 3 384 997
0.10 0.50 0 0 757 64 179 936 0 0 709 0 291 1000
0.20 0.40 0 3 845 1 151 996 0 2 775 0 223 990
0.30 0.30 0 1 842 0 157 999 0 1 840 0 159 999

f = 0.2

0.05 0.55 336 138 108 385 33 141 243 254 356 77 70 426
0.10 0.50 439 64 219 270 8 227 263 236 395 62 44 439
0.20 0.40 359 167 381 76 17 398 250 240 439 46 25 464
0.30 0.30 364 133 360 123 20 380 368 130 364 118 20 384
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Fig. 8. Simulated dataset with spline fits according to the different methods together with the true
function, using the ML variance estimator σ̂2

ML (left panel) and the unbiased variance estimator
σ̂2

U (right panel).

5.4. Scenario 4: Smoothing Parameter Selection in Nonparametric Regression for In-
complete Data

For this scenario, n = 200 x-values were generated from uniform[0, 1], and corresponding
y-values from a normal distribution with mean µ0(x) = 1 − 48x + 218x2 − 315x3 + 145x4

and variance σ2
0 = 0.4 Range(y). This corresponds to one of the simulation settings used in

Hurvich et al. (1998). Next, x observations were turned missing with probability

π(y) = [1 + exp{2 − 0.1(y − 2)2]−1. (33)

For each of the 1000 generated samples {Yi, i = 1, . . . , n} with a fixed design {xi, i =
1 . . . , n}, a smoothing spline was fitted (using smooth.spline in R) according to three
methods, and with smoothing parameter selected by AIC (as introduced by Hurvich et al.

1998). The first method is based on the original data, while the second method is based
on the complete cases only and finally the third method weights the complete cases (at
the model selection stage and at the final fitting stage) with ŵi = 1/π̂i where π̂i is the
estimated probability for a complete case to be observed. The estimation of πi is also based
on a smoothing spline with smoothing parameter again determined by AIC.

The left panel in Figure 8 displays an arbitrary sample together with the fitted splines.
The white dots indicate the observed data, while the black dots show the unobserved or
missing data. The spline using the weights tends to severely undersmooth.

In this context, Wahba (1990) uses the unbiased variance estimator

σ̂2
U =

yT (I − Sα)2y

trace(I − Sα)
, (34)

where Sα is the smoother matrix. The use of σ̂2
U instead of σ̂2

ML is equivalent to an extra
penalization of −n log(trace(I − Sα)), which corrects for undersmoothing, as can be seen
for the fit of a random sample in the right panel of Figure 8. This is also confirmed by
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Table 9. The average number of
parameters using variance estima-
tor σ̂2

ML or σ̂2

U .
σ̂2

ML σ̂2

U

Original Data 8.33 6.99
Complete Cases 7.55 6.31
Weighted 18.31 9.00
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Fig. 9. Average of the fitted values based on the chosen models over simulation runs together with
the true function and 95% confidence intervals. From left to right: the original data, the complete
cases and the weighted complete cases.

Table 9. It shows the simulation average of the equivalent number of parameters, selected
by the three methods (rows) and for both variance estimators (columns). The models using
the unbiased estimator are generally smoother and this reduction in equivalent number of
parameters is very substantial for the weighted analysis. Other simulations confirmed this
and therefore we certainly recommend the use of the unbiased estimator σ̂2

U for the weighted
method.

In Figure 9 the true curve (the solid line) and the simulation average of the fitted curves
for all three methods and both variance estimators, together with 95% pointwise confidence
intervals, are shown. Again, the beneficial effect on the smoothing when using the unbiased
variance estimator is illustrated. The middle panels show that there is substantial bias at
both minima, when using the complete cases without weighting. The weighted AIC does
correct for bias, as shown in the right panels.

To assess the goodness of fit quantitatively for each of the fits, the average squared error
(ASE) was calculated as the simulation average of all values (1/n)

∑n

i=1
(m̂α(xi)−m0(xi))

2,
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Fig. 10. Boxplots of the simulated ASE-values for the different methods: original data, σ̂2
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complete cases, σ̂2

ML (2), weighted complete cases, σ̂2

ML (3), original data, σ̂2

U (4), complete cases,
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U (5), weighted complete cases, σ̂2

U (6).

for each method and each variance estimator. The boxplots in Figure 10 show again that
the weighted AIC method is not resulting in an improvement when using σ̂2

ML, but that it
does when using σ̂2

U .

6. Discussion

The naive use of model selection criteria in case of incomplete and design-based samples
can lead to the selection of inappropriate or non-optimal model. In this paper we intro-
duced a weighted Akaike information criterion. The weights are inversely proportional to
the selection probabilities and if unknown, can be estimated nonparametrically. Simula-
tions show that the use of this weighted AIC-criterion results in improved model selection.
The method can be seen as an implicit nonparametric imputation approach and its appli-
cation is straightforward. Other options to deal with missingness in the context of model
selection are full likelihood methods, that models both measurement and missingness part
simultaneously, or first impute missing observations and then select the model based on the
augmented dataset. Since both approaches need an additional model to be selected and are
not extendable to the analogous setting of design-based samples, these methods were not
pursued in this paper.

Next to the AIC, several other model selection criteria have been developed and can be
extended to a weighted version to handle incomplete and design-based samples. For a model
M with p regression parameters, the Mallows’ Cp criterion, developed as an estimator of
the relative mean squared error, is very popular for least squares regression. Its definition
Cp = nσ̂2(M)/σ̂2(F ) − (n − 2p) where σ̂2(M) (σ̂2(F ) ) is the estimated variance based on
a reduced model M (respectively full model F), can be modified in the weighted version

CpW =

(

n
∑

i=1

wi

)

∑n

i=1
wie

2
i

∑n

i=1
wie∗2i

−

(

n
∑

i=1

wi − 2p

)

,

where ei and e∗i are the residuals based on reduced model and full model respectively.
Analogously, the Bayesian information criterion BIC = n(log σ̂2

ML) + log(n)K (for classical
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Table 10. Scenario 1, basic setting. The number of chosen models by the
Cp- and BIC-criterion.

x x, x2 x, z x, z, x, x2, x, x2, correctly
xz z z, xz classified

Scenario 1: Basic Setting, Cp.

Original Data 111 662 32 18 108 69 839
Complete Cases 303 455 66 37 91 48 594
True Weights 196 366 68 60 132 178 676
Est.Weights 224 411 70 56 114 126 651

Scenario 1: Basic Setting, BIC.

Original Data 359 593 21 3 19 5 617
Complete Cases 637 311 32 6 12 2 325
True Weights 420 409 65 30 34 42 485
Est. Weights 499 377 40 22 36 28 441

regression) can be modified in a weighted version

BICW =
n
∑

i=1

wi

(

log

∑n

i=1
wie

2
i

∑n

i=1
wi

)

+ log

(

n
∑

i=1

wi

)

K.

We also investigated the performance of these alternative model selectors in a simulation
study. As an illustration, Table 10 shows some results for the basic simulation setting of
the first scenario. Up to expected differences, like the BIC criterion selecting more simple
models, a similar improvement is realized by the weighted selection criteria.

In this paper we focused on the weighted AIC criterion. As BIC, it is a general applicable
criterion and has been proven to be very helpful in model selection (see e.g. Burnham and
Anderson 2002). Extensions to weighted versions of model selection criteria for generalized
estimating equations in the context of clustered data as proposed in Wei (2001a) and Wei
(2001b), are topics of current research. Additional further research includes deriving new
lack of fit tests when dealing with incomplete and design-based data (e.g. modifications of
Aerts et al. 1999), and the use of a weighted likelihood ratio test (see e.g. Agostinelli and
Markatou 2001) in this context.
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