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Abstract

To asses the sensitivity of conclusions to model choices in the context of selection
models for non-random dropout, several methods have been developed. None of
them are without limitations. A new method called kernel weighted influence is
proposed. While global and local influence approaches look upon the influence of
cases, this new method looks at the influence of types of observations. The basic
idea is to combine the existing influence approaches with a nonparametric weight-
ing scheme. The kernel weighted global influence offers a possible solution to the
problem of masking, while the kernel weighted local influence can be seen as a tool
to better understand the source of influence.
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Sensitivity Analysis, Weighted Likelihood

1 Introduction

In a longitudinal study, each unit is measured on several occasions. It is not
unusual for some sequences of measurements to terminate early for reasons
outside the control of the investigator, any unit so affected is often called a
dropout. Little and Rubin (1987) make important distinctions between differ-
ent missing values processes. A dropout process is said to be completely ran-
dom (MCAR) if the dropout is independent of both unobserved and observed
data and random (MAR) if, conditional on the observed data, the dropout is
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independent of the unobserved measurements; otherwise the dropout process
is termed non-random (MNAR) or non-ignorable.

To represent such a model, Diggle and Kenward (1994) proposed a selec-
tion model which combines the measurement part with the missingness pro-
cess. This model and other models trying to represent a non-random dropout
mechanism, rely on strong and untestable assumptions. Not only the assumed
distributional form can be misspecified but also the presence of influential ob-
servations can be of great importance. A well known method to investigate
the influence of individual cases is case deletion (Cook and Weisberg 1982).
This results in the global influence approach. A quite different approach is to
perturb the model a bit and study the stability of the model, as is done by
Lesaffre and Verbeke (1998) as an application of the local influence approach
introduced by Cook (1986). In Thijs et al (2000), Molenberghs et al (2001)
and Verbeke et al (2001), this method was used to investigate the influence
of non-random missingness as part of a sensitivity analysis in the selection
modelling framework. A thorough discussion can also be found in Verbeke
and Molenberghs (2000).

One of the datasets discussed in the literature is the mastitis dataset. These
data were initially used by Kenward (1998) for an informal sensitivity analysis.
They were analyzed extensively with the local influence approach by Molen-
berghs et al (2001). The influence analyses on the mastitis and other datasets,
make it clear that the allocation of the possibly different sources of influence
is still a burden. The related question on when to call a case influential (i.e.,
well defined cut off values) is still an open problem. In view of obtaining new
insight in this matter, we introduce kernel weighted influence measures. We
will illustrate the techniques on the mastitis dataset throughout this paper.

Our proposal is an extension of the two approaches of global and local in-
fluence. Instead of looking at cases, we are interested in looking at the influ-
ence of types of observations. To know why an observation is influential, one
has to consider the characteristics of that observation. So, instead of wonder-
ing why this particular observation is influential, the question becomes which
characteristics of this observation makes this type of observation influential.
Therefore we will look at observations in the neighborhood of a case. This new
exploratory and graphical tool supplements many other tools for sensitivity
analysis and can contribute in obtaining further insights in the mechanisms
generating missing data.

In the next section the mastitis dataset is introduced and described. The
selection model of Diggle and Kenward and the global and local influence
will briefly be reviewed in Section 3. The development and motivation of the
kernel weighted influence measures is given in Section 4. This approach will be
extended to a grid analysis in Section 5. In Section 6 a small simulation study is
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Fig. 1. Profile plot of the mastitis dataset.

carried out. In this paper we restrict attention to the case of two measurements
of each subject. How the method can be extended to the general case of more
than two time points is briefly sketched in Section 7.

2 The Mastitis Dataset

In this dataset the occurrence of the infectious disease of the udder, called
mastitis, in dairy cows was studied. The milk yields in thousands of liters of
107 cows from a single herd in two consecutive years were available. In the first
year all cows were supposedly free of mastitis and in the second year 27 cows
became infected. Mastitis typically leads to a reduction in milk yield. There is
a view among dairy scientists, widely held, that mastitis is more likely to occur
in high yielding cows. It is however difficult to examine such a relationship
due to the effects of mastitis.

Figure 1 shows a profile plot of the mastitis data.

Looking at the different profiles in this figure, cows #4, #5 and #66 have a
large increase in milk yield compared with the other cows. Cow #89 appears
to have the largest decrement. Next to cow #66, cows #54, #69 and #53 are
high yielding cows in both consecutive years.

Because some cows have a large reduction in milk yield and others exhibit a
substantial increase, it is useful to look at the increments, i.e., the difference
between the milk yield in the second year and the first year. In Figure 2, a
scatterplot of the original data is given together with a plot of the increments
against the first measurement.
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Fig. 2. Scatter plot of the mastitis dataset. In the left panel the milk yield for year
2 was plotted versus the milk yield at year 1. In the right panel the increase in milk
yield from year 1 to year 2 was plotted versus the milk yield at year 1.

If we take a closer look at these two scatterplots, we can see that the cows
mentioned above are located at the border of the data region. Are these spe-
cific cows having a large influence on a statistical analysis and are there any
other cases with high influence? Getting more insights in such questions is the
purpose of a sensitivity analysis. Special attention goes to cows #54 and #69,
having almost identical measurements. It is known that, in classical regression
models without missingness, most influence measures are not able to detect
such cases, because they mask each other (see e.g. Ryan 1997). One of the
main objectives is to study to which extent the influence measures introduced
by Molenberghs et al (2001) suffer from the same deficiency; and to propose
modified versions of these influence measures which deal with it. Another ob-
jective is to extend the methodology to measure the influence of ‘types’ of
observations, not really included in the sample but represented by clusters of
neighboring observations.

Kenward (1998) introduced a statistical model to analyze the mastitis data,
a model that fits in the selection modelling framework. We briefly describe it
in the next section.

3 Influence Measures

This section summarizes parametric approaches to sensitivity analysis within
the framework of selection models.
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3.1 A Selection Model for Non-Random Dropout

Let us assume that for subject i = 1, · · · , N , a sequence of responses Yij is
measured at two occasions j = 1, 2. Let Ri be a missingness indicator and
assume that yi1 is always observed. Then, ri = 1 if yi2 is missing and ri = 0
if yi2 is observed. The measurement part of the model of Diggle and Kenward
(1994), applied to the mastitis data, is characterized by, for i = 1, . . . , N ,




Yi1

Yi2



 ∼ N








µ

µ + ∆



 ,




σ2

1 ρσ1σ2

ρσ1σ2 σ2
2







 . (1)

and the missingness process is described by

logit[Pr(Ri = 1|yi1, yi2)] = ψ0 + ψ1yi1 + ψ2yi2, (2)

where Pr(Ri = 1|yi1, yi2) is the probability for the ith subject to drop out,
under the posited model. If ψ2 differs from zero, the missingness process is
non-random.

The fit of this model on the mastitis data based on the assumption that the
dropout process is MAR on the one hand and MNAR on the other hand
(Diggle and Kenward 1994) is summarized in Table 1.

Testing H0 : ψ2 = 0 by means of a likelihood ratio test gives the value G2 =
5.11, indicating some evidence against the MAR assumption. The high value
of the test statistic does not at all mean that there are observations in the
dataset which are missing not at random. It is also possible that this high
value is due to misspecification of the distribution or even just the missingness
process. An important question is then, whether some particular subjects are
responsible for this behavior. Cook and Weisberg (1982) introduced a case
deletion approach to investigate the influence of subjects. From their approach,
several other methods were developed. The next two sections discuss global
and local influence measures as applied on the mastitis data.

3.2 Global Influence

Let us introduce a weighted loglikelihood

l(γ; w) =
N∑

j=1

wjlj(γ), (3)
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Table 1
Parameter estimates (and standard errors) of the selection model fitted on the
mastitis dataset.

Effect Parameter Random Non-Random

Dropout Dropout

Measurement Model

Intercept µ 5.77(0.09) 5.77(0.09)

Time effect ∆ 0.72(0.11) 0.33(0.14)

First variance σ2
1 0.87(0.12) 0.87(0.12)

Second variance σ2
2 1.30(0.20) 1.61(0.29)

Correlation ρ 0.58(0.07) 0.48(0.09)

Dropout Model

Intercept ψ0 -2.65(1.45) 0.37(2.33)

First measurement ψ1 0.27(0.25) 2.25(0.77)

Second measurement ψ2 0 -2.54(0.83)

-2 loglikelihood 280.02 274.91

where w = (w1, . . . , wN) is a vector of subject specific weights such that∑N
i=1 wi = N (reflecting an effective total sample of size N) and lj(γ) repre-

sents the loglikelihood contribution of the j-th subject with γ the parameter
vector containing all unknown parameters (from measurement and dropout
model). Denote γ̂ the maximum likelihood (ML) estimator of the unweighted
likelihood, corresponding to the weight vector 1 = (1, . . . , 1), and γ̂w the ML
estimator based on the weighted likelihood (3).

Define

CD(w) = 2{l(γ̂;1) − l(γ̂w;1)}, (4)

as a measure for the distance between the ML estimator γ̂ and the weighted
ML estimator γ̂w. The global influence measure (Molenberghs et al 2001)

CDi = CD(w(−i)), (5)

compares γ̂ to γ̂(−i); the latter is the weighted ML estimator using weight
vector w(−i) = N/(N − 1)× (1, . . . , 1, 0, 1, . . . , 1) with the 0 at the i-th entry.

A global influence analysis on the mastitis data, leads to influential cows #4,
#5, #66 and #89, as shown in Figure 3. This is not surprising since cows
#4, #5 and #66 have the largest increases in milk yield from year 1 to year
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Fig. 3. Influential subjects of the mastitis data based on the global influence measure.

2 and cow #89 has the largest decrease in milk yield. Their behavior is thus
different from the other cows. A full discussion is given by Molenberghs et al
(2001). But apparently cows #54 and #69 are not suggested to be influential
by the global influence measure CDi.

A main disadvantage of global influence measures is that the influence that
can be ascribed to a specific case is hard to assess, since by deleting a subject
all sources of influence are lumped together, with little hope to disentangle
them. This was the main motivation to look at local influence methods.

3.3 Local Influence

The principle is to investigate how the results of an analysis are changed under
infinitesimal perturbations of the model. Based on knowledge about mastitis,
the increments appear to be important. A thorough motivation is given in
Molenberghs et al (2001). Therefore a missingness process of the following
form is considered.

logit[P (Ri = 1|Yi1, Yi2)] = ψ0 + ψ1(Yi1 + Yi2) + φi(Yi2 − Yi1), (6)

where φi is a subject-specific weight, allowing the investigator to determine
the local influence of one subject on the dropout model.

Let li(γ|φi) denote the i-th loglikelihood contribution of the i-th subject, as-
sociated with missingness process (6) and let l(γ|φ) =

∑N
i=1 li(γ|φi) denote

the total loglikelihood with φ = (φ1, . . . , φN). The vector φ0 = (0, . . . , 0) cor-
responds to an MAR process. Cook (1986) proposed to measure the distance
between γ̂φ, the ML estimator based on l(γ|φ) and γ̂0, the ML estimator

based on l(γ|φ0), by the so-called likelihood displacement, defined by

LD(φ) = 2{l(γ̂0|φ0) − l(γ̂φ|φ0)}. (7)
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Fig. 4. Influential subjects of the mastitis dataset using the local influence measure.

This approach takes into account the variability of γ̂. The geometric surface
formed by the values of the graph ξ(φ) = (φ, LD(φ)) gives the essential infor-
mation about the influence of the perturbation scheme. Because of graphical
limitations in dimensions higher than 2, Cook (1986) proposed to look at the
normal curvatures Ch of ξ(φ) at φ0, in the direction of some N -dimensional
vector h of unit length.

Cook (1986) has shown that Ch can easily be calculated by

Ch = 2
∣∣∣∣ h′ ∆′ L̈

−1
∆ h

∣∣∣∣ , (8)

where ∆ is a (s × N) matrix with ∆i as its ith column, ∆i being the s
dimensional vector defined by

∆i =
∂2li(γ|φi)

∂φi∂γ

∣∣∣∣∣
γ=γ̂0,φi=0

. (9)

Further, L̈ denotes the (s × s) matrix of second order derivatives of l(γ|φ0)
with respect to γ, also evaluated at γ = γ̂0. One evident choice for h is

the vector hi containing 1 in the ith position and 0 elsewhere, corresponding

to a perturbation from the MAR model for the ith subject in (7) only. The

measure Chi
reflects the influence of allowing the ith subject to drop out

non-randomly, while the others can only drop out at random.

Calculating the local influences of the cows in the mastitis data, cows #4, #5
and #66 appear to be influential (see Figure 4). This is in agreement with the
global influence analysis. Because the local influence looks at perturbations
of the MNAR-parameter, while the global influence is based on case dele-
tion, this was not to be expected a priori (Molenberghs et al, 2001). Kenward
(1998) observed that cows #4 and #5, which show up in both analyses, are
substantially different from the other cows by their large increment.
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If the dropout probabilities are considered, then cow #66 seems to have a large
dropout probability compared with the other cows. Therefore, a perturbation
of the MNAR-parameter will reflect this.

From both the global and local influence analysis it is clear that the location
of the data is of great interest. Therefore a method to analyze sensitivity of
types of observations might lead to a better comprehension of the influence
measures and sensitivity analyses.

4 Kernel Weighted Influence Measures

The basic idea is to study the influence of types of observations, which are
defined by neighborhoods centered at the observations (y1i, y2i, ri). Here tech-
niques from nonparametric smoothing methods can be used. Inspired by the
well-known kernel estimators for density and regression estimation (Wand and
Jones 1995), we propose the use of a kernel based choice for the weight vector
w in the global measure (4) and for the direction vector h in the local measure
(8).

4.1 Kernel Weighted Global Influence

Influence measures such as the global influence and local influence approach
are essentially based on the influence of single cases. The global measure CDi

quantifies the change in the parameter estimates when including or excluding
the i-th case; the local measure Chi

reflects the influence of allowing the i-
th subject to drop out non-randomly. We extend these two approaches by
considering a neighborhood N(i) of (y1i, y2i, ri) defined by kernel functions
(see e.g. Wand and Jones 1995). Let K be a density function and g1 and g2

two so-called bandwidth parameters.

The neighborhood N(i) of observation i is characterized by the values of the
product (or multiplicative) kernel

K(
y1j − y1i

g1

){K(
y2j − y2i

g2

)}(1−ri)I(rj = ri), (10)

for j = 1, ..., N , where I(rj = ri) equals 1 if rj = ri and 0 otherwise. The first
two factors in the definition of (10) are typical kernels for continuous variables
and the indicator function can be considered as a kernel for a categorical
variable. Taking the product of one-dimensional kernels is a typical simple way
to characterize multivariate observations in a the neighborhood of a certain
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observation (see e.g. Wand and Jones 1995). The exponent of the second factor
expresses the possible missingness of the second measurement y2.

First consider the case observation i is complete (ri = 0). Complete obser-
vations (rj = ri = 0) with values close to K2(0) (the upper limit) are close
neighbors of the ith observation; observations at a further distance have values
for (10) close to 0 (the lower limit). Incomplete observations (rj = 1) get value
0. In case observation i is incomplete (ri = 1), the interpretation is essentially
the same focusing on the first factor, now having a maximal value K(0) for
the closest neighbors (identical observations).

This leads to the following definition: the kernel based weight vector w(−N(i))

is the vector of length N with elements, for j = 1, . . . , N ,

(w(−N(i)))j =
[
K(0){K(0)}(1−ri)

−K(
y1j − y1i

g1

){K(
y2j − y2i

g2

)}(1−ri)I(rj = ri)

]

/D. (11)

The denominator D is a normalization constant assuring that
∑N

i=1(w(−N(i)))j =
N .

Define the kernel weighted global influence measure of the ith observation
(y1i, y2i, ri) as

CDN(i) = CD(w(−N(i))). (12)

It measures the discrepancy between the ML parameter estimator including or
excluding the neighborhood N(i) as indicated by the weight vector w(−N(i)).
The weights are shown graphically in Figure 5. For bandwidths g1 and g2

tending to 0 and in case all observations are different (no ties), the weight
vector w(−N(i)) converges to w(−i). In case there are ties (or very close neigh-
bors), the method contrasts the parameter estimates including or excluding
these particular ties (or very close neighbors) for bandwidths tending to 0 (or
very small). So the kernel weighted influence measure (12) is able to allocate
groups of influential cases with similar outcomes, thus avoiding the problem
of masking. Masking refers to the existence of a close cluster of influential
data points such that deleting a single point will cause little effect (see e.g.
Ryan 1997).

As the method is intended as an exploratory and graphical tool, the influence
of neighborhoods N(i), characterizing a certain type of observation, is explored
by considering a series of bandwidth values. But, from our experience, the
bandwidth needs to be adjusted to the data density at the observation i under
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Fig. 5. Shape of the weights. On the left hand side the weights are shown for the
situation ri = 0 and rj = 0 (completers), while on the right hand side the weights
are shown for the situation ri = rj = 1 (incompleters).

Fig. 6. Influential subjects of the mastitis data for the kernel weighted global influ-
ence with initial bandwidths g̃1 = g̃2 = 0.2.

consideration. We suggest to use a density adaptive bandwidth g = g1 = g2.
Let (y1i, y2i, ri) be the observation of interest. If ri = 0, the bandwidth g is
taken as

g(y1i, y2i, ri) =
CK2(0)

∑
j,rj=0 K(y1j−y1i

g̃1
)K(y2j−y2i

g̃2
)
. (13)

If ri = 1, the bandwidth is taken to be

g(y1i, y2i, ri) =
CK2(0)

∑
j,rj=1 K(y1j−y1i

g̃1
)K(0)

, (14)

where C is a constant and g̃1 and g̃2 are two initially chosen bandwidths.
Throughout the paper we used the standard normal density function as the
kernel function K.

A kernel weighted global influence analysis with initial bandwidths g̃1 = g̃2 =
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Fig. 7. Influential subjects of the mastitis data for the kernel weighted global influ-
ence with initial bandwidths g̃1 = g̃2 = 1.5.

0.2 and g̃1 = g̃2 = 1.5 on the mastitis data leads to Figures 6 and 7 respec-
tively. For both bandwidths the types of cows corresponding to #4, #5, #54,
#66, #69 and #89 seem to have a large influence. From Figure 2 it is clear
that these cows are those, lying at the border of the region. Cows #54 and
#69 were not found with the global influence. The profiles of these two cows
are practically the same (Figure 1). The global influence did not identify these
cows as influential due to masking. The ML estimators γ̂(−54), γ̂(−69) as de-
fined in Section 3.2 do not differ very much from γ̂. In the kernel weighted
global influence both cows get low weight and therefore, the shift in likelihood
is detected. If we have a closer look at Figure 7, a second group of observations
seems to be influential. This group corresponds to types of observations #7,
#47 and #58, which are incomplete observations. These incomplete observa-
tions have the three highest y1-values among the incompleters (Figure 1) and
thus can also be seen as outlying observations with substantial influence. A
comparison of Figures 6 and 7 in this respect clearly shows the role of the
bandwidth as a tuning parameter in an explorative sensitivity analysis. Both
figures show the same influential complete cases but Figure 7 with the larger
bandwidth adds to these some incomplete influential cases.

4.2 Kernel Weighted Local Influence

The local influence approach can be extended by looking at the direction
determined by the neighborhood N(i). First, note that from the discussion
in Section 3 it follows that hi = (1 − w(−i))/D where D is a normalizing
constant such that hi has unit length. This motivates the definition of the
kernel weighted local influence of the ith observation (y1i, y2i, ri) as

ChN(i)
= 2

∣∣∣∣ hN(i)
′ ∆′ L̈

−1
∆ hN(i)

∣∣∣∣ , (15)
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Fig. 8. Influential subjects of the mastitis data for the kernel weighted local influence
(increments) with different bandwidths g = g1 = g2.

where

hN(i) = (1 − w(−N(i)))/D, (16)

with w(−N(i)) as defined in (11) and D a normalizing constant. The choice
hN(i) reflects the influence of allowing subjects in the neighborhood of the i-th
subject to drop out non-randomly, while others, not within this neighborhood,
can only dropout at random. This method provides new insights in the local
influence of types of observations.

It is again interesting to compute the kernel weighted local influence for a
series of bandwidths. Because the vector hN(i) is normalized, there is no need
to have a density-adaptive bandwidth as in Section 4.1.

In the weighted local influence approach, applied on the mastitis data, one
is interested in whether the probability of occurrence of mastitis is related to
the yield that would have been observed had mastitis not occurred for a cow
with certain characteristics. In Figure 8, a kernel weighted influence analysis
for 6 different bandwidths is shown for the local influence analysis.

For a larger bandwidth the left upper panel in Figure 8 suggests two groups of
observations. The group with the highest influence is the group of completers,
while the other group is the group of incompleters. If the bandwidth decreases,
#66 shows up, as is shown in the right upper panel in Figure 8. For further
decreasing bandwidths, #66 remains influential, while two other observations,
#4 and #5, show up. The fact that #66 is dominantly present at several
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choices for the bandwidth, stresses the high degree of influence for this type of
observations. The profile of #66 (Figure 1) is special in the sense that the milk
yield in year 1 and year 2 are very high and so is the increase in milk yield.
Types of observations with such a profile have a high dropout probability
(Table 1) and, if they do not dropout, they are highly influential. This again
illustrates the usefulness to examine the kernel weighted influence measures
over a range of bandwidth values. The kernel weighted influence approach
has the additional advantage to allow for a grid-based influence analysis as
explained in the next section.

5 Grid-Based Influence Measures

Instead of considering weights, centered at the datapoints (y1i, y2i, ri), i =
1, . . . , N , we now consider weights centered at points (y1, y2, r) on a one- or
two-dimensional grid (for r = 1 and r = 0 respectively) enclosing the full
observed data range. Define, in analogy with definition (11),the kernel based
weight vector w(−N(y1,y2,r)) as the vector of length N with elements, for j =
1, . . . , N ,

(w(−N(y1,y2,r)))j =
[
K(0){K(0)}(1−r)

−K(
y1j − y1

g1

){K(
y2j − y2

g2

)}(1−r)I(rj = r)

]

/D, (17)

where, as before, D is a normalization constant such that
∑N

i=1(w(−N(y1,y2,r)))j =
N , and define the kernel weighted global influence measure on the grid points
(y1, y2, r) as

CDN(y1,y2,r) = CD(w(−N(y1,y2,r))). (18)

Examining the graph of CDN(y1,y2,r) as a function of y1 (incompleters) or y1

and y2 (completers) allows us to identify influential regions over a grid, not
only centered at the observed data points.

The kernel weighted local influence can be calculated over a grid in a similar
way. With hN(y1,y2,r) = (1 − w(−N(y1,y2,r)))/D (D a normalizing constant),
define the grid based weighted local influence as ChN(y1,y2,r)

. A plot of the

weighted local influence values can be constructed and can lead to additional
insights.

The two plots in Figure 9 show kernel weighted global influence values over
a (y1, y2)-grid [1, 9] × [2, 12] in steps of 0.2. Again, as in Section 4.1, we used
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Fig. 9. Kernel weighted global influence graph over a grid of completers with den-
sity-adaptive bandwidths initially equal to 0.2 (upper panel) and 1.5 (lower panel).

a density-adaptive bandwidth. The initial bandwidths g̃1 and g̃2 in (13) and
(14) were chosen equal to 0.2 and 1.5 respectively.

These plots show that, using the available information in the mastitis sample,
certain types of observations are highly influential when modelled missing
not at random in stead of missing at random. The peaks shown in Figure 9
confirm the results from Section 4.1. Indeed, a closer inspection of the first
plot in Figure 9 reveals that the four highest peaks correspond to types of
observations with characteristics similar to cows #4 and #5, to #54 and
#69, to #66 and to #89.

The main structure of the second plot in Figure 9, based on a larger initial
bandwidth, is essentially the same but the influence of observations at the
border of the ellipsoidal area of datapoints gets more pronounced. Especially
observations on that border, with Y2 large, seem to be highly influential. A
similar grid analysis for the incompleters didn’t show any highly influential
types of observations.

The construction of such a grid-based global influence graph is very computer
intensive due to the calculation of the numerous (weighted) ML estimates.
This is not the case for a grid analysis based on kernel weighted local influ-
ence, which is computationally much simpler. So, for the local influence mea-
sures, based on the directions hN(y1,y2,r), we used a wider range, a finer grid
and tried several bandwidth choices. Figure 10 shows a selection of weighted
local influence graphs, for four different bandwidths. The main structure is
essentially the same in each graph. If we have a closer look to the graphs
for smaller bandwidths, the non-influential region is concentrated at the first
principal component axis. The correlation between Y1 and Y2 is strongly pos-
itive, as can be seen in Figure 2. The types of observations which do not
follow this main structure of the data, can be seen as potential outlying types
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Fig. 10. Kernel weighted local influence graphs over a grid of completers for several
bandwidths g1 = g2.

of observations. Especially, types of observations with low values for Y1 and
high values for Y2 seem to be influential. The highest influence for each of the
graphs in Figure 10 for decreasing bandwidth is reached for (y1, y2) equal to
(2.93, 9.34);(2.93, 8.49);(3.08, 7.72);(3.62, 7.41);(3.78, 7.18) and (3.93, 7.10) re-
spectively. A closer look at these highly influential types of observations and
to the mastitis data shows that they are of the same type as observations #4
and #5. This confirms our findings in Section 4.2.

A plot (omitted from the text) of the grid-based kernel weighted local influence
for different bandwidths for types of incomplete observations showed little
influence compared with the types of complete observations. The influential
types of incomplete observations, when present, are located in the center of
the first measurement-range (3.5, 7.5).

A simulation study for the kernel weighted influence measures can give us
a better insight in the source of influence for both complete and incomplete
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Fig. 11. A figure of the relative average gain in influence of the completers when
generating 3 subjects under MNAR. The bandwidths used are respectively equal to
1 and 0.5.

types of observations. Computationally, it is not feasible to carry out a sim-
ulation study for the grid-based kernel weighted global influence. Therefore,
we restrict ourselves to a simulation study for the grid-based kernel weighted
local influence.

6 A Simulation Study

A small simulation study is carried out in order to obtain new insights in the
different sources of influence. For this simulation study 100 similar datasets
were generated. Each dataset consists of 107 subjects, each with two measure-
ments generated from a bivariate normal distribution. Consider the following
bivariate normal distribution, based on a compound symmetry covariance ma-
trix:




Yi1

Yi2



 ∼ N








6.426

7.095



 ,




2.865 2.324

2.324 2.865







 . (19)

The dropout process was generated according to the following model

logit[P (Ri = 1|Yi1, Yi2)] = −3.379 + 0.387Yi1 + ψ2Yi2, (20)

where ψ2 is the MNAR-parameter. The choice for the parameters in both the
measurement model and dropout process was based on a fit of this model with
ψ2 = 0 (MAR) on the mastitis data.
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Fig. 12. A figure of the relative average gain in influence of the incompleters when
generating 3 subjects under MNAR. The bandwidths used are respectively equal to
1 and 0.5. µ and σ denote the mean and standard deviation of Y1.

Fig. 13. Plot of the probability of dropout. On the left hand side the dropout prob-
ability under MAR is shown, while on the right hand side the dropout probability
is shown under MNAR.

6.1 A First Setting

In a first simulation setting, 104 of the 107 subjects in each dataset were gen-
erated according to the process described above with ψ2 equal to 0 (MAR).
Three subjects however were generated with ψ2 = −0.5, so three observations
were allowed to be missing not at random. To compare the additional influ-
ence of generating 3 subjects which are allowed to be missing not at random
versus the situation where all subjects are allowed to be missing at random,
an average influence measure was plotted in Figure 11 for the completers and
in Figure 12 for the incompleters. This average influence measure is the differ-
ence between the average grid-based influence of 100 datasets with 3 subjects
allowed to be missing not at random and the average grid-based influence of
100 datasets, where none of the subjects were allowed to be missing not at
random.

If we consider the dropout structure in Figure 13 for both MAR (ψ2 = 0)
and MNAR (ψ2 = −0.5) and relate this to the results shown in Figure 11,
it becomes clear that completers which tend to have a large probability of
dropping out under the MNAR model, but do not, appear to be influential.

For the types of observations with a missing second measurement the largest
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Fig. 14. The average kernel weighted local influence for the completers of the 100
reference datasets

influence is located at higher y1 values as can be seen in Figure 12. A high
value of y1 often goes with a higher value of y2 (correlation 0.8), a combination
which has, under the MNAR model, a small probability to drop out. If it then
drops out nevertheless, it is highly influential.

6.2 A Second Setting

In a second simulation setting, the presence of subjects missing not at random
is invoked by taking 100 datasets generated under MAR (ψ2 = 0) as above,
but now all data, with a second measurement higher than 8.5, are set to be
missing.

In Figure 14, the average influence measure of the completers of 100 datasets
is shown. We will refer to these datasets generated under MAR as the ref-
erence datasets. The plot of the average influence of the completers of the
reference datasets versus the grid has a particular shape. There is very low
or no influence for data along the first principal component axis due to the
high correlation (ρY1,Y2 = 0.80) between Y1 and Y2. When we move away from
this axis the average influence increases. This indicates that outlying types of
observations, not following the main pattern in the data, are influential. To
see what the effect of invoking MNAR-dropout is on the completers, we leave
out all observations in these datasets with a Y2-measurement higher than 8.5
and calculate the average kernel weighted local influence again.

The average influence of the completers under such a MNAR dropout pro-
cess is shown in Figure 15, which indicates that dropout due to this MNAR
mechanism has a large change in influence for types of completers with a high
Y1-measurement and a low Y2-measurement. The larger influence of observa-
tions with a high Y1-measurement and a low Y2-measurement is not surpris-
ing. In Figure 16 a scatterplot of the completers is given. If we consider the
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Fig. 15. Kernel weighted local influence for the completers of the 100 complete
datasets with MNAR dropouts for Y2 > 8.5

Y1

Y
2

2 4 6 8 10 12 14

2
4

6
8

10
12

14
16

Fig. 16. A scatterplot for all simulated datasets with MNAR dropouts for Y2 > 8.5

structure of the data, we know that observations with a high value for Y1

are more likely to be missing due to the underlying MAR-mechanism (Fig-
ure 13). Combined with the MNAR-mechanism we invoked in this setting,
we especially obtain complete observations with a low Y2-measurement. The
correlation indicates that, among these types of observations, the ones with
a low Y1-measurement follow the correlation structure of the data. The ones
with a high Y1-measurement do not follow this structure and therefore they
can be seen as outlying types of observations. Their influence is rather high
compared with the other types of observations.

Looking at the incompleters in Figure 17 one can see that there is a large
change in influence on the incompleters. The highest average influence for the
incompleters of the reference datasets was reached for Y1 = 8.5, considering
the MNAR-mechanism there is a shift towards Y1 = 9.75. Not only this shift
can be seen, but also the overall average influence increases. This indicates
that the presence of types of observations which are left out non-randomly
seem to have a large influence.

Other simulation settings (such as larger sample sizes) confirm these results.
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Fig. 17. The figures of kernel weighted local influence for the incompleters of the
complete dataset and the incompleters of the datasets with MNAR dropouts for
Y2 > 8.5

The main idea is illustrated here and therefore these other simulations are
omitted from this paper.

7 Final Remarks

In this paper we introduced some new exploratory and graphical techniques,
supplementing existing tools for sensitivity analysis. These methods combine
parametric global and local influence measures with nonparametric smooth-
ing weights. They provide new insights in the influence of certain types of
observations and offer a nice solution to the problem of masking. The discus-
sion here has been focusing on the setting of two (repeated) measurements. In
case of three or more measurements, the kernel based weights (11) and (21)
can be based on higher dimensional kernels. Alternatively, one can first deter-
mine the Euclidean distance between two observations (belonging to the same
pattern) in combination with a one-dimensional kernel function. This latter
option leads to the following extension of the weights (11), to any number of
measurements.

Let (yi, ri) denote the data where yi = (yi1, . . . , yin) = (yo
i ,y

m
i ) is the vec-

tor of observed components yo
i and missing components ym

i and where ri =
(ri1, . . . , rin) is the vector grouping the missingness indicators

riℓ =






1 if yiℓ is observed

0 otherwise.
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For a neighborhood N(i) of outcome (yi, ri), define the weights

(w(−N(i)))j = {K(0) − K(‖yo
j − yo

i‖/g)I(rj = ri)}/D, (21)

where K is for instance a Gaussian kernel function, g is the bandwidth and D
a normalizing constant, as before. So, similar to the weights (11), the weights
(21) are constant for all observations with a different missingness pattern (rj 6=
ri) and assign low weights to all observations yj in the close neighborhood
of yi and with an identical missingness pattern (rj = ri). Note that this
definition is not restricted to monotone dropout missingness mechanisms.

As a further generalization one could extend the concept of the neighbor-
hood of a particular observation (yi, ri) to all observations with not only an
identical missingness pattern ri but also with a similar pattern, in this way
including, for example, observations which dropout one time point earlier or
later. This could be an interesting option in order to enlarge the number of
effective observations in the neighborhood of (yi, ri) which is, especially in
case of several measurements and in view of the curse of dimensionality, not
unimportant.

A deeper study of the properties and the applicability of this extension to more
than two measurements is beyond the scope of this paper. It is the subject of
current and future research.
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