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Summary

Within the past decade, there has been an increasing interest in the problem of

joint analysis of clustered multiple outcome data, motivated by developmental

toxicity applications (Fitzmaurice and Laird 1995, Gueorguieva and Agresti

2001, Molenberghs and Ryan 1999, Regan and Catalano 1999, Aerts et al.

2002). So far, however, one has tackled the challenges in this setting only partly

each time making different restricting assumptions (e.g., restriction to viable

fetuses only). Ideally, a model should take the complete correlated hierarchical

structure of the data into account. A hierarchical Bayesian method is proposed

to this effect. Such a model can serve as a basis for quantitative risk assessment.

Keywords: Bayesian methods, Benchmark Dose, Hierarchical Model, Toxi-

cology
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1 Introduction

Developmental toxicity studies in laboratory animals are designed to assess potential

hazardous effects of chemicals, drugs and other exposures on developing fetuses from

pregnant dams. Such laboratory experiments play an important role in the regulation

of adverse exposures for human health. A typical developmental toxicity study with a

Segment II design includes a control group and several exposed groups, each involving

20 to 30 pregnant dams. Usually, exposure occurs early in gestation, during the period

of major organogenesis and structural development of the fetuses. Just prior to normal

delivery, the dams are sacrificed and the uterine contents are thoroughly examined for

the occurrence of defects. The number of dead and resorbed fetuses is recorded.

Viable offspring are examined carefully for the presence of malformations and also the

fetal birth weights are measured.

The analysis of developmental toxicity data raises a number of challenges (Molen-

berghs et al. 1998). Since deleterious events can occur at several points in develop-

ment, an interesting aspect lies in the staging or hierarchy of possible adverse fetal

outcomes (Williams and Ryan 1996). Figure 1 illustrates the data structure. Because

of the toxic insult, the developing fetus is at risk of fetal death. If the fetus survives

the entire gestation period, growth reduction such as low birth weight may occur. The

fetus may also exhibit one or more types of malformation.

In addition, because of genetic similarity and the same treatment conditions, off-

spring of the same mother behave more alike than those of another mother, i.e., the

litter or cluster effect. Thus, responses on different fetuses within a cluster are likely

to be correlated. There are several ways to handle the clustering of fetuses within

litters. Several likelihood models for clustered binary data can be formulated, e.g., the

beta-binomial model (Skellam 1948, Kleinman 1973), the Bahadur model (Williams
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Figure 1: Data Structure of Developmental Toxicity Studies.

1975), the multivariate Dale model (Molenberghs and Lesaffre 1994) and the condi-

tional exponential family model of Molenberghs and Ryan (1999). A thorough review

is given in Aerts et al. (2002).

Ultimately, analysis of the developmental toxicity data must account for the entire

hierarchical, multivariate and clustered nature of the data. So far, one has tackled the

challenges in this setting only partly each time making different restrictive assump-

tions, e.g., restricting to viable fetuses only. However, litters with a lot of malformed

fetuses are likely to have more death fetuses than litters with good fetal health. As

a result, litter size (number of viable fetuses) may be informative. A classical way to

account for the litter size is to include it as a covariate in modeling the response rates

(Williams 1987, Rai and Van Ryzin 1985, Catalano et al. 1993) and then calculating a

safe dose at an “average” litter size, thereby avoiding the need for direct adjustment.

However, several perspectives for modeling this data in a direct way can be consid-

ered. First, one may look at the hierarchical structure, and consider cluster size as
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a random variable. Xu and Prorok (2003) developed a non-parametric procedure for

the analysis of exchangeable clustered binary data when the cluster size is a random

variable. As such, one acknowledges the stochastic nature of the litter size. Indeed,

variation in the litter size is an extra source of variability in the data that must be

accounted for. Dunson et al. (2003) proposed a general bayesian approach for joint

modeling of cluster size and subunit-specific outcomes, although there method was not

designed for quantitative risk assessment. Secondly, we may also consider a missing

data model, because the unformed fetuses are not observable. In toxicity studies with

pre-implantation exposure, the number of implants reduces with dose. Dunson (1998)

proposed a multiple imputation scheme to estimate the number of missing fetuses.

Also joint models for the number of implantations and fetus-specific outcomes in pre-

implantation toxicity studies have been studies by several authors (Kuk et al. 2003,

Allen et al. 2002). However, in Segment II studies, the random cluster size per-

spective seems more natural than does the missing data perspective. In this context,

the dose effect is reflected in a reduction of the proportion of viable fetuses (or litter

size) among the implanted fetuses. Alternatively, Williamson et al. (2003) proposed

a weighted generalized estimating equation approach for fitting marginal models to

clustered data when litter size is informative. Although this method accounts for the

cluster size, it does not allow for modeling the cluster size as a function of covariates

of interest.

We propose a Bayesian model dealing with the hierarchical structure in two stages.

At the first stage, we express the probability that a fetus is non-viable. At the second

stage, we model the probability that a viable fetus has a malformation and/or suffers

from low birth weight as function of the litter size. At each stage we account for

the intralitter correlation. The intractability of the likelihood function has led vari-
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ous authors to propose a host of alternative estimation methods rather than carrying

out maximum likelihood estimation. A full likelihood procedure can be replaced by

quasi-likelihood methods (McCullagh and Nelder 1989), pseudo-likelihood (Arnold and

Strauss 1991) or generalized estimating equations (Liang and Zeger 1986). Gener-

alized linear random-effects models or hierarchical Bayesian models (McCulloch and

Searle 2001) are attractive alternative modeling approaches. We opted for the latter

approach and used Gibbs sampling (Zeger and Karim 1991) to deal with complex

integrations.

2 Example

This article is motivated by the analysis of developmental toxicity of Ethylene Glycol

(EG) in mice. EG is a high-volume industrial chemical with diverse applications.

For instance, it can be used as an antifreeze, as a solvent in the paint and plastics

industries, as a softener in cellophane, etc. The potential reproductive toxicity of

EG has been evaluated in several laboratories. Price et al. (1985) for example,

describe a study in which timed-pregnant CD-1 mice were dosed by gavage with EG

in distilled water. Dosing occurred during the period of organogenesis and structural

development of the fetuses (gestational days 8 through 15). Data are pictured in

Figures 2. Table 1 summarizes the malformation rate and fetal birth weight per

dose group. The data show clear dose-related trends for both malformation and fetal

weight. The rate of malformation increases with dose, and the average fetal weight

decreases monotonically with dose. The mean litter size is also tabulated, and shows

a decrease with dose.
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Figure 2: EG data: From Top to Bottom: Observed malformation rates; Observed
fetal weight; Observed death rate
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Table 1: Summary Data from an EG Experiment in Mice

Dose Dams Live Litter Size Malf. Weight
(g/kg/day) Mean (SD) Nr. (%) Mean (SD)

0 25 297 11.9 (2.45) 1 (0.25) 0.974 (0.065)
750 24 276 11.5 (2.38) 26 (10.0) 0.882 (0.082)
1500 22 229 10.4 (3.46) 89 (37.8) 0.787 (0.114)
3000 23 226 9.8 (2.69) 129 (56.5) 0.712 (0.105)

3 Modeling Approach

We propose a Bayesian hierarchical modeling framework for the joint analysis of fetal

death and malformation/weight among the viable fetuses. Let L denote the total

number of dams, and hence litters, in the study. For the ith litter (i = 1, . . . , L), let

mi be the number of implants. Let ri indicate the number of fetal deaths in cluster i.

The number of viable fetuses, i.e., the litter size, is ni ≡ mi − ri. The outcome

measured on the viable fetuses is denoted yij = (wij, zij), j = 1, . . . , ni, with wij

the fetal birth weight and zij = 1 when fetus j in cluster i has a malformation, 0

otherwise.

To define a model for the developmental toxicity data, the underlying hierarchy

of the data is used. At the bottom level, the fetuses surviving the entire gestation

period, are at risk for low birth weight and/or malformation. Assume that yij satisfies

yij|ni ∼ Fi(yij|ζ, ni), (3.1)

i.e., conditional on the litter size, yij follows a pre-specified distribution Fi, possibly

depending on covariates, such as the dose level, and parameterized through a vector

ζ of unknown parameters. Further, the litter size ni is a random variable, possibly

depending on the dose level and other covariates of interest. Indeed, a toxic insult

may result in a fetal death. The litter size ni is modeled through the number of
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non-viable fetuses ri ≡ mi−ni. Assume the number of non-viable fetuses ri to follow

a distribution G depending on a vector ψ of unknown parameters, i.e.,

ri ∼ G(ri|ψ,mi). (3.2)

Let fi(yij|ζ, ni) and g(ri|ψ,mi) denote the density functions corresponding to the

distributions Fi and G, respectively.

Because of the hierarchy in the model, it lends itself naturally to estimate the

parameters using Bayesian techniques (Box and Tiao 1992, Gelman 1995). In the

Bayesian framework, unknown parameters are also considered as random, and all

inference is based on their distribution conditional on the observed data, i.e., the

posterior distribution.

It is obvious that different choices for Fi and G will lead to different models. The

distribution G is crucial in the calculation of the marginal model for yij. Next, a

possible choice for the distributions Fi and Gi in the developmental toxicity setting is

given.

A model for the death outcome

In the first step, a toxic insult early in gestation may result in a fetal death. This

effect of dose di on cluster i with mi implants can be described using the density

g(ri|ψ,mi). Considering the fetuses within a litter as independent, one could assume

that ri satisfies a binomial density

(

mi

ri

)

πri

Ri
(1 − πRi

)mi−ri , (3.3)
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with πRi
the probability of a dead fetus in litter i, depending on the dose. To account

for clustering, a random effects model in which each litter has a random parameter

is considered. Skellam (1948), Kleinman (1973) and Williams (1975) assume the

probability of death πRi
of any fetus in litter i to come from a beta distribution with

parameters ai and bi:

πai−1

Ri
(1 − πRi

)bi−1

B(ai, bi)
, (0 ≤ πRi

≤ 1), (3.4)

where B(., .) denotes the beta function. This leads to the well-known beta-binomial

distribution.

The probability mass function g(ri|ψ,mi) can be expressed directly in terms of the

mean and correlation parameters, i.e., g(ri|πRi
, ρRi

,mi). The mean of this distribution

is

µRi
= miπRi

= mi
ai

ai + bi
, (3.5)

and the variance is

σ2

Ri
= miπRi

(1 − πRi
)[1 + ρRi

(mi − 1)], (3.6)

with ρRi
the intra-litter correlation, which is the correlation between two binary re-

sponses of litter i.

A model for malformation and weight

When a fetus survives the entire gestation period, it is still at risk for low fetal weight

and malformation. A distribution for the combined continuous and binary outcomes,

i.e., f(wij, zij|ζ, ni) must be specified. Based on the mixed outcome probit model of
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Regan and Catalano (1999), we propose the following model.

First, assume that littermates are independent. Under a probit model for the binary

response Zij, the latent variable Z∗
ij is assumed to be normally distributed with mean

γzij
and unit variance, so that

πzij
= P (Zij = 1) = P (Z∗

ij > 0) = Φ(γzij
), (3.7)

where Φ(.) denotes the standard normal cumulative distribution function. The proba-

bility of malformation is related to covariates by expressing γzij
as some parameterized

function of the predictors, e.g., the dose level, and the litter size.

For the bivariate response (Wij, Zij), a bivariate normal distribution is assumed

for the observed weight and the latent malformation variable for fetus j in litter i:

f(wij, z
∗
ij) = φ2(wij, z

∗
ij|µwij

, σ2

wij
, γzij

, 1, ρzwij
), (3.8)

where ρzwij
is the intra-fetus correlation between the malformation and weight out-

come. As a result, the joint distribution of the bivariate fetal weight and binary

malformation outcome can be written as

f(wij, zij) = fw(wij) × fz|w(zij|wij) (3.9)

= φ(wij|µwij
, σ2

wij
) × π

Zij

z|wij
(1 − πz|wij

)1−Zij , (3.10)

where πz|wij
= Φ(γz|wij

) is the conditional expectation of the binary malformation

outcome E(Zij|Wij). From bivariate normal theory,

γz|wij
=
γzij

+ ρzwij

wij−µwij

σwij

(1 − ρ2
zwij

)1/2
, (3.11)
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with πzij
= Φ(γzij

) the marginal expectation E(Zij).

In case of clustering, litter-specific parameters are considered to account for the

correlation among the outcomes. Random effects on the mean fetal birth weight µwij

and on the malformation parameter γzij
are introduced

µwij
∼ N(µWi

, σ2

µi
) (3.12)

γzij
∼ N(γZi

, σ2

γi
), (3.13)

such that the bivariate distribution for fetal weight and binary malformation equals

f(wij, zij) = fw(wij) × fz|w(zij|wij) (3.14)

= φ(wij|µWi
, σ2

wij
+ σ2

µi
) × π

Zij

Z|Wij
(1 − πZ|Wij

)1−Zij , (3.15)

with πZ|Wij
= Φ(γZ|Wij

) the conditional expectation for the binary malformation

outcome E(Zij|Wij). We can derive that

γZ|Wij
=

γZi√
1+σ2

γi

+ ρZWij

wij−µWi

σ2
wij

+σ2
µi

(1 − ρ2
ZWij

)1/2
, (3.16)

with ρZWij
the intra-fetus correlation between the malformation and weight outcome.

The marginal expectation for the binary malformation outcome E(Zij) equals πZi
=

Φ(γZi
/(1+σ2

γi
)). The intra-litter correlation among the weight outcomes equals ρWi

=

σ2
µi
/(σ2

µi
+σ2

wij
). The intra-litter correlation among the latent malformation outcomes

equals ρZi
= σ2

γi
/(1 + σ2

γi
). Further, the fetus-specific outcomes (malformation and

weight) are modeled as function of dose di and litter size ni, where ni ≡ mi − ri is

a random variable with density f(ni|mi) = g(ri|πRi
, ρRi

,mi) as specified in previous

section.
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A dose-response model

Dose-response models are specified for the marginal outcomes of interest, i.e., the

fetal weight, the probability of malformation, and the probability of death. Each of

the univariate outcomes are allowed to vary as functions of dose and other covariates.

The dose-response models can generally be written as

µWi
= X ′

aij
α + (ni − n̄)γa, (3.17)

γZi
= X ′

bij
β + (ni − n̄)γb, (3.18)

πRi
= exp(X ′

cij
δ)/(1 + exp(X ′

cij
δ)), (3.19)

where {Xaij
, Xbij

, Xcij
} are the fetus- and/or litter-specific covariates with regres-

sion parameters θ = {α,β, δ}. Often with developmental toxicity data, the as-

sumption that variances and correlations are constant across dose groups is not ap-

propriate. Therefore we allow the variances and correlations to vary with dose and

possible other covariates as well. Thus, dose-response models for the parameters

{ρD, ρZW , σw, σµ, σγ} can be written as well, using appropriate transformations:

ρij = (exp(X ′
tij

τ ) − 1)/(exp(X ′
tij

τ ) + 1), (3.20)

σij = exp(X ′
sij

ζ), (3.21)

with ρij = {ρD, ρZW} and σij = {σw, σµ, σγ}.

The need for numerical integration can be avoided by casting the model into a

Bayesian framework and by resorting to the Gibbs sampler (Zeger and Karim 1991). In

addition to the specified model, hyperprior distributions for the regression parameters

need to be selected. We follow the recommendations of Besag, Green, Higdon and
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Mengersen (1995) in using proper but highly dispersed hyperprior distributions. The

hyperpriors chosen on the regression parameters for this analysis were N(0, 106). We

expect these priors to have minimal influence on the final conclusions of our analysis.

4 Application to Quantitative Risk Assessment

The primary goal of these studies is to determine a safe level of exposure. Recent

techniques for risk assessment in this area are based on fitting dose-response models

and estimating the dose corresponding to a certain increase in risk of an adverse effect

over background, i.e., benchmark dose (Crump 1984). In case of multiple outcomes,

the outcomes are often examined individually, using appropriate methods to account

for the correlation, and regulation of exposure is based on the most sensitive outcome.

It has been found, however, that a clear pattern of correlation exists between all

outcomes (Ryan et al. 1991), so that risk assessment based on a joint model is more

appropriate. The model must both incorporate the correlation between the outcomes,

as well as the correlation due to clustering.

We define the combined risk due to a toxic effect as the probability that a fetus

is dead or a viable fetus is malformed and/or suffers from low birth weight. This risk

can be expressed as

r(d) = P (death|d) + P (viable|d) × P (malformed or low weight|viable, d) (4.1)

= P (R = 1|d) + (1 − P (R = 1|d)) × P (M = 1 or W < Wc|N ≥ 1, d)

= πdth + (1 − πdth) × P (M = 1 or W < Wc|N ≥ 1, d). (4.2)
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The joint probability of a malformation or low birth weight is equal to:

P (M = 1 or W < Wc|N ≥ 1, d) (4.3)

=

∫ ∞

1

P (M = 1 or W < Wc|N = n, d)P (N = n|d)dn (4.4)

and

P (M = 1 or W < Wc|N = n, d) (4.5)

= 1 −
∫ −τ

−∞

∫ ∞

Wc

φ2(Wij,M
∗
ij;µW (d), 0, σw(d)2 + σ2

µ, 1 + σ2

γ , ρZW (d))dWijdM
∗
ij

= Φ(τ) + Φ2(−τ, ω; ρ(d)), (4.6)

where τ = γz(d)/
√

1 + σ2
γ and ω = (Wc − µw(d))/

√

σw(d)2 + σµ(d)2 and Φ2 is the

standard bivariate normal distribution function.

The benchmark dose is defined as the level of exposure corresponding to an ac-

ceptably small excess risk over background, i.e., the dose satisfying

r∗(d) =
r(d) − r(0)

1 − r(0)
= q, (4.7)

with q the prespecified level of increased risk over background, typically specified as

0.01, 1, 5, or 10% (Crump, 1984). In the frequentist framework, the benchmark dose

calculation is based on the estimated dose-response curve. In the Bayesian approach

one could choose to base the benchmark dose calculation on the mean posterior risk

curve. This method is illustrated in Figure 3. The full line corresponds with the mean

posterior risk. But, benchmark dose calculations are no more precise than the data on

which they are based. Therefore, rather than calculating a point estimate of the safe

dose, one might be interested in the entire posterior distribution of the safe dose. In
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this way, the researcher could get an idea of the precision of the estimate. Often, one

is interested in an upper bound of the benchmark dose to set a safe level of exposure.

One can construct a 95% upper credibility limit of the risk function and base the safe

dose calculation upon this upper limit. In analogy with the frequentist approach, the

lower effective dose is defined as the dose such that the 95% upper credibility limit

of the excess risk is equal or greater than the predefined level q. This is illustrated

in Figure 3. The dashed line corresponds to the 95% upper credibility limit of the

posterior risk.

5 Data Analysis

Dose-Response Modeling

For risk assessment to be reliable, the dose-response model should fit the data well in all

respects. A frequently used predictor model in literature is the linear model. With the

aim on low dose extrapolation, more flexible predictor models are investigated. High

order polynomials offer a wide range of curves, but often fit badly at the extremes.

Royston and Altman (1994) introduced fractional polynomials as a generalization of
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Table 2: Deviance Information Criterion for the best first and second order frac-
tional polynomials to model the malformation parameter γZ .

m = 1 m = 2
tranformation DIC transformation DIC

1/d2 678.4 (
√
d, d) 677.8

1/d 679.9 (d, d2) 678.4

1/
√
d 681.0 (ln(d), ln2(d)) 678.0

ln(d) 682.2 (1/
√
d, 1/d) 677.9√

d 678.1 (1/d, 1/d2) 678.1
d 685.3 (d, d ln(d)) 678.5

d2 692.0 (
√
d, ln(d)) 677.2

d3 693.6 (d, ln(d)) 678.5

the conventional polynomials. A fractional polynomial of degree m is defined as

β0 +
m

∑

j=1

βjd
pj , (5.1)

where d0 ≡ ln(d) and the powers p1 ≤ . . . ≤ pm are positive or negative integers or

fractions. Royston and Altman (1994) argue that polynomials of degree higher than

2 are rarely required in practice and suggested to choose the value of the powers from

the set {−2,−1,−0.5, 0, 0.5, 1, 2, . . . ,max(3,m)}. Fractional polynomials are shown

to be very useful both in the context of dose-response modeling and quantitative risk

assessment (Geys et al. 1999, Faes et al. 2003).

In order to select a parsimonious model for the data we select a suitable set of

dose transformations for each of the three outcomes separately. Model selection is

performed using the deviance information criterion (DIC) as proposed by Spiegelhalter

et al. (1998, 2002):

DIC = D + 2PD, (5.2)

16



with D a point estimate of the deviance and PD the effective number of parameters.

Smaller values of DIC indicate a better fitting model. Table 2 shows that a fractional

polynomial of degree m = 1, whether represented by 1/d2, 1/d, 1/
√
d, ln(d), d, d2 or

d3, is unacceptable as opposed to a fractional polynomial of degreem = 2 to model the

malformation parameter γZi
. Table 2 tabulates only a selection of the considered two-

degree fractional polynomials. None of the other combinations provided a substantial

improvement. The fractional polynomial represented by (ln(d),
√
d) yields the smallest

DIC. A similar approach, applied to the death outcome and weight outcome, suggest

a d2 trend on πRi
and a ln(d) trend on µWi

. The resulting set of transformations is

then used to construct more elaborate models that can be scrutinized further by means

of the DIC. The most complex model we considered (Model 1) allows the following

trends on the malformation, weight and death outcomes:

µWi
= β0W + β1W ln(d+ 1) + β2W (n− n̄), (5.3)

γZi
= β0Z + β1Z

√
d+ β2Z ln(d+ 1) + β3Z(n− n̄), (5.4)

logit(πRi
) = β0R + β1Rd

2. (5.5)

Further, linear d trends on the association parameters

ρRi
, σ2

γi
, σ2

µi
, ρZW , (5.6)

are considered. From Table 3 summarizes the model selection procedure on the asso-

ciation parameters. Based on the deviance information criterion, there is evidence for

choosing a model with a constant association between weight and malformation and a

constant malformation variance (Model 3). In contrast, there is evidence for choosing

a model with a d trend on the weight variance (Model 4). Finally, there seems to be
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Table 3: Model Selection on the Association Parameters. A ‘*’ indicates a linear
d trend on that parameter. All other effects are kept constant.

Model ρdth σ2
µ σ2

γ ρZW DIC

1 * * * * -1356.870
2 * * * · -1358.310
3 * * · · -1358.490
4 * · · · -1357.950
5 · * · · -1360.470
6 · · · · -1359.540

no evidence for the linear d trend on the correlation among death outcomes. As such,

we choose Model 5.

Parameter estimates obtained from fitting the final model are displayed in Table 4.

The dose coefficient is significantly negative for fetal birth weight, and the negative

coefficient of litter size suggests that larger litters had a higher risk of low fetal birth

weight which is not unexpected due to competition for food resources. The intralitter

correlation for weight is substantial, and increases from 0.441 in the control group to

0.644 in the highest dose group. For malformation, there is an increasing dose effect,

and there appears to be little effect of litter size on malformation. The intralitter

correlation for malformation is also large. The correlation between malformation and

birth weight appears to be negative, indicating that fetal malformations are associated

with lower fetal weights. For fetal death, there is a significantly positive effect with

dose. The intralitter correlation for fetal death is also significantly positive. Figure

4 shows the posterior mean curves together with the 95% credibility intervals of the

univariate dose-response curves. All the univariate fits are acceptable.
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Table 4: Posterior Mean and Standard Deviation of the Parameters in the Final
Model.

Effect Mean (StDev)
Fetal Weight:

Mean: intercept 0.980 (0.013)
log(dose) -0.433 (0.037)
ni − n̄ -0.011 (0.003)

Correlation: 0.000 0.441 (0.063)
0.250 0.492 (0.047)
0.500 0.545 (0.043)
1.000 0.644 (0.069)

Malformation:

Mean: intercept -3.857 (0.631)√
dose 6.062 (2.529)

log(dose) -2.664 (2.995)
ni − n̄ -0.002 (0.049)

Correlation: 0.691 (0.048)

Fetal Weight / Malformation:

Correlation: -0.018 (0.005)

Fetal Death:

Mean: intercept -2.099 (0.153)
dose2 0.730 (0.258)

Correlation: 0.069 (0.024)
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Table 5: Risk Assessment for EG Study in Mice.

BMD LED
Model q = 0.01 q = 0.05 q = 0.01 q = 0.05
Joint 37 190 17 126
Malf 56 299 19 163

Weight 106 383 77 312
Death 1055 2209 878 1843

Quantitative Risk Assessment

To calculate the risk of low birth weight, we need to define a weight below which a

fetus can be considered as being of “low fetal weight”. Because of the arbitrariness

of the cutpoint, estimating a benchmark dose from a continuous response has led to

much discussion (Bosch et al. 1996, Crump 1984). We specify the cutoff point Wc as

two standard errors below the control average fetal weight (Catalano and Ryan 1992).

By means of this definition, fetuses that weighed less than 0.777g are considered to

be of low fetal weight, which corresponds to a 3.4% rate in the control animals. The

posterior density of the combined risk due to a fetal death, a malformation or low fetal

weight is pictured in Figure 5. The risk gradually increases when dams are exposed to

larger quantities of the toxic substance, before finally reaching an asymptote.

Table 5 shows the benchmark dose and lower effective dose corresponding to a

1% and 5% excess risk over background, respectively based upon the posterior mean

and 95% upper credibility limit of the risk curve. We also added the corresponding

quantities, calculated from univariate risks. The joint model yields more conservative

doses. Often, a safe level of exposure is determined separately for each outcome

and the lower of the individual outcomes is used as an overall benchmark dose. It is

clear that this approach would yield too high estimated safe doses. Therefore, it is

necessary to model the full hierarchical data structure when searching for a safe level
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of exposure.

Instead of calculating a point estimate of the benchmark dose, we can derive the

full posterior distribution of the benchmark dose. The posterior distribution of the

benchmark dose corresponding to a 1% increase in risk over background is pictured

in Figure 6. The posterior mode equals 35. Previously obtained estimate of the

benchmark dose based on the posterior mean of the risk curve (37) lies in between the

mode (35) and mean (43) of the posterior distribution of the benchmark dose. The

95% lower credibility limit of the posterior benchmark dose is equal to 17. Calculation

of the posterior distribution of the benchmark dose does not only give information

about the estimated safe level of exposure, but also its uncertainty and shape of the

distribution.

6 Discussion

Developmental toxicity studies are complicated by the hierarchical, clustered and mul-

tivariate nature of the data. As a consequence, a multitude of modeling strategies
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have been proposed in literature. Often, focus is only on the outcomes measured on

the viable fetuses. However, as observed from the data sets, the number of viable

fetuses in a dam, i.e., the litter size, also decreases with increasing dose levels. Thus,

a method that acknowledges the stochastic nature of the litter size is in demand. In

this setting, a Bayesian random effects model was proposed. All outcomes of the de-

velopmental toxicity study were analyzed simultaneously. The main advantage of the

proposed methodology is the flexibility in which all stages of the data can be modeled.

The model was applied to a developmental toxicity study (EG in mice), and used

for quantitative risk assessment. When interested in a safe level of exposure, it is

important to account for all possible adverse effects. Often however, focus is only on

the outcome that is most sensitive to the exposure when performing quantitative risk

assessment. But, use of univariate methods to determine a safe dose level can yield

unreliable, and thus unsafe, dose levels. This acknowledges the importance of a model

that accounts for the full data structure.

A Bayesian estimation of a safe level of exposure provides an attractive alterna-

tive to the commonly used frequentist approaches. The posterior distribution of the

benchmark dose does not only give a point estimate, but reflects also the uncertainty

associated with this estimate.

Although the method is presented in the specialized field of developmental toxicity,

the methodology is applicable in a general clustered or even general correlated data

setting with a continuous and binary outcome. Thus, use of the proposed modeling

approach extends far beyond the developmental toxicity context.
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