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Abstract: The dmft-index is a popular measure in caries research, but its distribution is complex. Lewsey and
Thomson' show that the zero-inflated negative binomial (ZINB) distribution gives an excellent fit. We fitted this
distribution to the dmft-index of 4468 seven-year old children from the Signal-Tandmobiel® study. However, several
dental examiners were involved in scoring caries experience. This necessitated to correct for possible misclassifi-
cation. We illustrate how a non-differential misclassification process for each examiner can lead to differential
misclassification overall.

1 Introduction

The dmft-index is a commonly used index in oral health studies. It measures the degree
of caries experience of a subject in the primary dentition and is defined as the sum of
the number of decayed (d), missing due to caries (m) and filled (f) deciduous teeth. The
dmft-index ranges from 0 (no caries experience) to 20 (all teeth affected). In this paper we
will look at the dmft-index of 4468 Flemish children from the Signal-Tandmobiel® (STM)
study.?

In a previous paper,® an ordinal logistic regression model on a categorized dmft-index of
the first year’s STM data revealed an East-West gradient for caries experience in Flanders.
However, the dental examiners operated in different geographical areas. Further, from val-
idation data obtained from the calibration exercises, it was observed that some examiners
over-(under) scored caries experience compared to the benchmark examiner (third author).
Therefore, it was questioned whether the observed East-West gradient was a result of mis-
classification of caries experience of the sixteen dental examiners vis-a-vis the benchmark
examiner. Consequently, a correction to the logistic model for examiners’ misclassification
was applied, assuming that the misclassification is non-differential (conditional on the true
response the distribution of the misclassified response is independent of the covariates) for
each examiner. After correction, the East-West gradient remained significant.

In this paper, however, our attention is focused on fitting the original dmft-index, i.e.
the observed counts, since the dentists are more comfortable with the classical score. Cor-
recting for misclassification of the dmft-index presented extra problems as not all levels of
the dmft-index were observed by the benchmark examiner in the calibration exercise. Also,
the fact that multiple examiners were involved complicated the correction for misclassifica-
tion. Furthermore, we show how differential misclassification can arise from non-differential
misclassification when multiple examiners are involved.

The distribution of the dmft-index is overdispersed with respect to a Poisson distribu-
tion, namely SD?(dmft)/dmft = 3.53, and has an excess of zeroes, implying that a “zero-
inflated” model is a good candidate for this kind of data. Bohning et al.* suggested the
zero-inflated Poisson (ZIP) distribution® to model the DMFT-index and concluded that it
gives a reasonable fit to the observed distribution. The ZIP distribution is a mixture distrib-
ution assigning a mass of p to “extra” zeroes and a mass of (1—p) to a Poisson distribution.
When covariates are involved, the ZIP distribution gives rise to a ZIP regression model. A



useful feature of the ZIP regression model is that the effect of the covariates can be assessed
simultaneously in the extra zeroes and the Poisson component of the model. However, a
ZIP model is not appropriate when the non-zero part of the distribution is overdispersed
with respect to a Poisson distribution. Lewsey and Thomson' instead suggested to replace
the Poisson part by a negative binomial distribution to fit caries experience data giving
rise to the zero-inflated negative binomial (ZINB) distribution. The negative binomial part
assumes that the Poisson mean is a random variable following a gamma distribution. In
this paper we will focus on the ZINB regression model.

In Section 2, we describe the distribution of the observed dmft-index of the first year’s
data of the STM study. The ZINB regression model is described in Section 3 and applied
to the dmft-index of the STM study. In Section 4 we describe how to correct for misclassi-
fication in the case of count responses and multiple examiners. In Section 5 we present the
ZINB regression model corrected for misclassification and apply our approach to the STM
study. A discussion of our results is given in Section 6.

2 The Signal-Tandmobiel® study

The STM study involves a sample of 4468 children, representative for Flemish children (7%
of children born in 1989); The children were first examined in 1996 and annually thereafter
for 6 years. Here we have taken the data of the first year of the study, hence the data of
seven-year old children are examined in this paper. However, due to the practical organ-
isation of sampling, the age of the children actually varied from 6.12 years to 8.09 years.
Besides the oral health information, data were collected on dietary habits and oral hygiene
behaviour. For a more detailed description of the STM study we refer to Vanobbergen et
al.?

As can be seen in Figure 1, the distribution of the dmft-index is markedly skewed, with
the majority of the children having a low score for caries experience and a minority with
a high score. About 44% (n = 1913) of 7-year-old children presented without any sign of
caries experience. Further, from Figure 1 it is clear that the estimated Poisson distribution
does not fit the observed distribution of the dmft-index well.

We are interested in establishing the determinants of caries experience. We considered:
age (years), gender (girl = 1), the geographical location (in terms of the z— and y— co-
ordinates) of the school that the child attends, age at start of brushing (years), use of
systematic fluoride supplements (regular use = 1), daily consumption of sugar containing
drinks between meals (yes = 1), intake of in-between-meals (= 1 if greater than 2, 0 other-
wise), and frequency of brushing (= 1 if less than twice a day, 0 otherwise). Vanobbergen
et al.5 considered a logistic regression of the dichotomised (dmft = 0 versus dmft # 0)
response on a similar set of risk indicators, but instead of the x— and y— coordinates they
used 4 dichotomous variables to indicate the five Flemish provinces to which the school of
the child belongs.

Table 1 shows the results of fitting a Poisson regression model to the dmft-index. The
effect of the covariates on the degree of caries experience are the same as those found in the
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FIGURE 1. Signal-Tandmobiel® study: Distribution of the dmft-index among 7-year old Flemish children, B
observed, [ fitted from ZINB model; the dotted line shows the fit of the Poisson model, the broken line shows the
fit of the pooled corrected ZINB model and the solid line shows the fit of the examiner-specific corrected ZINB
model.

logistic model of Vanobbergen et al.® All variables except for gender affect the degree of
caries experience. More importantly, a significant East-West gradient in caries experience
is observed, with higher levels in Limburg (Eastern province of Flanders).

3 The zero-inflated negative binomial model applied to the

Signal-Tandmobiel® study

The ZINB distribution is a mixture distribution assigning a mass of p to “extra” zeroes
and a mass of (1 — p) to a negative binomial distribution, where 0 < p < 1. Note that
the negative binomial distribution is a continuous mixture of Poisson distributions, which
allows the Poisson mean A to be gamma distributed. More specifically, the negative binomial



TABLE 1. Signal-Tandmobiel® study: Maximum likelihood estimates of the multiple Poisson re-
gression model fitted to the dmft-index.

Parameter Estimate(SE) 95% CI

Intercept 0.344(0.040) 0.265 0.423
x-ordinate 0.134(0.012) 0.110 0.157
y-ordinate —0.034(0.012) —0.059 —0.010
Gender (girl) 0.035(0.024)  —0.011 0.082
Age (years) 0.188(0.029) 0.130 0.246
Brushing frequency (< 2) 0.073(0.033) 0.009 0.138
Age start brushing (years) 0.102(0.011) 0.081 0.123
Fluoride supplement (yes) —0.258(0.025) —0.306 —0.210
Sugary drinks (yes) 0.292(0.026) 0.242 0.342
Between meals (> 2) 0.115(0.025) 0.066 0.164

distribution is given by

PT(Y:y)ZFy(ﬁ:(LT;) <ALT)T(AiT)y, y=01--: A\7>0, (1)

where A = E(Y), 7 is a shape parameter which quantifies the amount of overdispersion,
and Y is the response variable of interest. The variance of Y is A + A\?/7. Note that, a
negative binomial distribution approaches a Poisson distribution when 7 tends to oo (no
overdispersion). A ZINB distribution arises as a mixture of a negative binomial and a
distribution degenerated at zero, and is given by

p+ (L =p)(L+ /1), y =0,
=y { (1=p) S B+ MT) (A +7/0)7Y y=1,2,- . ®

The mean and variance of the ZINB distribution are E(Y) = (1 — p)A and var(Y) =
(1—=p)A(14+pA+A/T), respectively. Observe that this distribution approaches the ZIP and
the negative binomial distribution as 7 — oo and p — 0, respectively. If both 1/7 and p ~
0 then the ZINB distribution reduces to the Poisson distribution.

The group of caries-free children, i.e. with dmft = 0, can be thought of as consisting
of two subgroups. The first subgroup corresponds to children who (practically) cannot
have decayed teeth. The assumption here is that some characteristics (genetic, social, envi-
ronmental etc) of the child protect it from having caries. The second subgroup consists of
children prone to caries development. Note that this is only a convenient explanation to jus-
tify the use of the ZINB model. Indeed, the ZINB distribution can also arise from Bernoulli
trials with non-equal success probabilities.”® The overdispersed data are characterized by
“excess zeroes”, “excess large outcomes”, or both. The ZINB model therefore accounts for
these “excess zeroes” and also for the extra heterogeneity in the positive outcome.



The ZINB regression model relates p and A to covariates, i.e.

log(A;) = ;B and logit(p;) = ziy, (i=1,---,n) (3)

where x; and z; are d- and g-dimensional vectors of covariates pertaining to the ith child,
and with 3 and ~ the corresponding vector of regression coefficients, respectively. The
ZINB (minus) log-likelihood given the observed data is

n

L.(8,v 1y X,Z) = Z(1+6227) 4

=1

x;3 -
2:y;=0 T

B
Z <T 1082(@) + i log(1 + T T)) I

1y >0

Z <log (1) +logI'(1 + y;) —log I'(7 + yz)); (4)

3:y; >0

where X = (x1,--- ,x,) and Z = (21, , 2,)-

Parameter estimation can be carried out by the BFGS algorithm as described in No-
cedal and Wright (pp. 193-201).° This technique is a quasi-Newton optimization method
implemented in the optim R-software package. The optimization also requires the first
derivatives of the ZINB model (Appendix A.1).

The ZINB model was fitted to the STM study without covariates. Figure 1 shows clearly
that the ZINB distribution fits the distribution of the observed dmft-index nearly perfectly.

The results of fitting the ZINB regression model to the STM study are shown in Table
2. The East-West gradient (x—ordinate) is significant in both parts of the ZINB regression
model, implying that the degree of caries experience increases from West to East of Flanders
while the excess of the caries-free children decreases. The consumption of sugar containing
drinks is also significant in both parts of the model, implying that the degree of caries
experience is higher while the excess of caries-free children is lower for the children who
took sugary drinks between meals.

Except for gender and the y—ordinate, the other covariates are significant (only) in the
zero-inflated part. The negative regression coefficient for age implies that the older the
children the lower the probability of caries-free children. Further, the negative regression
coefficient for age at the start of brushing implies that the older the children start brushing
their teeth the lower the probability of being caries-free. In addition, the children who
brushed teeth irregularly and those who took more than two in-between-meals have a
lower probability of being caries free. On the other hand, the use of systematic fluoride
supplements increased the chances of being caries free.

The results of the ZINB regression model are somewhat more informative than of the
Poisson regression or the logistic model of Vanobbergen et al.% Indeed, here we show clearly



TABLE 2. Signal-Tandmobiel® study: Maximum likelihood parameter estimates of the multiple
ZINB regression model fitted to the dmft-index.

Negative binomial part

Zero-inflated part

Parameter Estimate(SE) 95% CI Estimate(SE) 95% CI
Intercept 1.045(0.070) 0.907 1.183 0.146(0.148) —0.144 0.437
z-ordinate 0.068(0.020)  0.029 0.107  —0.193(0.045) —0.281 —0.105
y-ordinate —0.033(0.022) —0.075 0.010 0.014(0.046) —0.076 0.103
Gender (girl) 0.034(0.039) —0.043 0.112 —0.010(0.087) —0.180 0.161
Age (years) 0.061(0.050) —0.037 0.159 —0.346(0.109) —0.560 —0.133
Brushing frequency (< 2)  —0.008(0.054) —0.114 0.097 —0.281(0.136) —0.547 —0.015
Age start brushing (years) 0.029(0.018) —0.007 0.065 —0.227(0.044) —0.313 —0.141
Systematic fluoride (yes) —0.081(0.041) —0.161 0.000 0.480(0.088) 0.308  0.652
Sugary drinks (yes) 0.196(0.042)  0.113 0.279 —0.271(0.089) —0.446 —0.095
Between meals (> 2) 0.038(0.042) —0.044 0.120  —0.223(0.096) —0.410 —0.035
log(tau) 1.031(0.090) 0.854 1.208

that many covariates are affecting more the probability of being caries-free and not so much
the degree of caries experience.

4 Adjustment for misclassification applied to count models

4.1 Introduction

The above modelling does not take into account that the scores of the dental examiners
are possibly corrupted. Indeed, at the end of the three calibration exercises the sensitivity
and specificity of each dental examiner vis-a-vis a benchmark examiner (third author) was
determined. There was quite some residual misclassification which needed to be taken into
account in the modelling exercise.

For an excellent review on both measurement error and misclassification we refer to
Gustafson.!® Mwalili et al.® looked at ordinal responses subject to misclassification in a
Bayesian context. Here a technique for adjusting for misclassification of counts (as response)
is proposed in a likelihood and a Bayesian context.

4.2 Count models corrected for misclassification

Let Y* = (yf, - ,vy2)" be the vector of the observed error-corrupted counts arising from
the scoring of one dental examiner. If Y is the vector of the true unobservable responses
obtained by a gold standard and x a vector of covariates and 3 the associated regression



coefficients then

Pr(Y* = y'lz, B) = Y Pr(Y* =y'[Y = y,2)Pr(Y = ylz, ). (5)

Expression (5) consists of (a) the misclassification model for Y* given the true response
and covariates; and (b) the underlying main model of interest. When misclassification is
non-differential, the covariates provide no information about Y* over and above what is
provided by Y, so that (5) becomes

Pr(Y* =y'[z,B) = Zwy*|yPr(Y = ylz, B), (6)
y

with 7+, = Pr(Y* = *|Y = y) the misclassification probability of observing y* instead
of y. The misclassification probabilities can be collected into a m’ x m' matrix II = (m«, ),
where m' = m + 1, with m the maximal value of Y. Expression (6) can be applied to
any misclassified count data distribution by replacing Pr(Y = y|-) with the corresponding
distribution.

When multiple examiners are involved we could either assume that (a) the misclassi-
fication matrix II is the same for all examiners or that it is pooled over the examiners;
or (b) the misclassification matrix varies with examiner. In the latter case expression (6)
depends on the examiner-specific misclassification matrix. Observe that in some analyses
non-differential misclassification for each examiner can result in differential misclassification
overall. Namely, in many large-scale surveys the dental examiners are active in a restricted
geographical area. If & contains a covariate indicating the geographical location of the
dental examiner, then if misclassification depends on the examiner, misclassification will
also indirectly depend on the the geographical covariate. Hence we deal with differential
misclassification overall.

4.3 Misclassification model

To correct for misclassification, we need the probabilities I1. In practice, they are estimated
using validation data and in caries research these data can be obtained from calibration
exercises. A calibration exercise is a small sub-study in which subjects with a variety of
pathologies but also caries-free subjects are scored by each dental examiner and a gold
standard (or at least a benchmark examiner). The objective of the calibration exercise is
to assess the agreement between the examiners and the benchmark examiner.

First, we consider the case of a single examiner. Let VV* denote the examiner score
subject to error and V' the true score that is given by a benchmark examiner obtained
from the validation study. For each subject the dmft-index of V* = a given V = b, falls
into one of m’ categories. This gives rise to a m’ x m’ matrix M = (my,) where my, is the
observed frequency of the classification (V* = a,V = b). We assume that the bth column
of M, i.e. my, follows a multinomial distribution:

my, ~ Multinomial (m., IT), (7)



where Iy, = (mop, Tijp, =+, Tmpp)’s Tapp = Pr(V* = a|V = b) with Y m,p = 1, and my, =

ZT:O Map-
\

The multinomial estimate of g, ie. Top = b is one possibility to estimate the
Ma|b

misclassification probabilities. However, for a Spa;se table M the multinomial estimates
Tafp are either determined with high variability or do not exist, say when the benchmark
examiner did not score ‘b’ in the validation data. Observe that for count data the misclas-
sification table is often sparse. Clearly some modelling of the misclassification probabilities
is needed to overcome this problem. Albert!! suggested for ordinal scores the following
model for conditional misclassification probabilities

1 : _
m lf a = b,
Tap = z&w) . (8)
ooy LaF0,
c#b

with G(a|b) being a positive-valued function of a given b. This model can also be used for
count data.

Therefore, we suggest to model the misclassification probabilities for count data in a
parsimonious way as follows:

log G(alb) = g or 9)
log G(alb) = ap + a1|a —b|, (10)

which gives symmetric misclassification probabilities with one and two parameters, respec-
tively. The symmetric misclassification models (9) and (10) will be referred below to as the
symmetric 1p (one parameter) and the symmetric 2p (two parameter) model, respectively.
Further, the parameterization

log G(alb) = ap + ar(a — b)I(a > b) + as(b — a)l(a < b) (11)

allows for asymmetric misclassification probabilities, where I(z) is an indicator function:
I(x) = 1 if z is true and 0 otherwise. Expressions (9), (10) and (11) imply a reduction of
the parameters to estimate from m to 1, 2 and 3, respectively for each vector II,. Further,
even when the bth column of M contains only zeros, expressions (9), (10) and (11) allow
to estimate m,p,. The log-likelihood of the misclassification model given the validation data

M is
LI, M) = — Z Zmab log m4p, (12)
a b

where 7, is given by expression (8).

Given the analytical first derivatives of the symmetric and the asymmetric misclassifica-
tion model (Appendix A.2), maximum likelihood estimation is straightforward and can be
carried out using the BFGS algorithm.? For the Bayesian analysis of the misclassification
model the software WinBUGS can be used as in Mwalili et al.> When multiple examiners



TABLE 3. Signal-Tandmobiel® pooled validation data: The parameters estimates of both symmet-
ric and asymmetric misclassification model from likelihood and Bayesian (WinBUGS) approach.

Likelihood approach Bayesian approach

Model Estimate(SE) 95% CI AICY Mean(SD) 95% CRi DICt
Symmetric 1p &g —4.416(0.119) —4.65 —4.18 964 —4.418(0.119) —4.66 —4.19 524
Symmetric 2p &y —0.806(0.240) —1.28 —0.34 635 —0.792(0.246) —1.28 —0.29 195

a1 —1.253(0.153) —1.55 —0.95 —1.270(0.157) —1.61 —0.98
Asymmetric a9 —0.483(0.259) —0.99 0.02 556 —0.466(0.256) —0.99 0.03 115

a1 —2.153(0.253) —2.65 —1.66 —2.190(0.255) —2.69 —1.71

ao  —0.676(0.153) —0.98 —0.38 —0.696(0.154) —1.01 —0.41

TAIC — Akaike Information Criterion; DIC — Deviance Information Criterion.
TICR — Credibility Interval.

TABLE 4. Signal-Tandmobiel® examiner-specific validation data: the selected misclassification
model for the 16 dental examiners.{

Examiner 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Misc model A S-1 S2 A A S1 A S-2 S-1 S-2 A S1 A A S2 S1

A = asymmetric; S-1 = symmetric 1p; S-2 = symmetric 2p.

are involved, the total likelihood corresponding to the validation study is the sum of the
expressions (12) each corresponding to an examiner.

We corrected for misclassification in the global sense (pooled over all examiners) and
in an examiner-specific manner. The asymmetric misclassification structure seemed appro-
priate for the global correction (see Table 3). For the examiner-specific correction in most
cases the asymmetric misclassification model seemed best; see Table 4 for the choice of the
misclassification models for each examiner separately.

5 The corrected ZINB applied to the oral health study

The corrected ZINB model is obtained by replacing Pr(Y = y|x, 3) in expression (6) by the
ZINB distribution. Therefore, the total likelihood of the corrected zero-inflated negative
binomial (CZINB) distribution adjusted for misclassification in a pooled manner or when
only one examiner is involved, is
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When multiple examiners are involved, L. is a sum of the examiner-specific log-likelihood
contributions. In order to account for the uncertainty of the misclassification probabilities,
we maximized log-likelihood (13) and misclassification log-likelihood (12) jointly, i.e. the
sum of the two log-likelihoods is maximized. In a Bayesian way the uncertainty of II is
taken into account by sampling simultaneously from the posterior distribution of the main
and of the validation study. This can be done using WinBUGS as exemplified by Mwalili
et al.® for the ordinal logistic regression.

The ZINB model was corrected in a global manner and in an examiner-specific way. The
former approach will be referred to as ‘pooled correction’ while the latter as ‘examiner-
specific correction’. As can be seen in Figure 1 the two correction mechanisms do not
give very different results for the model without covariates. The proportion of caries-free
children from the pooled correction and from the examiner-specific correction are about
45% and 47% respectively, which is a slight increase over the observed 44%.

The results of fitting the corrected ZINB regression model to the dmft-index of the STM
data are shown in Table 4. For the pooled correction, the East-West gradient (z—ordinate)
remains significant in both parts of the corrected ZINB model. In contrast, for the examiner-
specific correction the East-West gradient vanishes in the negative binomial part. The
discrepancy between the two corrections is explained by the fact that the pooled correction
ignores the fact that the misclassification model has become differential.

The ZINB regression model together with the examiner-specific correction shows more
overdispersion (7 = 3.9) than that of the pooled correction (7 = 5.7). Indeed, the variance
of the ZINB distribution is equal to (1 — p)A(1 + pA + A/7)]. Thus, the examiner-specific
correction preserves the negative binomial structure of the dmft-index more than the pooled
correction. The Bayesian results are not shown as they are practically equal to results from
the likelihood analysis.

6 Discussion

Another possible way to account for examiners’ misclassification is to include a dummy
variable for each examiner in the regression model as covariate. This approach does not
need any validation study, and hence looks attractive. However, this approach has at least
two drawbacks: (a) by including a dummy variable in the model one performs a correction,
but not necessarily the correct one; and (b) inclusion of the dummy variable can only
correct for bias and not for variability.



TABLE 5. Signal-Tandmobiel® study: Maximum likelihood estimates of the corrected ZINB re-
gression model fitted to the dmft-index in a pooled and an examiner-specific way.

Pooled correction

Examiner-specific correction

Parameter Estimate(SE) 95% CI Estimate(SE) 95% CI
Negative binomial part
Intercept 1.287(0.068) 1.154 1.421 1.172(0.074) 1.027 1.317
a-ordinate 0.054(0.019)  0.017  0.090 0.041(0.022) —0.001  0.083
y-ordinate —0.029(0.020) —0.068 0.011 —0.017(0.023) —0.062 0.029
Gender (girl) 0.033(0.037) —0.039 0.105 0.044(0.042) —0.038 0.126
Age (years) 0.013(0.047) —0.079 0.105 —0.014(0.055) —0.122 0.094
Brushing frequency (< 2) —0.016(0.049) —0.113 0.080 —0.003(0.055) —0.112 0.106
Age start brushing (years) 0.013(0.017) —0.020  0.047 0.016(0.019) —0.022  0.054
Fluoride supplement (yes) —0.026(0.039) —0.102  0.049 —0.044(0.043) —0.129  0.041
Sugary drinks (yes) 0.158(0.040)  0.080  0.236 0.181(0.045)  0.094  0.269
Between meals (> 2) 0.024(0.038) —0.051 0.100 0.009(0.044) —0.077 0.095
Zero inflated part

Intercept 0.427(0.160) 0.113 0.741 0.355(0.159) 0.043 0.667
z-ordinate —0.213(0.048) —0.308 —0.119 —0.205(0.050) —0.303 —0.107
y-ordinate 0.018(0.048) —0.077 0.113 0.045(0.050) —0.052 0.142
Gender (girl) ~0.007(0.092) —0.187  0.173  —0.011(0.094) —0.194 —0.173
Age (years) —0.455(0.116) —0.683 —0.228  —0.394(0.118) —0.626 —0.162
Brushing frequency (< 1) —0.293(0.141) —0.569 —0.017 —0.301(0.143) —0.582 —0.021
Age start brushing (years) —0.255(0.046) —0.346 —0.165 —0.238(0.046) —0.329 —0.148
Fluoride supplement (yes) 0.582(0.093)  0.400  0.764 0.553(0.094)  0.369  0.737
Sugary drinks (yes) ~0.327(0.095) —0.514 —0.141  —0.305(0.096) —0.494 —0.117
Between-meals (> 2) —0.248(0.100) —0.444 —0.051 —0.226(0.102) —0.426 —0.026
log(tau) 1.737(0.144) 1455  2.019 1.370(0.117) 1141  1.598




Clearly our approach can be applied to all count data models like the Poisson, generalized
Poisson, zero-inflated Poisson Negative binomial, finite mixture of Poisson distribution, etc.
Hence, our proposal is quite general.

Parameter estimation in the likelihood approach was done using R-software calling C++
routines for fast computation of the likelihood and the first derivative. On the other hand
the parameter estimation in the Bayesian approach was done using WinBUGS calling a
faster WBDev (WinBUGS Development) routine. Both the R-software and WinBUGS
program are available from the first author.

Finally, Gustafson!® showed how a non-differential measurement error on a continuous
variable can lead to a differential misclassification model for the dichotomized continuous
variable. In this paper we give another example of how a non-differential misclassification
process can turn itself into a differential process.
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Appendix A First order derivatives

Appendix A.1 ZINB regression model

The first order derivative of £, (expression (4)) with respect to the @ = (3, -, 7)’-parameters:
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where ), = @8, r; = (AE1)7 g = ¢#1Y and logI'(z) = 2220,

T dx

Appendix A.2 Misclassification model

The first order derivative of L£,, (expression (12)) with respect to the a = (o, a, ap)’-
parameters for:

(a) Symmetric misclassification:

(i) Symmetric 1p

I(a #b) — 1) (1 + 3 g(c|b)> 1

c#b

CER ) YL
G 22
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(ii) Symmetric 2p
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Appendix A.3 Corrected ZINB regression model

The first order derivative of L. (expression (13)) with respect to the 8 = (3,~,7)-

parameters:
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where \; = e%i0, ¢, = %7,
Ay = (M= (A +7) log(AET) + (N +7) (=log (1) 4+ logI'(7 + y)) — y), and D; is
the ZINB likelihood of the ¢th individual.
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