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Abstract

For testing a time series of length n for randomness, the sample
lag-k autocorrelations rk = ck/c0, k = 1, 2, ...are generally considered,
where the ck are the sample autocovariances. Under the null hypothe-
sis that the series is generated by a Gaussian white noise process, the
large sample distribution of the statistic is rk ∼ N(0, 1/n). Therefore,
it is a standard to look for significant autocorrelations at the 5% level,
i.e. being larger than 1.96/

√
n in absolute value. The objective of

this paper is to obtain the exact distribution of rk so that exact crit-
ical values or exact p-values can be computed. The method is based
on Imhof (1961) and requires computing the eigenvalues of a n × n
matrix and numerical integration over an infinite interval but where
the truncation error is controlled. The method is valid not only for
Gaussian white noise but under a more general spherically symmetric
white noise process. We show an improvement with respect to alterna-
tive methods and compare it with the above mentioned (Box-Pierce)
limits and other approximations (Ljung-Box, Dufour-Roy) plus a new
one based on a result of Provost and Rudiuk (1995). We also consider
the noncentered autocorrelations for which we derive new results.
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1 Introduction

Sample autocorrelations are one of the main instruments of time series analy-
sis at the specification stage, see Box et al. (1994) and Choi (1992). They
are essentially used to test that a series is a realization of a white noise
process and to assess dependence at various lags. Among the many defini-
tions that have been proposed in the literature, we consider here the most
standard one: given n observations xT = (x1, x2, ..., xn), where ”T” denotes
transposition, the sample autocorrelation at lag k is defined as

rk(x̄) =

Pn−k
i=1 (xi − x̄)(xi+k − x̄)Pn

i=1(xi − x̄)2
, 1 ≤ k ≤ n− 1, (1)

where x̄ =
Pn
i=1 xi/n is the sample mean.

The developments of the current paper are based on the assumption that
the observations x1, x2, ..., xn are a realization of an uncorrelated spherically
symmetric process, which we will call a spherically symmetric white noise
process. A particular case is a Gaussian white noise process having a joint
normal distribution with vector mean µ and covariance matrix σ2In. A
white noise process with no other qualification will be implicitly spherically
symmetric.

In the Gaussian case, Pan Jie-Jian (1968) obtained an integral represen-
tation for the distribution of r1(x̄). Provost and Rudiuk (1995), also in the
Gaussian case, obtained an explicit representation (see Equation (15)) for
the distribution of rk(x̄) for any lag k = 1, ..., n − 1. Their representation
is quite complex and, although it involves three infinite sums, they give no
indication on how to deal with the truncation errors.

Using the approach of Imhof (1961) for inverting the characteristic func-
tion of quadratic forms in normal variables, through numerical integration,
Ali (1984) obtained the exact distribution of rk(x̄) for a Gaussian station-
ary autoregressive moving average process, and investigated the adequacy of
the normal, Edgeworth-type expansions and Pearson distributions. Recent
papers with related interests are due to Provost and Rudiuk (1996), Butler
and Paolella (1998), Forchini (2002), Paolella (2003)

Our work overlaps with that of Ali (1984) in the sense that we also use
the approach of Imhof (1961) to treat the case of a white noise process,
but we have dealt with the more general case of a spherically symmetric
white noise and the matrix for which eigenvalues need to be computed is
much simpler. Further, given the importance of this particular case, we have
sought to refine his analysis. More precisely, we paid more attention to the
numerical aspects of the implementation, and investigated new and classical
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approximate distributions which have not been investigated by Ali (1984).
Indeed,

i) we have been able to control more simply for numerical errors when
approximating the integral in (13) (see Subsection 2.3 ),

ii) we have compared two numerical methods for computing the eigen-
values involved in the computation of the exact distribution with the
aim of using the most efficient (see Section 2.3.3),

iii) we have proposed a new approximation to the exact distribution and
investigated its adequacy and the adequacy of four other approximate
distributions of which only one was investigated by Ali (1984).

The following simpler alternative to (1) is sometimes considered, see e.g.
Anderson, 1970, p. 254:

rk(0) =

Pn−k
i=1 xixi+kPn
i=1 x

2
i

, 1 ≤ k ≤ n− 1. (2)

The above definition can be considered as (1) applied to the centered series
{x1 − x̄, x2 − x̄, ..., xn − x̄}. It can be used when there is some reason to
believe that the mean is zero, as for model residuals.

Most theoretical results are concerned with the noncentered sample au-
tocorrelation rk(0). The computation of its exact distribution is rendered
computationally less demanding ; its symmetry about the origin is proved
and new results on the moments are established. In particular, the expres-
sions of the first four moments about the origin of rk(0) given by Equations
(34) of Provost and Rudiuk (1995) are simplified. On the other hand, since
the true mean of a process is generally unknown; we have investigated the
question ”what is the risk incurred if rk(0) is used instead of rk(x̄) when
the true mean is unknown?”. A tentative answer is given in Section 5.

The sequel of this paper is organized as follows. The exact distribution
is derived and the numerical aspects of its implementation are discussed
in Section 2; it is shown that, apart from rounding-off errors, we can have
control over all sources of error. In Section 3.1 the classical asymptotic ap-
proximations to the exact distribution of rk(x̄) are reviewed. In Section 3.2
a new approximation to the exact distribution is proposed. In Section 4 the
exact distribution of rk(0), which may be used as a new approximation to
the distribution of rk(x̄), is derived and new results are stated. In Section
5, the accuracy of all the approximations is investigated by examining the
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deviations of the approximate critical values from the exact ones, for some
levels and for some sample sizes n and lags k. General conclusions about
the tests based on those approximations are drawn and recommendations on
their use are given. In Section 6, the various tests are applied to examples
taken from the literature. Numerical implementation of the different algo-
rithms and simulation experiments throughout our work has been conducted
using Fortran.

2 The exact distribution of centered autocorrela-
tions

2.1 A representation of Pr(rk(x̄) ≤ r)

In matrix notation, rk(x̄) can be written as

rk(x̄) =
xTBkx

xTB0x
, (3)

where
Bk = V AkV,
V = In − 1

nε
Tε, where ε = (1, ..., 1),

Ak =
1
2(Lk + L

T
k ),

(4)

and Lk is a null matrix with the zeros in its k-subdiagonal replaced by 1’s.
Note that if we put A0 = In, B0 = V A0V = V, V being idempotent.

In this Section, we will be concerned by the exact distribution function
of rk(x̄) under the null hypotheses that the series x1, x2, ..., xn is generated
by a spherically symmetric white noise process with mean vector µ and
covariance matrix σ2I. Because rk(x̄) is location and scale invariant, we will
assume in the sequel, without loss of generality, that µ = 0 and σ = 1. Note
that we are placed in a more general context than the counterpart method
of Provost and Rudiuk (1995), which is restricted to the Gaussian case, with
the unnecessary condition µ = 0.

The distribution of rk(x̄) can be written as

Pr(rk(x̄) ≤ r) = Pr(x
TV AkV x

xTV x
≤ r), (5)

with x,Ak, V as defined in (4). The matrix V AkV is symmetric, so it can
be diagonalized as

PTV AkV P = Λ,
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where Λ =diag(λ1,λ2, . . . ,λn) is a diagonal matrix with eigenvalues on its
main diagonal and P an orthogonal matrix of corresponding eigenvectors.
Next, we make the orthogonal transformation z = PTx. The quadratic form
xTV AkV x reduces then to zTΛz where z has mean 0 and covariance matrix
In. On the other hand, because V AkV and V commute, then they can be
simultaneously diagonalized with the same orthonormal matrix P (see Horn
and Johnson, 1990, p. 235). Hence, noting that the rank of V is n− 1 and
that all its nonzero eigenvalues are equal to one (since V is idempotent),
we see that xTV x = zT I0nz, where I

0
n is the identity matrix with the n-th

diagonal element replaced with 0:

Pr {rk(x̄) ≤ r} = Pr
(Pn−1

i=1 λiz
2
iPn−1

i=1 z
2
i

≤ r
)
= Pr

(
n−1X
i=1

(λi − r)z2i ≤ 0
)

(6)

Putting αi := λi − r, we get

Pr {rk(x̄) ≤ r} = Pr
(
n−1X
i=1

αiz
2
i ≤ 0

)
. (7)

Let us remark that V AkV has generally k eigenvalues equal to 0 for 1 < k <
n/2. We have to substract r from all of the eigenvalues except from exactly
one of the null eigenvalue, whatever it is.

Recall that if X and µ are n × n vectors with X random and µ fixed,
then X is said to have a spherically symmetric distribution about µ if and
only if G(X − µ) has the same distribution as X − µ for all orthogonal
n× n matrices G. The class of spherically symmetric distributions includes
such distributions as the multivariate normal and the multivariate Student-
t with covariance matrix σ2In, the multivariate Cauchy, the multivariate
exponential, etc. (see Johnson and Kotz, 1972).

Dufour and Roy (1985) have shown that the distribution of the rk(x̄)
for any spherically symmetric distribution about 0 is the same as the dis-
tribution of rk(x̄) for a Gaussian white noise. We will therefore assume
in the sequel that our series x1, x2, ..., xn (and consequently z1, z2, ..., zn) is
generated by a Gaussian white noise process, bearing in mind that the de-
rived results will hold even if x1, x2, ..., xn was generated by any spherically
symmetric white noise process.

The characteristic function of
Pn−1
i=1 αiz

2
i can be obtained and inverted

numerically, using Imhof (1961), to evaluate (7). This is detailed because
we have to discuss the numerical properties of our solution.
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2.2 Inversion of the characteristic function of
Pn−1

j=1 αjz
2
j

Suppose the xj ’s (j = 1, ..., n) have a Gaussian distribution, then the zj ’s
also have a Gaussian distribution and, consequently, the z2j ’s (j = 1, ..., n−1)
are independent χ2-distributed variables with one degree of freedom. The
characteristic function of z2j is thus given by (see e.g. Manoukian, 1986)

hj(t) = (1− 2it)−1/2. (8)

Since the characteristic function of αjz2j equals hj(αjt), the characteristic
function of

Pn−1
j=1 αjz

2
j is given by

φ(t) =
n−1Y
j=1

(1− 2iαjt)−1/2. (9)

We will now obtain (7) by means of the inversion formula (whose general
form is due to Gil-Pilaez, 1951)

Pr


n−1X
j=1

αjz
2
j ≤ 0

 =
1

2
− 1

π

Z ∞

0

1

t
Im [φ(t)] dt. (10)

The approach of Imhof (1961), given with more details by Koerts and Abra-
hamse (1969), allows to express Im [φ(t)] in known quantities, as follows.
Let 1− 2iαjt = rjeiθj , where rj = (1 + 4α2j t2)1/2 and θj = − arctan(2αjt).
We have

φ(t) = (
n−1Y
j=1

(1 + 4α2j t
2)−1/4)ei

1
2

Pn−1
j=1 arctan(2αjt).

The imaginary part of φ(t) is given by

Im [φ(t)] = sin [arg φ(t)] |φ(t)| sin
1
2

n−1X
j=1

arctan(2αjt)

 n−1Y
j=1

(1 + 4α2j t
2)−1/4.

After the substitution u = 2t is made, we obtain

Pr {rk(x̄) ≤ r} = 1

2
− 1

π

Z ∞

0

sin ε(u)

uγ(u)
du, (13)

where

²(u) =
1

2

n−1X
j=1

arctan(αju), γ(u) =
n−1Y
j=1

(1 + α2ju
2)1/4. (14)
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It is worth noting that the representation of the distribution function
of rk(x̄) given by (13) is greatly simpler than the following one, given by
Provost and Rudiuk (1995):

Pr {rk(x̄) ≤ r} =
∞X
v=0

∞X
w=0

∞X
j=0

KvK
0
w

Γ(ρ1+ρ22 + v +w + j)

(ρ12 + v)j+12
ρ1+ρ2
2

+v+w+j
, (15)

where ρ1 and ρ2 are the numbers of eigenvalues λi of V AkV such that,
respectively, λi − r > 0 and λi − r < 0, (α)β = Γ(α+ β)/Γ(α),

Kv =
X

v1+...+vρ1=v

(
Y

j:λj−r>0
µ
− 1
2

j )
(12)v1 ...(

1
2)vρ1 c

v1
1 ...c

vρ1
ρ1

v1!...vρ1 !Γ(v +
ρ1
2 )

,

with µj = 2(λi − r)/θ, cj = (µj − 1)/µj , and

K 0
w =

X
w1+...+wρ2=w

(
Y

j:λj−r<0
µ
− 1
2

j )
(12)w1 ...(

1
2)wρ2d

w1
1 ...d

wρ2
ρ2

w1!...wρ2 !Γ(w +
ρ2
2 )

,

with µj = −2(λi − r)/θ, dj = (µj − 1)/µj , .

2.3 Numerical implementation

2.3.1 Upper bound of integration

In the present section we explain how to use numerical methods of integra-
tion to compute the integral in (13). The function uγ(u) increases monoton-
ically towards infinity. Therefore, the integration in (13) will be carried out
over a range 0 ≤ u ≤ U only. We will get the approximation

Pr {rk(x̄) ≤ r} ' 1

2
− 1

π

Z U

0

sin ε(u)

uγ(u)
du . (16)

The degree of approximation obtained will depend (apart from rounding-
off errors) on the error of integration, resulting from the use of an approxi-
mate rule for computing the integral, and the error of truncation. Denote

tU =
1

π

Z ∞

U

sin ε(u)

uγ(u)
du, (17)

which can be bounded above as follows

|tU | = 1

π

¯̄̄̄Z ∞

U

sin ε(u)

uγ(u)
du

¯̄̄̄
≤ 1

π

Z ∞

U

1

u
Qn−1
j=1 (1 + α2ju

2)1/4
du. (18)
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Further, the inequality (1 + α2ju
2)

1
4 > (α2ju

2)
1
4 = |αj |

1
2 u

1
2 implies

mY
j=1

(1 + α2ju
2)1/4 >

mY
j=1

|αj |
1
2 u

m
2 , (19)

where α1, ...,αm are the non-zero elements of α1, ...,αn−1. Thus

|tU | ≤ 1

π

Z ∞

U

 mY
j=1

|αj |
1
2

−1 u−m
2
−1du =

2

mπ

 mY
j=1

|αj |
1
2

−1 U−m
2 := TU .

The numerical integration over the range 0 ≤ u ≤ U can thus be carried
out using the following procedure:

1. Specify the truncation error ε you are willing to accept.

2. Determine the corresponding value of U by taking TU = ε, then deduce

U =

 2

εmπ
Qm
j=1 |αj |

1
2

 2
m

. (21)

Note that the upper bound of the integral is computed here explicitly unlike
in Imhof (1961) where the computation of U for a general quadratic form
does not seem feasible, and according to Imhof (1961,p. 423): ”One can
hopefully expect that TU will often be satisfactorily small, even for moderate
values of U”. Results for U are provided in Table 17. For the exact distrib-
ution of the sample autocorrelations of an ARMA process, the computation
of U is feasible but less straightforward (Ali, 1984).

2.3.2 Numerical integration

The integral in (16) can be computed using a numerical rule of integration.
In this paper we have used Simpson’s rule. If u = 0, we take the limiting
form (Imhof, 1961)

lim
u→0

sin ε(u)

uγ(u)
=
1

2

n−1X
i=1

αi. (22)

In computing the exact distribution of rk(x̄), we performed the numerical
integration following the procedure outlined in Subsection 2.3, allowing for a
truncation error of less than 10−10, and using Simpson’s rule as implemented
in subroutine QSIMP of Press et al. (1988, p. 133) where the integration
error was set to 10−6.
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2.3.3 Computation of eigenvalues

The eigenvalues of the n×n symmetric matrix V AkV involved in the exact
distribution are computed using two different methods: the QL method and
the Maehly version of Newton’s method.

• The QL method consists of two stages: First, V AkV is reduced to
a tridiagonal form T by n − 2 orthogonal transformations using the
Householder algorithm as is classically done for a general real sym-
metric matrix. Second, the QL algorithm is used to compute the
eigenvalues of T. A detailed description of the two stages is found in
Wilkinson and Reinsch (1971) and Press et al. (1988). The numerical
implementation uses subroutines TDIAG and LRVT of Algorithm AS
60.2 given in Sparks and Todd (1973).

• The Maehly version of Newton’s method is described in Stoer and Bu-
lirsch (1980) and an algorithm is given. A brief outline of the method
is given in Appendix B. Proposition 7 therein provides the method
with an initial value.

Preliminary comparisons have revealed that the QL method is faster.
Details are omitted for reasons of lack of space.

3 Approximate distributions

3.1 The asymptotic distributions of the centered sample au-
tocorrelations

Tests for white noise that use the sample autocorrelation rk(x̄) are usually
based on the asymptotic normal distribution with mean 0 and approximate
variance 1/n (Box and Pierce, 1970):

rk(x̄) ∼ N(0, 1
n
), (23)

or on the asymptotic normal distribution with mean 0 and approximate
variance (n− k)/n(n+2) (which are the exact mean and variance of rk(0))
(Ljung and Box, 1978):

rk(x̄) ∼ N(0, n− k
n(n+ 2)

). (24)
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Replacing the approximate mean and variance by the exact mean and the
exact variance we get the asymptotic normal distribution (Dufour and Roy,
1985)

rk(x̄) ∼ N(− n− k
n(n− 1) ,

(n− k)(n− 2)(n2 + n− 2k)− 2n(n− 1)(n− 2k)+
n2(n− 1)2(n+ 1) ),

(25)
where (a)+ = max{a, 0}.

The mean of (25) was given by Moran (1948), Dufour and Roy (1985),
and Anderson (1990) and was shown by Dufour and Roy (1985) to hold
whenever x1, x2, ..., xn are exchangeable. The variance of (25) was given by
Moran (1948) for k = 1 under normality; by Dufour and Roy (1985) for
any k under spherical symmetry, and by Anderson (1990) for any k under
normality).

In order to investigate the accuracy of the above-mentioned normal ap-
proximations, Dufour and Roy (1985) conducted Monte Carlo experiments
and examined the empirical frequencies of rejection of the null hypothesis of
white noise by tests-based on the standardized statistics- with three different
nominal levels (0.05, 0.1 and 0.2). For each value of n and k, they consid-
ered three types of tests: one-sided tests against positive serial dependence,
one-sided tests against negative serial dependence, and two-sided tests.

As an alternative to Dufour and Roy (1985) approach, we will rather
investigate the accuracy of the approximations (23), (24), (25), and two
others to be introduced in Sections 3.2 and 4 by using the exact distribution
function of the sample autocorrelations rk(x̄). The advantage of the new
approach is that for any combination (n, k), all the distributions can be
compared at every point of the interval [−1, 1], not only at a few selected
critical values, and can be compared at every point of the interval [0, 1], not
only at a few significance levels. Further details will be given in Section 5.

3.2 A new approximate distribution of rk(x̄)

The evaluation of the exact distribution of rk(x̄) requires the computation of
the exact eigenvalues of V AkV, which become computationally costly when
n is large. To overcome this difficulty we propose a new approximation
whose derivation requires the eigenvalues of Ak. These are given explicitly
in the following:

Proposition 1 (Provost and Rudiuk (1995)) The eigenvalues of the ma-
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trix Ak, defined in (4), are

µi,n = µkj−l,km+l0 = cos
jπ

m+ 1
if l0 < k − l (26)

µi,n = µkj−l,km+l0 = cos
jπ

m+ 2
if l0 ≥ k − l, (27)

where

i = kj − l, j ≤ n+ l
k
, l = 0, 1, ..., k − 1, (28)

and

n = km+ l0, l0 = 0, 1, ..., k − 1, m ≤ n− l
0

k
. (29)

The eigenvector corresponding to the eigenvalue µi,n = µkj−l,km+l0 is denoted
by xi,n and its components are

xi =

½
sin(u jπ

m+1), i = uk − l, u = 1, ..., [n+lk ]

0 otherwise.

The row vectors x0i,n, i = 1, ..., n, form an orthogonal matrix.

We deduce the following proposition in Appendix 1.

Proposition 2 The eigenvalues µi,n (i = 1, ..., n) of Ak occur in pairs of
opposite signs. That is, if µi,n is an eigenvalue of Ak, then so is −µi,n. More
precisely,

µn−i+1,n = −µi,n.

Provost and Rudiuk (1995) seem not to have noticed this useful result.
In Section 4 we use it to prove the symmetry of the exact distribution of
rk(0) and give simplified forms for its moments.

Now, the eigenvalues λi,n of V AkV could be approximated using the
asymptotic result of the following conjecture.

Conjecture 3 Consider the n × n matrices Ak and V defined in (4). Let
µ1,n ≥ .... ≥ µn,n be the eigenvalues of Ak, let µ

∗
1,n ≥ .... ≥ µ∗n,n be the

eigenvalues of Ak where µ1,n is replaced with 0, and let λ1,n ≥ .... ≥ λn,n be
the eigenvalues of V AkV. Then,

lim
n→∞λi,n = µ

∗
i,n, i = 1, ..., n.
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This conjecture means that the eigenvalues of V AkV are asymptotically
the same as those of Ak, except that the largest eigenvalue of the latter
should be replaced with 0.

Large scale numerical experiments have given evidence that the λi,n(V AkV ) =
λi,n are well approximated by µ∗i,n(Ak) = µ

∗
i,n for all i = 1, ...n, even for small

values of n, as is shown in the following table for some combinations of n and
k. The table entries contain the largest differences

¯̄̄
λi,n(V AkV )− µ∗i,n(Ak)

¯̄̄
over all i = 1, ..., n.

k
n 1 2 3 7 15 20

10 2.8× 10−2 5.8× 10−2 6.2× 10−2
100 3.9× 10−4 1.5× 10−3 2.3× 10−3 8.8× 10−3
400 2.5× 10−5 1.0× 10−6 2.0× 10−4 9.1× 10−4 4.3× 10−3
500 1.6× 10−5 6.4× 10−5 1.4× 10−4 6.5× 10−4 2.3× 10−3 5.8× 10−3
700 8.2× 10−6 3.3× 10−5 6.9× 10−5 3.9× 10−4 1.6× 10−3 3.1× 10−3

Let r be a real number and α∗j = µ∗j,n(Ak) − r, the exact distribution
function of rk(x̄) can thus be approximated by

Pr {rk(x̄) ≤ r} = 1

2
− 1

π

Z ∞

0

sin ε∗(u)
uγ(u)

du, (30)

where

²∗(u) =
1

2

n−1X
j=1

arctan(α∗ju), γ∗(u) =
n−1Y
j=1

(1 + α∗2j u
2)1/4.

The numerical results of Section 5 show that the above approximation to
(13) is quite accurate even for very small sample sizes. Before that, let
us also consider the centered autocorrelation which can also be used as an
approximation of the noncentered autocorrelation.

4 The exact distribution of the noncentered auto-
correlations

In this section we establish new results on the exact distribution of rk(0) for
a spherically symmetric white noise process. More specifically, we

i) render the exact distribution of rk(0) computationally less demanding,
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ii) prove that the exact distribution of rk(0) is symmetric about the origin,

iii) establish new results on the moments,

iv) assess the risk incurred if rk(0) is used instead of rk(x̄), when the true
mean is unknown.

Using the same arguments as for rk(x̄), it is easy to see that

Pr {rk(0) ≤ r} = Pr
©
xT (Ak − rIn)x) ≤ 0

ª
= Pr

(
nX
i=1

(µi − r)z2i ≤ 0
)

=
1

2
− 1

π

Z ∞

0

sin
h
1
2

Pn
j=1 arctan((µj − r)u)

i
u
Qn
j=1(1 + (µj − r)2u2)1/4

du, (31)

where the µj ’s are the eigenvalues of Ak. Their explicit expression and some
of their properties were given in Propositions 1 and 2. The following is
proved in Appendix 1.

Proposition 4 The distribution of rk(0), at any lag k, of a spherically sym-
metric white noise process, is symmetric around 0. That is, for any real
number r,

Pr(rk(0) ≤ −r) = Pr(rk(0) ≥ r).

Note that Watson and Durbin (1951) have given a closed-form expres-
sion for the exact distribution of r1(0) and pointed out its symmetry, in
the Gaussian case. To our knowledge, apart from this paper, no such state-
ment has been made regarding rk(0) for higher lags. Note also that the
exact distribution function of rk(x̄) is not symmetric about the origin since
E(rk(x̄)) = −(n − k)/n(n + 2) (which is different from 0), and rk(x̄) takes
on values on [−1, 1] .

Corollary 5 Odd order moments about the origin and odd order cumulants
of the noncentered sample autocorrelations rk(0) of a spherically symmetric
white noise process are zero.

We also have the following corollary of Proposition 2.

Corollary 6 Consider the n× n matrix Ak defined in (4). Then
tr(A2i+1k ) = 0, for all i = 0, 1, 2, ...
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It is known that the moments and cumulants of the quadratic forms in
n independent standardized variables are identified with the traces of the
matrix of the form (Ak in our case). Refer to Mathai and Provost (1992)
for more details. The above corollary could therefore be used to simplify
those moments and cumulants. For example, it is quite useful for simplifying
the following expressions of the first four moments about the origin of rk(0)
given by Provost and Rudiuk (1995, Equations (34)):

µ01 =
trAk
n

µ02 =
2trA2k + (trAk)

2

n(n+ 2)

µ03 =
8trA3k + 6trA

2
ktrAk + (trAk)

3

n(n+ 2)(n+ 4)
(32)

µ04 =
48trA4k + 32trA

3
ktrAk + 12trA

2
k(trAk)

2 + 12(trA2k)
2 + trAk

n(n+ 2)(n+ 4)(n+ 6)
.

Using the above corollary, Equations (32) simplify to

µ01 = µ
0
3 = 0, µ

0
2 =

2trA2k
n(n+ 2)

, µ04 =
48trA2k + 12(trA

2
k)
2

n(n+ 2)(n+ 4)(n+ 6)
. (33)

5 Numerical Results

In the present section we compare the distributions considered in Sections
2, 3 and 4. The comparison was carried out using two methods:

i) Graphically, at every point of the interval [−1, 1], but for a limited
number of sample sizes and time lags. This is particularly useful when
we need to pay more attention to specific sample sizes and time lags,
and

ii) Numerically, by comparing the critical values, associated with the stan-
dard significance levels, of the various distributions by considering a
wide range of sample sizes and time lags.

General conclusions about the tests based on the above distributions are
drawn and a few recommendations on their use are given.
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5.1 Graphical comparisons

In Figure 1 is plotted the graphs of all the distribution functions considered
in the paper. These have been evaluated at 101 equally-spaced points on
the interval [−1, 1]. We considered several values of (n, k) but only the case
(10, 1),is shown here. The graphical comparisons are particularly useful
when we need to get additional insight in specific cases of sample sizes and
time lags without any restriction on the significance level.

5.2 Critical values, exact case

For testing purposes, it is useful to obtain critical values. Here we use the
bisection method for computing lower critical values r of order α on the basis
of the distribution function F (r) = Pr(rk(x̄) ≤ r) = α. Let r1 and r2 be such
that F (r1) < α and F (r2) > α and compute F (r) for r = r̄ = (r1 + r2)/2.
If F (r̄) < α, then we replace r1 by r̄; otherwise we replace r2 by r̄. This
procedure is iterated until |r1 − r2| becomes smaller than a preassigned level
² ( which was set to 10−6 in the numerical implementation).

Tables 1 through 4 report the lower critical values ραk,n (associated with
the significance levels α = 0.025, 0.05, 0.95 and 0.975) of the exact distri-
bution of rk(x̄) for (n, k) such that n = 4, ..., 50 and k = 1, ..., [n/3]. The
Fortran 77 program allowing to obtain other tables is available from the
authors (http://homepages.ulb.ac.be/~gmelard).

5.3 Critical values, a tabular comparison

Table 5 reports the lower critical values ραk,n of the exact distribution of

rk(x̄) together with the deviations from it of the lower critical values ρ̃l,αk,n
of the various approximate distributions for the following combinations of k
and n :

k
10 1 3

n 20 1 3 7
50 1 3 7 15
100 1 3 7 15 20

(34)

We make the following observations:
First of all, the following remark is of order: any tentative to draw a

general conclusion from the above table would be very awkward; one should
be specific at least about the levels and the sample size. The following
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features are, however, worth noting although their validity is limited to the
cases in hand.

For levels 0.025 and 0.05, the AM approximation generally gives the best
approximation to the exact critical values. On the other hand, it system-
atically leads to non conservative tests of autocorrelation for all considered
lags and sample sizes.

For levels 0.95 and 0.975, the Dufour-Roy approximation is generally the
most precise and gives conservative tests for practically all considered sample
sizes and lags. The AM approximation comes second regarding precision but
always leads to conservative tests of autocorrelation.

Based on the two previous paragraphs, we conjecture that the use of the
AM approximation for lower tails and the Dufour-Roy approximation for
upper tails would give us tests with the most precise size.

For n = 50, 100 and for all considered critical values and autocorrelation
orders, the error on the critical values is never larger than 0.007 for the
AM approximation and never larger than 0.009 for the Dufour-Roy approx-
imation. These two approximations are clearly more convenient for small
samples than the other considered approximations.

The classically used approximation of Box-Pierce could be considered as
satisfactory for levels 0.025 and 0.05 but as rather poor for levels 0.95 and
0.975. It is even the poorest approximation for these levels and gives the
most conservative tests of autocorrelation.

Now let us address the following question which was already asked in
the introduction: ”what is the risk incurred if rk(0) is used instead of rk(x̄)
when the true mean is unknown ?”:

Table 5 shows that dropping x̄, by using the exact distribution of rk(0),
leads to quite large errors on critical values for n = 10, 20 and 50. Indeed,
the error can be as large as 0.105 for n = 10, k = 1 and α = 0.95, and about
0.01 for n = 100 and for all lags and levels.

5.4 Critical values, a graphical overview

Now, Figures 2 through Figure 5 give us a general view of the accuracy of
all approximations.

On Figures 2 and 3 are plotted, for each autocorrelation lag k, the mean
absolute deviation (MAD) obtained by averaging over sample sizes n =
Kk, ..., 50, where Kk = max(3k, 4), the absolute values of the errors on the
critical values of the various approximations, subscripted by l, to the exact
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distribution:

MADl,αk =
1

51−Kk
50X

n=Kk

¯̄̄
ραk,n − ρ̃l,αk,n

¯̄̄
.

It emerges from those figures that, for levels 0.025 and 0.05, the AM approx-
imation outperforms all the other approximations for almost all lags, and is
even far superior for high lags. For levels 0.95 and 0.975, the Dufour-Roy
approximation is globally the best approximation but it only slightly outper-
forms the AM approximation and the difference gets less and less significant
as the lag increases.

On Figures 4 and 5 are plotted, for each sample size n, the MAD com-
puted by averaging over lags k = 1, ..., bn/3c , the absolute values of the
errors on the critical values of the various approximations to the exact dis-
tribution:

MADl,αn =
1

bn/3c
bn/3cX
k=1

¯̄̄
ραk,n − ρ̃l,αk,n

¯̄̄
.

For levels 0.025 and 0.05, and for all sample sizes larger than n = 15,
the AM approximation is in average the most accurate, but for n = 4, ..., 15
the picture is less clear-cut. For levels 0.95 and 0.975 and for sample sizes
n ≥ 5, the approximations may be ordered in the following descending order
of accuracy: Dufour-Roy, AM approximation, Box-Pierce, Exact (of rk(0))
and Ljung-Box. Note that the AM and Dufour-Roy approximations are
almost coincident.

6 Examples

The autocorrelation tests, for lags k = 1, ..., [n/3], based on the exact and
approximate distributions of rk(x̄) were applied to the series described in
the following two examples. The sample autocorrelations, jointly with the
p-values (p) (significance levels) associated with the two-sided tests based on
the various distributions, are reported in Table 2 and Table 3. Let F denote
either the exact or an approximate distribution function of rk(x̄). For a
double-sided test, the p-value for an observed sample autocorrelation r is by
definition, p = 2min(1−F (r), F (r)). For one-sided tests against positive or
negative autocorrelation, these p-values are to be divided by 2.
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6.1 An example of Bartels (1982)

Bartels (1982) considered the following series of first differences of annual
deflated aggregate undistributed income in corporate trading enterprises
(n = 18):

−82.29,−31.14, 136.58, 85.42, 42.96,−122.72, 0.59, 55.77, 117.62,
18.88,−48.21,−63.70,−10.95,−211.38,−304.02, 30.72, 238.19, 140.98.

These data were also used by Hallin and Mélard (1988) to illustrate rank
autocorrelations but the some of the data were badly reported (the first
three values of the second line were moved at the end). We see from Table
6 that the exact test is significant for autocorrelations at lag 1 at the level
of 0.05. Only the tests based on the AM and Dufour-Roy approximate
distributions could detect that significant autocorrelation. This stresses once
more the need in small sample size cases to use tests based on either the
exact distribution or one of its approximations: AM or Dufour-Roy rather
than the more traditional Box-Pierce limits.

6.2 Log forward-log spot prediction errors

As explained in Dufour (1981), a standard problem in studies of foreign ex-
change market consists in testing whether the forward exchange rate Ft is an
’optimal’ predictor of the corresponding future spot rate St+1, both usually
in log form. This is usually interpreted as implying that the errors of pre-
diction St+1−Ft have mean zero and are uncorrelated. Like Dufour (1981),
we will consider here the case where St is the logarithm of the exchange
rate between the German Mark and the US Dollar (DM/$US) and Ft is the
logarithm of the one-month forward exchange rate, during the interesting
episode of the German hyperinflation. The series studied is monthly and
covers the period January 1921-August 1923.

We see from Table 7 that no test is significant (at a level of less than
0.09) for any of the lags considered. The exact test is significant at a level of
0.103 for lag 1. It has greater significance levels for greater lags. If we test
against positive dependence only, the significance level for lag 1 is 0.0515.

Dufour (1981) applied a signed-rank test to the same data. The two-sided
test was found to be significant for lag 1, with significance level 0.047. The
one-sided test against positive autocorrelation was found to be significant
with significance level 0.024 for lag 1 (0.050 and 0.057 for lags 2 and 3).

This discrepancy between Dufour’s test and ours deserves some remarks.
Dufour (1981) method is nonparametric and assumes only marginal symme-
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try. Moreover, the series in hand exhibits signs of non-normality and het-
eroskedasticity, which pose no problem to Dufour’s method, but they prob-
ably do for our method. We have seen before that for the latter method,
deviation from normality poses no problem as far as the distribution remains
spherically symmetric. Extension to processes with symmetric marginal dis-
tribution deserves to be investigated. On the other hand, heteroskedastic-
ity may favor Dufour’s method over ours. A study of robustness to het-
eroskedasticity may be needed.

6.3 An example of Provost and Rudiuk (1995)

The numerical computation of the exact distribution is corroborated by a
numerical example. For comparison purposes, we consider the example of
Provost and Rudiuk (1995) of a series of length 7. The exact distribution
of the autocorrelation at lag 2 is computed using our exact method and
the exact method of Provost and Rudiuk (1995) Exact(PR). The distrib-
ution values taken at points r = −0.5 : 0.1 : 0.4 by the two approaches
are compared with the empirical distribution values obtained by generating
5000000 series of observations from independent standard normal variables.
This was carried out by computing the inverse of the normal distribution
function (using Function PPND of Algorithm AS11) of pseudo-random num-
bers between 0 and 1, generated using Function RANDOM of Algorithm AS
183, where the seeds IX, IY and IZ were set to 14, 4 and 1966 respectively.

From Table 8 we observe that the distribution values given by the AM
method are closer to the empirical values (EMPIRICAL) than the distribu-
tion values given by the PRmethod. Indeed, the difference |EMPIRICAL− PR|
is as large as 0.0039 for r = −0.3 while |EMPIRICAL−AM| is never larger
than 0.0003. This shows that our method is numerically more accurate than
Provost and Rudiuk (1995) method. This can be explained by the fact that
in their method three infinite sums and one infinite integral are involved,
without the ability to control the truncation errors. At the opposite, our
method uses a simpler representation that allows us to have control over
truncation error.

7 Simulation results

It is clear from Section 2 that our exact distribution is based on the as-
sumption of normality. It seems natural to use that exact distribution for
Gaussian white noise processes as an approximation for the other distrib-
utions which may be more accurate than the asymptotic distribution We
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want to examine the quality of that approximation in some cases. We have
generated 10000 series of length 40 from white noise processes using the
following distributions: (a) normal, (b) uniform, (c) double exponential, (d)
Cauchy, (e) Student with 2 degrees of freedom, (f) logistic. This was done
using RANDOM (Wichmann and Hill, 1982).and the inverse method except
for (d) and (e) and PPND (Beasley and Springer, 1977). We have consid-
ered the first 10, 20, 30 and all observations from each series and computed
the autocorrelations for each lag from 1 to 4 (if n = 10), 9 (if n = 20), 14
(if n = 30 or 40). The difference d between the empirical quantiles from
the simulations and the normal exact quantiles are displayed in Table 10.
According to these results, using the normal exact critical values provides
a conservative test for most of the distributions tried except the uniform
distribution.and sometimes the logistic distribution.

We have considered the empirical distribution, over all simulations, of
the p-values obtained from the Gaussian exact distribution. The average
and standard deviations should be respectively 0.5 and 0.29.

Table 11. Kolmogorov-Smirnov test statistics for testing uniformity of the
p-values of the test of white noise based on autocorrelation at lag k using
the normal exact distribution for 10000 white noise time series of length n
generated using the specified distributions. Values in italics are significant
at the 5% level and values in bold are significant at the 1% level.

(a) (b) (c) (d) (e) (f)
n k normal uniform dble. expon. Cauchy t2 logistic
10 1 0.009 0.014 0.037 0.189 0.074 0.018

4 0.013 0.020 0.050 0.205 0.089 0.026
20 1 0.010 0.017 0.025 0.250 0.088 0.012

4 0.007 0.014 0.033 0.252 0.088 0.016
30 1 0.010 0.014 0.018 0.277 0.091 0.008

4 0.007 0.010 0.026 0.284 0.090 0.013
8 0.008 0.016 0.023 0.288 0.097 0.008
12 0.010 0.016 0.021 0.314 0.098 0.005

40 1 0.007 0.013 0.018 0.298 0.092 0.007
4 0.010 0.007 0.024 0.306 0.088 0.015
8 0.009 0.007 0.028 0.303 0.095 0.016
12 0.006 0.010 0.026 0.319 0.100 0.013

We have performed a Kolmogorov-Smirnov test for uniformity of these
distributions of p-values. Some results are given in Table 11 where the
Kolmogorov-Smirnov test statistic is given. Asymptotic critical values for
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n = 10000 observations are 0.0135 at the 5 % level and 0.01628 at the 1
% level. For samples of n = 20 or longer, the adequacy is not rejected
systematically for uniform and logistic distributions. However, it is rejected
for double exponential, Cauchy and t2 distributions for all n.

8 Conclusions

The purpose of this paper is to stress once more, twenty years after Ali
(1984), that it is easy to use the exact distribution of the autocorrelations
at least in the case of a test for randomness. It is true that the procedure
for an ARMA process is more elaborate. Aside from rank autocorrelations
(e.g. Hallin and Mélard, 1988), that would be a better way to go than using
the ubiquious asymptotic critical values, or worse the still more standard
Bartlett limits (which are valid under stronger assumptions and which are
badly interpreted most of the time). Unfortunately, our first investigations
don’t reveal a way to compute exact limits for the portmanteau test, where
a closer approximation than the traditional Ljung-Box approach is studied
by Dufour and Roy (1985). Doing a similar job for partial autocorrelations
seems also beyond our capability.

APPENDICES

A Proofs of propositions in sections 3 and 4

Proposition 1. Proof. Write n and i as in Proposition 1:

n = km+ l0, where m ≤ n− l
0

k
, l0 = 0, 1, ..., k − 1,

and

i = kj − l, where j ≤ n+ l
k
, l = 0, 1, ..., k − 1.

- If l0 < k − l, write µn−i+1,n as
µn−i+1,n = µkm+l0−(kj−l)+1,n

= µk(m−j+1)−(k−l0−l−1),n
(by (26), since l0 < k − l0 − l − 1)

= cos (m−j+1)πm+1

= cos(π − jπ
m+1)

= − cos jπ
m+1

= −µi,n (by (26), since l0 < k − l).
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- If l0 ≥ k − l, write µn−i+1,n as
µn−i+1,n = µkm+l0−(kj−l)+1,n

= µk(m−j+2)−(2k−l0−l−1),n
(by (27), since l0 ≥ k − (2k − l0 − l − 1)),

= cos (m−j+2)πm+2

= cos(π − jπ
m+2)

= − cos jπ
m+2

= −µi,n (by (27), since l0 ≥ k − l).

Proposition 4. Proof. The value of the exact distribution function of
rk(0) at −r is given by

Fk(−r) = Pr(rk(0) ≤ −r) = 1

2
− 1

π

Z ∞

0

sin
h
1
2

Pn
j=1 arctan((µj + r)u)

i
u
Qn
j=1(1 + (µj + r)

2u2)1/4
du,

where the µj ’s are the eigenvalues of Ak. Using Proposition 2, we observe
that the arguments of the arctan function occur, in the sum corresponding
to Fk(−r), in pairs (µj + r)u and (−µj + r)u. In Fk(r), they occur in pairs
(µj − r)u and (−µj − r)u.
Noting that (µj + r)u = −(−µj − r)u and (−µj + r)u = −(µj − r)u, and
that the arctan function is odd, we obtain

1

2

nX
j=1

arctan((µj − r)u) = −
1

2

nX
j=1

arctan((µj + r)u).

Similar observations yield
nY
j=1

(1 + (µj − r)2u2)1/4 =
nY
j=1

(1 + (µj + r)
2u2)1/4.

Finally, since the sine function is odd

Pr(rk(0) ≤ −r) = 1

2
+
1

π

Z ∞

0

sin [²(u)]

uγ(u)
du

= 1− (1
2
− 1

π

Z ∞

0

sin [²(u)]

uγ(u)
du)

= 1− Pr(rk(0) ≤ r)
= Pr(rk(0) ≥ r),

which completes the proof.
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B Newton’s algorithm for computing the eigenval-
ues involved in the exact distribution of rk(x̄)

In this section we describe how the Newton method applies to finding the
eigenvalues of the symmetric tridiagonal matrix T obtained by applying the
Householder algorithm to the symmetric matrix V AkV . Those eigenval-
ues are the roots of the characteristic polynomial p(x) associated with the
tridiagonal matrix. In order to evaluate the iteration function of Newton’s
method,

xk+1 = xk − p(xk)

p0(xk)
,

we have to calculate the value of the polynomial p, as well as the value of
its first derivative, at the point x = xk.

Write T as follows

T =


α1 β2 0

β2
. . . . . .
. . . . . . βn

0 βn αn

 , αi, βi real.

Denoting by pi(x) the characteristic polynomial

pi(x) = det


α1 − x β2 0

β2
. . . . . .
. . . . . . βi

0 βi αi − x


of the principal minor formed by the first i rows and columns of the matrix
T , we have the recursions (see Stoer and Bulirsch (1980))

p0(x) = 1, (35)

p1(x) = (α1 − x).1,
pi(x) = (αi − x)pi−1(x)− β2i pi−2(x), i = 2, 3, ..., n,

p(x) = det(T − xIn) = pn(x).

A similar recursion for calculating p0(x) by differentiating equations (35):
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p00(x) = 0, (36)

p01(x) = −1,
p0i(x) = −pi−1(x) + (αi − x)p0i−1(x)− β2i p

0
i−2(x), i = 2, 3, ..., n,

p0(x) = p0n(x).

The two recursions (35) and (36) can be evaluated concurrently.
Since T is symmetric, all its eigenvalues are real, that is all roots λi,

λ1 ≥ .... ≥ λn of p(x) are real and we have, by Theorem 5.5.5 of Stoer and
Bulirsch (1980), that Newton’s method yields a convergent strictly decreas-
ing sequence xk for any initial value x0 > λ1.

A suitable value for x0 in our case (where p(x) is the characteristic
polynomial of V AkV ) is 1 as implied by the following proposition:

Proposition 7 Consider the n× n matrices Ak and V defined in (4), and
let λ1, ...,λn be the eigenvalues of V AkV . Then,

1 ≤ i ≤ nmax |λi| ≤ 1.
Proof. Let k.k2 be the spectral norm such that for any square matrix A,
kAk2 = ρ(ATA), where ρ(A) = max

1≤i≤n
|αi| is the spectral radius of A and

α1, ...,αn are its eigenvalues.
Let A = V AkV with eigenvalues λ1, ...,λn, and let γ1, ..., γn be the eigen-
values of Ak. The proof consists in showing that max

1≤i≤n
|λi|2 ≤ 1.

Using the fact that
i) the eigenvalues of (V AkV )

2 are λ21,...,λ
2
n,

ii) the matrix VAkV is symmetric, and
iii) kV k2 = 1,

we get

max
1≤i≤n

|λi|2 = ρ((V AkV )
2)

= kV AkV k2
≤ kV k2 kAkk2 kV k2 = kAkk2 (37)

≤ ρ(Ak
2) = max

1≤i≤n
|γi|2 .

Moreover, it is easy to show that (see, e.g., Horn and Johnson (1990)),

max
1≤i≤n

|γi| ≤ max
1≤i≤n

nX
j=1

|(Ak)ij | .
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For k < (n − 1)/2 (which case is of most interest to us), it is easy to
see that max

1≤i≤n
Pn
j=1 |(Ak)ij | = 1. We thus have that max

1≤i≤n
|γi| ≤ 1 and

max
1≤i≤n

|γi|2 ≤ 1. In view of (37), it follows that

max
1≤i≤n

|λi|2 ≤ 1.

Thus,
max
1≤i≤n

|λi| ≤ 1.

If the initial value x0 is far from a root, then the sequence xk obtained
by Newton’s method may converge very slowly in the beginning. This ob-
servation has led to considering the following double-step method :

xk+1 = xk − 2 p(xk)
p0(xk)

, k = 0, 1, 2, ...

instead of the straightforward Newton method.
Of course, there is now the danger of ”overshooting”; for an initial point

x0 > λ1, some xk+1 may overshoot λ1, negating the benefit of the above-
mentioned theorem (Theorem 5.5.5 of Stoer and Bulirsch (1980)). However,
this overshooting can be detected, and, due to some remarkable properties
of polynomials, a good initial value y (λ1 ≥ y > λ2) with which to start
a subsequent Newton procedure for the calculation of λ2 can be recovered.
The latter is a consequence of Theorem 5.5.9 of Stoer and Bulirsch (1980).

Having found the largest root λ1 of the polynomial p, there are still
the other roots λ2,λ3, ...,λn to be found. The following idea suggests itself
immediately: ”divide off” the known root λ1, that is, form the polynomial

p1(x) =
p(x)

x− λ1

of degree n − 1. This process is called deflation. The largest root of p1(x)
is λ2, and may be determined by the previously described procedures. Here
λ1 or, even better, the value y = xk0 found by overshooting may serve as a
starting point. In this fashion, all roots will be found eventually.

Deflation, in general is not without hazard, because roundoff will pre-
clude an exact determination of p1(x). The polynomial actually found in
place of p1will have roots different from λ2,λ3, ...,λn. These are then found
by means of further approximations, with the result that the last roots may
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be quit inaccurate. However, deflation has been found to be numerically
stable if done with care (see Stoer and Bulirsch (1980, p. 278)).

Deflation can be avoided altogether by using the Maehly version of the
(straightforward) Newton method for finding the root λj+1 (see Maehly
(1954)) :

xk+1 = Φj(xk) with Φj(x) = x− p(x)

p0(x)−Pj−1
i=1

p(x)
x−λi

.

The advantage of this formula lies in the fact that the iteration given
by Φj converges quadratically to λj+1 even if the numbers λ1, ...,λj in Φj
are not roots of p. Note that Φj(x) is not defined if x = λk, k = 1, ..., j, is
a previous root of p(x). Such roots cannot be selected as starting values.
Instead one may use the values found by overshooting if the double-step
method is employed. Stoer and Bulirsch (1980, p.279) give the following
pseudo-ALGOL program for finding all roots of a polynomial p having only
real roots. It incorporates all those features. The initial value x0 may be
taken equal to 1 in virtue of Proposition 7.

z0 :=starting point x0;
for j := 1 step 1 until n do

begin m := 2; zs := z0;
Iteration: z := zs; s := 0;
for i := 1 step 1 until j − 1 do

s := s+ 1/(z − xi[i]);
zs := p(z); zs := z −m ∗ zs/(p0(z)− zs ∗ s);
if zs < z then goto iteration;
if m = 2 then

begin zs := z; m := 1; goto Iteration end;
λj := z

end;
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k r n 10 20 50 100 10 20 50 100

1 -0.8 19.43 5.78 2.94 2.39 122.62 14.52 4.24 2.88
-0.2 22.79 6.38 3.05 2.49 143.82 16.04 4.41 3.00
0.0 25.31 33.88 5.88 3.36 196.00 85.09 8.49 4.04
0.2 22.74 6.19 3.02 2.48 143.47 15.56 4.37 2.98
0.8 15.67 5.19 2.81 2.34 98.90 13.04 4.07 2.82

3 -0.8 23.87 5.46 2.90 2.49 150.63 13.72 4.18 2.99
-0.2 24.82 6.72 3.11 2.46 156.62 16.87 4.50 2.96
0.0 981078 1263.88 12.24 4.80 6190183 3174.72 17.70 5.77
0.2 22.98 6.37 3.09 2.45 144.98 16.01 4.46 2.95
0.8 16.43 4.82 2.76 2.50 103.65 12.12 4.00 3.01

7 -0.8 5.78 2.83 2.51 14.53 4.09 3.02
-0.2 6.74 3.09 2.54 16.94 4.47 3.05
0.0 1885184 414.75 6.50 4735369 599.49 7.81
0.2 6.53 3.06 2.56 16.39 4.43 3.08
0.8 5.14 2.70 2.43 12.92 3.90 2.93

20 -0.8 2.36 2.83
-0.2 2.44 2.93
0.0 1806 2176
0.2 2.44 2.94
0.8 2.28 2.74

Precision=10-6 Precision=10-10
Table 1. Values of U,  equation (21), granting a truncation error in P (r k (   )≤r ) of less than Precision.x



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4 -0.586
5 -0.747
6 -0.713 -0.613
7 -0.679 -0.615
8 -0.651 -0.605
9 -0.624 -0.584 -0.531
10 -0.600 -0.564 -0.524
11 -0.578 -0.547 -0.515
12 -0.558 -0.531 -0.504 -0.470
13 -0.540 -0.516 -0.491 -0.463
14 -0.523 -0.502 -0.479 -0.455
15 -0.508 -0.489 -0.468 -0.448 -0.424
16 -0.494 -0.476 -0.458 -0.439 -0.419
17 -0.481 -0.465 -0.448 -0.431 -0.413
18 -0.469 -0.454 -0.439 -0.423 -0.407 -0.389
19 -0.457 -0.444 -0.430 -0.415 -0.400 -0.385
20 -0.447 -0.434 -0.421 -0.408 -0.394 -0.380
21 -0.437 -0.425 -0.413 -0.401 -0.388 -0.375 -0.361
22 -0.427 -0.416 -0.405 -0.394 -0.382 -0.370 -0.357
23 -0.419 -0.408 -0.398 -0.387 -0.376 -0.365 -0.353
24 -0.410 -0.401 -0.391 -0.381 -0.371 -0.360 -0.350 -0.338
25 -0.402 -0.393 -0.384 -0.375 -0.365 -0.356 -0.346 -0.335
26 -0.395 -0.387 -0.378 -0.369 -0.360 -0.351 -0.342 -0.332
27 -0.388 -0.380 -0.372 -0.364 -0.355 -0.347 -0.338 -0.329 -0.319
28 -0.381 -0.374 -0.366 -0.358 -0.350 -0.342 -0.334 -0.325 -0.317
29 -0.375 -0.368 -0.360 -0.353 -0.346 -0.338 -0.330 -0.322 -0.314
30 -0.369 -0.362 -0.355 -0.348 -0.341 -0.334 -0.326 -0.319 -0.311 -0.303
31 -0.363 -0.357 -0.350 -0.343 -0.337 -0.330 -0.323 -0.316 -0.308 -0.301
32 -0.357 -0.351 -0.345 -0.339 -0.332 -0.326 -0.319 -0.312 -0.305 -0.298
33 -0.352 -0.346 -0.340 -0.334 -0.328 -0.322 -0.316 -0.309 -0.303 -0.296 -0.289
34 -0.347 -0.341 -0.336 -0.330 -0.324 -0.318 -0.312 -0.306 -0.300 -0.293 -0.287
35 -0.342 -0.337 -0.331 -0.326 -0.320 -0.315 -0.309 -0.303 -0.297 -0.291 -0.285
36 -0.338 -0.332 -0.327 -0.322 -0.317 -0.311 -0.306 -0.300 -0.294 -0.289 -0.283 -0.277
37 -0.333 -0.328 -0.323 -0.318 -0.313 -0.308 -0.303 -0.297 -0.292 -0.286 -0.281 -0.275
38 -0.329 -0.324 -0.319 -0.314 -0.309 -0.304 -0.299 -0.294 -0.289 -0.284 -0.278 -0.273
39 -0.325 -0.320 -0.315 -0.311 -0.306 -0.301 -0.296 -0.292 -0.287 -0.282 -0.276 -0.271 -0.266
40 -0.321 -0.316 -0.312 -0.307 -0.303 -0.298 -0.294 -0.289 -0.284 -0.279 -0.274 -0.269 -0.264
41 -0.317 -0.312 -0.308 -0.304 -0.300 -0.295 -0.291 -0.286 -0.282 -0.277 -0.272 -0.267 -0.262
42 -0.313 -0.309 -0.305 -0.301 -0.296 -0.292 -0.288 -0.284 -0.279 -0.275 -0.270 -0.265 -0.261 -0.256
43 -0.309 -0.305 -0.301 -0.297 -0.293 -0.289 -0.285 -0.281 -0.277 -0.272 -0.268 -0.264 -0.259 -0.255
44 -0.306 -0.302 -0.298 -0.294 -0.290 -0.287 -0.283 -0.279 -0.274 -0.270 -0.266 -0.262 -0.257 -0.253
45 -0.302 -0.299 -0.295 -0.291 -0.288 -0.284 -0.280 -0.276 -0.272 -0.268 -0.264 -0.260 -0.256 -0.252 -0.247
46 -0.299 -0.296 -0.292 -0.288 -0.285 -0.281 -0.277 -0.274 -0.270 -0.266 -0.262 -0.258 -0.254 -0.250 -0.246
47 -0.296 -0.293 -0.289 -0.286 -0.282 -0.279 -0.275 -0.271 -0.268 -0.264 -0.260 -0.256 -0.253 -0.249 -0.245
48 -0.293 -0.290 -0.286 -0.283 -0.279 -0.276 -0.273 -0.269 -0.266 -0.262 -0.258 -0.255 -0.251 -0.247 -0.243 -0.239
49 -0.290 -0.287 -0.283 -0.280 -0.277 -0.274 -0.270 -0.267 -0.263 -0.260 -0.256 -0.253 -0.249 -0.246 -0.242 -0.238
50 -0.287 -0.284 -0.281 -0.278 -0.274 -0.271 -0.268 -0.265 -0.261 -0.258 -0.255 -0.251 -0.248 -0.244 -0.241 -0.237

Table 2. Lower critical values of the exact distribution of the centered sample autocorrelations
of a spherically symmetric white noise process. α = 0.025.

LagsSample Sizes



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4 -0.567
5 -0.686
6 -0.643 -0.569
7 -0.613 -0.557
8 -0.583 -0.540
9 -0.556 -0.518 -0.477
10 -0.533 -0.499 -0.465
11 -0.511 -0.483 -0.454
12 -0.492 -0.467 -0.442 -0.415
13 -0.475 -0.453 -0.430 -0.407
14 -0.459 -0.439 -0.419 -0.398
15 -0.445 -0.427 -0.409 -0.390 -0.371
16 -0.432 -0.416 -0.399 -0.382 -0.365
17 -0.419 -0.405 -0.390 -0.375 -0.359
18 -0.408 -0.395 -0.381 -0.367 -0.353 -0.339
19 -0.398 -0.386 -0.373 -0.360 -0.347 -0.334
20 -0.388 -0.377 -0.365 -0.353 -0.341 -0.329
21 -0.379 -0.369 -0.358 -0.347 -0.336 -0.324 -0.313
22 -0.371 -0.361 -0.351 -0.341 -0.330 -0.320 -0.309
23 -0.363 -0.353 -0.344 -0.335 -0.325 -0.315 -0.305
24 -0.355 -0.347 -0.338 -0.329 -0.320 -0.311 -0.302 -0.292
25 -0.348 -0.340 -0.332 -0.324 -0.315 -0.307 -0.298 -0.289
26 -0.341 -0.334 -0.326 -0.318 -0.311 -0.302 -0.294 -0.286
27 -0.335 -0.328 -0.321 -0.313 -0.306 -0.298 -0.291 -0.283 -0.275
28 -0.329 -0.322 -0.315 -0.309 -0.302 -0.294 -0.287 -0.280 -0.272
29 -0.323 -0.317 -0.310 -0.304 -0.297 -0.291 -0.284 -0.277 -0.270
30 -0.318 -0.312 -0.306 -0.300 -0.293 -0.287 -0.280 -0.274 -0.267 -0.261
31 -0.313 -0.307 -0.301 -0.295 -0.289 -0.283 -0.277 -0.271 -0.265 -0.258
32 -0.308 -0.302 -0.297 -0.291 -0.286 -0.280 -0.274 -0.268 -0.262 -0.256
33 -0.303 -0.298 -0.293 -0.287 -0.282 -0.276 -0.271 -0.265 -0.260 -0.254 -0.248
34 -0.298 -0.294 -0.289 -0.283 -0.278 -0.273 -0.268 -0.263 -0.257 -0.252 -0.246
35 -0.294 -0.289 -0.285 -0.280 -0.275 -0.270 -0.265 -0.260 -0.255 -0.249 -0.244
36 -0.290 -0.285 -0.281 -0.276 -0.272 -0.267 -0.262 -0.257 -0.252 -0.247 -0.242 -0.237
37 -0.286 -0.282 -0.277 -0.273 -0.268 -0.264 -0.259 -0.255 -0.250 -0.245 -0.240 -0.235
38 -0.282 -0.278 -0.274 -0.270 -0.265 -0.261 -0.257 -0.252 -0.248 -0.243 -0.238 -0.234
39 -0.278 -0.274 -0.270 -0.266 -0.262 -0.258 -0.254 -0.250 -0.245 -0.241 -0.237 -0.232 -0.228
40 -0.275 -0.271 -0.267 -0.263 -0.259 -0.255 -0.251 -0.247 -0.243 -0.239 -0.235 -0.230 -0.226
41 -0.272 -0.268 -0.264 -0.260 -0.257 -0.253 -0.249 -0.245 -0.241 -0.237 -0.233 -0.229 -0.225
42 -0.268 -0.265 -0.261 -0.257 -0.254 -0.250 -0.246 -0.243 -0.239 -0.235 -0.231 -0.227 -0.223 -0.219
43 -0.265 -0.262 -0.258 -0.255 -0.251 -0.248 -0.244 -0.240 -0.237 -0.233 -0.229 -0.225 -0.222 -0.218
44 -0.262 -0.259 -0.255 -0.252 -0.249 -0.245 -0.242 -0.238 -0.235 -0.231 -0.227 -0.224 -0.220 -0.216
45 -0.259 -0.256 -0.253 -0.249 -0.246 -0.243 -0.239 -0.236 -0.233 -0.229 -0.226 -0.222 -0.219 -0.215 -0.211
46 -0.256 -0.253 -0.250 -0.247 -0.244 -0.240 -0.237 -0.234 -0.231 -0.227 -0.224 -0.221 -0.217 -0.214 -0.210
47 -0.253 -0.250 -0.247 -0.244 -0.241 -0.238 -0.235 -0.232 -0.229 -0.225 -0.222 -0.219 -0.216 -0.212 -0.209
48 -0.251 -0.248 -0.245 -0.242 -0.239 -0.236 -0.233 -0.230 -0.227 -0.224 -0.221 -0.217 -0.214 -0.211 -0.208 -0.204
49 -0.248 -0.245 -0.242 -0.240 -0.237 -0.234 -0.231 -0.228 -0.225 -0.222 -0.219 -0.216 -0.213 -0.210 -0.206 -0.203
50 -0.245 -0.243 -0.240 -0.237 -0.234 -0.232 -0.229 -0.226 -0.223 -0.220 -0.217 -0.214 -0.211 -0.208 -0.205 -0.202

Table 3. Lower critical values of the exact distribution of the centered sample autocorrelations
of a spherically symmetric white noise process. Significance level = 0.05.

Sample Size Lags



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4 0.067
5 0.309
6 0.334 0.370
7 0.349 0.349
8 0.353 0.339
9 0.351 0.337 0.340
10 0.347 0.334 0.330
11 0.342 0.330 0.322
12 0.337 0.325 0.315 0.311
13 0.331 0.320 0.310 0.304
14 0.325 0.315 0.306 0.298
15 0.319 0.310 0.301 0.293 0.287
16 0.313 0.305 0.297 0.289 0.282
17 0.308 0.300 0.292 0.285 0.278
18 0.303 0.295 0.288 0.281 0.274 0.268
19 0.298 0.291 0.284 0.277 0.270 0.264
20 0.293 0.286 0.280 0.273 0.267 0.261
21 0.288 0.282 0.276 0.270 0.263 0.258 0.252
22 0.284 0.278 0.272 0.266 0.260 0.255 0.249
23 0.279 0.274 0.268 0.263 0.257 0.252 0.246
24 0.275 0.270 0.265 0.259 0.254 0.249 0.244 0.239
25 0.271 0.266 0.261 0.256 0.251 0.246 0.241 0.236
26 0.267 0.263 0.258 0.253 0.248 0.243 0.239 0.234
27 0.264 0.259 0.255 0.250 0.246 0.241 0.236 0.232 0.227
28 0.260 0.256 0.252 0.247 0.243 0.238 0.234 0.230 0.225
29 0.257 0.253 0.249 0.244 0.240 0.236 0.232 0.228 0.223
30 0.253 0.250 0.246 0.242 0.238 0.234 0.230 0.225 0.221 0.217
31 0.250 0.247 0.243 0.239 0.235 0.231 0.227 0.223 0.220 0.216
32 0.247 0.244 0.240 0.236 0.233 0.229 0.225 0.222 0.218 0.214
33 0.244 0.241 0.237 0.234 0.230 0.227 0.223 0.220 0.216 0.212 0.209
34 0.241 0.238 0.235 0.232 0.228 0.225 0.221 0.218 0.214 0.211 0.207
35 0.239 0.236 0.232 0.229 0.226 0.223 0.219 0.216 0.213 0.209 0.206
36 0.236 0.233 0.230 0.227 0.224 0.221 0.217 0.214 0.211 0.208 0.204 0.201
37 0.233 0.231 0.228 0.225 0.222 0.219 0.215 0.212 0.209 0.206 0.203 0.200
38 0.231 0.228 0.225 0.222 0.220 0.217 0.214 0.211 0.208 0.205 0.202 0.198
39 0.229 0.226 0.223 0.220 0.218 0.215 0.212 0.209 0.206 0.203 0.200 0.197 0.194
40 0.226 0.224 0.221 0.218 0.216 0.213 0.210 0.207 0.204 0.202 0.199 0.196 0.193
41 0.224 0.221 0.219 0.216 0.214 0.211 0.208 0.206 0.203 0.200 0.197 0.195 0.192
42 0.222 0.219 0.217 0.214 0.212 0.209 0.207 0.204 0.201 0.199 0.196 0.193 0.191 0.188
43 0.220 0.217 0.215 0.212 0.210 0.208 0.205 0.203 0.200 0.197 0.195 0.192 0.190 0.187
44 0.218 0.215 0.213 0.211 0.208 0.206 0.203 0.201 0.199 0.196 0.194 0.191 0.188 0.186
45 0.216 0.213 0.211 0.209 0.207 0.204 0.202 0.200 0.197 0.195 0.192 0.190 0.187 0.185 0.182
46 0.214 0.211 0.209 0.207 0.205 0.203 0.200 0.198 0.196 0.193 0.191 0.189 0.186 0.184 0.181
47 0.212 0.210 0.207 0.205 0.203 0.201 0.199 0.197 0.194 0.192 0.190 0.187 0.185 0.183 0.180
48 0.210 0.208 0.206 0.204 0.202 0.199 0.197 0.195 0.193 0.191 0.189 0.186 0.184 0.182 0.179 0.177
49 0.208 0.206 0.204 0.202 0.200 0.198 0.196 0.194 0.192 0.190 0.187 0.185 0.183 0.181 0.179 0.176
50 0.206 0.204 0.202 0.200 0.198 0.196 0.194 0.192 0.190 0.188 0.186 0.184 0.182 0.180 0.178 0.175

of a spherically symmetric white noise process. Significance level = 0.95.

Sample sizes Lags

Table 4. Lower critical values of the exact distribution of the centered sample autocorrelations



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4 0.086
5 0.377
6 0.413 0.463
7 0.425 0.438
8 0.431 0.426
9 0.429 0.415 0.416
10 0.423 0.407 0.403
11 0.416 0.402 0.394
12 0.409 0.395 0.386 0.377
13 0.402 0.389 0.378 0.369
14 0.394 0.382 0.371 0.362
15 0.387 0.376 0.365 0.356 0.347
16 0.380 0.370 0.359 0.350 0.342
17 0.373 0.364 0.354 0.345 0.336
18 0.367 0.358 0.348 0.340 0.332 0.323
19 0.360 0.352 0.343 0.335 0.327 0.319
20 0.354 0.346 0.338 0.330 0.323 0.315
21 0.348 0.341 0.333 0.326 0.318 0.311 0.304
22 0.343 0.336 0.329 0.322 0.314 0.307 0.300
23 0.337 0.331 0.324 0.317 0.311 0.304 0.297
24 0.332 0.326 0.320 0.313 0.307 0.300 0.294 0.288
25 0.328 0.322 0.315 0.309 0.303 0.297 0.291 0.285
26 0.323 0.317 0.311 0.306 0.300 0.294 0.288 0.282
27 0.318 0.313 0.307 0.302 0.296 0.291 0.285 0.279 0.274
28 0.314 0.309 0.304 0.298 0.293 0.288 0.282 0.277 0.271
29 0.310 0.305 0.300 0.295 0.290 0.285 0.279 0.274 0.269
30 0.306 0.301 0.296 0.292 0.287 0.282 0.277 0.272 0.267 0.262
31 0.302 0.297 0.293 0.288 0.284 0.279 0.274 0.269 0.265 0.260
32 0.298 0.294 0.290 0.285 0.281 0.276 0.272 0.267 0.262 0.258
33 0.295 0.290 0.286 0.282 0.278 0.273 0.269 0.265 0.260 0.256 0.251
34 0.291 0.287 0.283 0.279 0.275 0.271 0.267 0.262 0.258 0.254 0.249
35 0.288 0.284 0.280 0.276 0.272 0.268 0.264 0.260 0.256 0.252 0.248
36 0.285 0.281 0.277 0.273 0.270 0.266 0.262 0.258 0.254 0.250 0.246 0.242
37 0.281 0.278 0.274 0.271 0.267 0.263 0.260 0.256 0.252 0.248 0.244 0.240
38 0.278 0.275 0.272 0.268 0.265 0.261 0.257 0.254 0.250 0.246 0.242 0.239
39 0.275 0.272 0.269 0.266 0.262 0.259 0.255 0.252 0.248 0.244 0.241 0.237 0.233
40 0.273 0.269 0.266 0.263 0.260 0.256 0.253 0.250 0.246 0.243 0.239 0.236 0.232
41 0.270 0.267 0.264 0.261 0.257 0.254 0.251 0.248 0.244 0.241 0.238 0.234 0.231
42 0.267 0.264 0.261 0.258 0.255 0.252 0.249 0.246 0.242 0.239 0.236 0.233 0.229 0.226
43 0.265 0.262 0.259 0.256 0.253 0.250 0.247 0.244 0.241 0.238 0.234 0.231 0.228 0.225
44 0.262 0.259 0.256 0.254 0.251 0.248 0.245 0.242 0.239 0.236 0.233 0.230 0.227 0.223
45 0.260 0.257 0.254 0.251 0.249 0.246 0.243 0.240 0.237 0.234 0.231 0.228 0.225 0.222 0.219
46 0.257 0.255 0.252 0.249 0.247 0.244 0.241 0.238 0.236 0.233 0.230 0.227 0.224 0.221 0.218
47 0.255 0.252 0.250 0.247 0.245 0.242 0.239 0.237 0.234 0.231 0.228 0.225 0.223 0.220 0.217
48 0.253 0.250 0.248 0.245 0.243 0.240 0.237 0.235 0.232 0.230 0.227 0.224 0.221 0.218 0.216 0.213
49 0.250 0.248 0.246 0.243 0.241 0.238 0.236 0.233 0.231 0.228 0.225 0.223 0.220 0.217 0.215 0.212
50 0.248 0.246 0.244 0.241 0.239 0.236 0.234 0.232 0.229 0.226 0.224 0.221 0.219 0.216 0.213 0.211

Table 5. Lower critical values of the exact distribution function of the centered sample autocorrelations
of a spherically symmetric white noise process. Significance level = 0.975.

Sample sizes Lags



k Distribution n 10 20 50 100 10 20 50 100 10 20 50 100 10 20 50 100

1 Exact -0.600 -0.447 -0.287 -0.203 -0.533 -0.388 -0.245 -0.172 0.347 0.293 0.206 0.152 0.423 0.354 0.248 0.183
AM 41 18 5 2 41 17 5 2 -41 -17 -5 -2 -45 -19 -5 -2
Dufour-Roy -90 -32 -8 -3 -64 -22 -5 -2 28 12 3 1 45 19 5 2
Ljung-Box 34 29 15 8 58 37 17 9 128 58 22 11 143 64 23 11
Box-Pierce -20 8 10 6 13 20 13 8 173 75 26 12 197 84 29 13
Exact (of r k (0)) 74 44 19 10 81 45 19 10 105 50 20 10 103 49 20 10

3 Exact -0.524 -0.421 -0.281 -0.200 -0.465 -0.365 -0.240 -0.170 0.330 0.280 0.202 0.151 0.403 0.338 0.244 0.181
AM 31 16 5 2 30 14 4 1 -48 -18 -5 -2 -54 -20 -6 -2
Dufour-Roy -88 -32 -8 -3 -66 -24 -6 -2 -20 4 2 1 -13 10 4 2
Ljung-Box -42 3 9 6 -9 14 12 7 145 71 26 12 163 80 28 13
Box-Pierce -96 -17 4 4 -55 -3 7 6 191 88 30 14 217 100 34 15
Exact (of r k (0)) 59 40 18 10 65 41 19 10 71 44 19 10 62 43 19 10

7 Exact -0.365 -0.268 -0.196 -0.317 -0.229 -0.166 0.254 0.195 0.148 0.306 0.234 0.178
AM 12 4 1 11 3 1 -15 -6 -2 -16 -6 -2
Dufour-Roy -35 -9 -3 -27 -7 -2 -16 0 1 -12 2 1
Ljung-Box -53 -4 2 -34 1 4 96 34 15 112 38 17
Box-Pierce -74 -9 0 -51 -4 2 114 38 17 132 43 18
Exact (of r k (0)) 31 17 9 33 17 9 30 17 9 27 17 9

15 Exact -0.241 -0.187 -0.205 -0.159 0.178 0.142 0.213 0.170
AM 3 1 2 1 -6 -2 -7 -2
Dufour-Roy -10 -3 -9 -3 -5 0 -3 0
Ljung-Box -31 -7 -23 -4 50 21 58 24
Box-Pierce -37 -9 -27 -6 55 23 64 26
Exact (of r k (0)) 14 8 14 8 14 8 13 8

20 Exact -0.181 -0.154 0.138 0.165
AM 1 1 -2 -2
Dufour-Roy -4 -3 -1 -1
Ljung-Box -13 -9 25 29
Box-Pierce -15 -11 27 31
Exact (of r k (0)) 8 8 8 8
NOTE. Boldface identifies entries for which the test of autocorrelation is non conservative.

97.5%

Table 6. Lower critical values of the exact distribution of the sample autocorrelation r k (  ) of a white noise and the differences d  between the various approximate distributions and

the exact one ([approximate - exact]*1000 rounded to the nearest integer) for n = 10, 20, 50, 100, and k = 1, 3, 7, 15, 20.
Levels for lower critical values

5% 95%2.5%

x



Lag Autocorrelation Exact AM appr. Dufour-Roy Ljung-Box Exact (of rk(0)) Box-Pierce
1 0.409 0.030 0.021 0.040 0.068 0.058 0.083
2 -0.306 0.233 0.205 0.262 0.171 0.151 0.194
3 -0.386 0.095 0.078 0.124 0.084 0.056 0.101
4 -0.072 0.903 0.905 0.949 0.748 0.724 0.760
5 -0.052 0.969 0.976 0.972 0.817 0.792 0.826
6 -0.158 0.531 0.506 0.598 0.479 0.398 0.502

Lag Autocorrelation Exact AM appr. Dufour-Roy Ljung-Box Exact (of rk(0)) Box-Pierce
1 0.252 0.098 0.087 0.106 0.148 0.144 0.161
2 0.127 0.353 0.335 0.355 0.466 0.459 0.479
3 0.168 0.236 0.217 0.236 0.334 0.317 0.349
4 -0.174 0.379 0.367 0.400 0.318 0.291 0.333
5 -0.105 0.637 0.633 0.662 0.547 0.518 0.560
6 -0.029 0.990 0.999 0.980 0.866 0.854 0.870
7 0.100 0.418 0.393 0.395 0.566 0.521 0.578
8 -0.071 0.765 0.764 0.806 0.683 0.642 0.693
9 0.163 0.209 0.188 0.190 0.349 0.273 0.364
10 0.192 0.140 0.119 0.124 0.271 0.185 0.286

Table 8. Significance levels for a two-sided test based on the exact and approximate distributions 

Table 7. Significance levels for a two-sided test based on the exact and approximate distributions for the

for LOG FORWARD-LOG SPOT prediction errors (February 1921-August 1923) (n  = 31)

first difference of annual deflated aggregate for undistributed income in corporate trading enterprises (n  = 18)



r -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4
Exact (PR) 0.0817 0.1619 0.2642 0.3984 0.5372 0.6698 0.7835 0.8703 0.9297 0.9655
Exact (this paper) 0.0831 0.1623 0.2684 0.3986 0.5374 0.6715 0.7845 0.8708 0.9303 0.9657
Empirical 0.0832 0.1623 0.2681 0.3984 0.5374 0.6712 0.7844 0.8706 0.9302 0.9657

Table 9. Provost&Rudiuk (exact(PR)), exact (this paper), and empirical distribution values taken at points r = -0.5(0.1)0.4. The 
empirical distribution is based on 5000000 series of observations from independent standard normal variables (n  = 7 and k  = 2). 



k Distribution n 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

1 Exact distribution -0.600 -0.447 -0.369 -0.321 -0.533 -0.388 -0.318 -0.275 0.347 0.293 0.253 0.226 0.423 0.354 0.306 0.273
Normal series 1 -1 2 3 4 -3 -1 0 -9 -5 -1 1 -14 -4 -5 -4
Uniform series -6 -7 -11 -6 -11 -11 -6 -2 12 5 6 4 12 7 3 -1
Double exponential series 22 13 10 6 12 14 9 7 -32 -17 -9 -11 -36 -10 -13 -10
Cauchy series 93 73 63 47 88 82 71 66 -89 -80 -79 -80 -84 -75 -70 -66
Student with 2 d.f. series 39 39 24 19 38 36 23 21 -41 -40 -26 -21 -46 -30 -22 -18
Logistic series 7 6 6 5 7 5 4 4 -21 -9 -5 -4 -21 -7 -9 -5

3 Exact -0.524 -0.421 -0.355 -0.312 -0.465 -0.365 -0.306 -0.267 0.330 0.280 0.246 0.221 0.403 0.338 0.296 0.266
Normal series 6 4 2 -1 8 1 1 -2 -1 -2 5 -10 -7 1 8 3
Uniform series 0 -5 -8 -15 -3 -6 1 -3 14 8 12 9 23 13 14 6
Double exponential series 19 14 10 6 20 14 11 7 -24 -12 -3 -2 -33 -12 3 -3
Cauchy series 53 65 56 50 57 76 67 71 -92 -82 -70 -70 -89 -60 -49 -46
Student with 2 d.f. series 27 27 21 24 31 29 27 25 -53 -31 -27 -26 -60 -29 -18 -18
Logistic series 9 8 4 0 14 5 5 1 -10 -6 3 2 -16 -7 4 1

7 Exact -0.326 -0.294 -0.280 -0.243 0.230 0.210 0.277 0.253
Normal series -2 0 -3 -11 1 1 3 6
Uniform series -6 -6 -6 -14 6 6 12 12
Double exponential series 8 6 2 -3 -6 -3 -6 -1
Cauchy series 39 45 62 52 -69 -64 -55 -47
Student with 2 d.f. series 15 12 24 10 -30 -26 -26 -22
Logistic series 2 3 -1 -8 -3 0 -2 1

NOTE. Boldface identifies entries for which the test of autocorrelation using the normal exact distributionn is non conservative according to the simulations.

97.5%

Table 10. Lower critical values of the exact distribution of the sample autocorrelation r k (  ) of a white noise and the differences d  between simulation results over 10000 

experiments and  the normal exact one ([simulated - normal]*1000 rounded to the nearest integer) for n = 10, 20, 30, 40, and k = 1, 3, 7, 15, 20.
Levels for lower critical values

5% 95%2.5%

x
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Figure 1 . Exact and approximate distributions for n = 10 and k = 1
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Figure 2: MAD (multiplied by 103) across sample sizes n = max(3k,4),...,50. Signif. level = 0.025
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Figure 3: MAD (multiplied by 103) across sample sizes n = max(3k,4),...,50. Signif. level = 0.975
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Figure 4 : MAD (multiplied by 103) across lags k=1,...,[n/3]. Signif. level = 0.025
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Figure 5 : MAD (multiplied by 103) across lags k=1,...,[n/3]. Signif. level = 0.975
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