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Abstract

Functional mixed-effects models are very useful in analyzing functional data. We consider a

general functional mixed-effects model that inherits the flexibility of linear mixed-effects models

in handling complex designs and correlation structures. Wavelet decomposition approaches are

used to model both fixed-effects and random-effects in the same functional space. This help

us in interpreting the resulting model as a functional data model since it does not contradict

the intuition that, if each outcome is a curve, which is the basic unit in functional data

analysis, then the population-average curve and the subject-specific curves should have the same

smoothness property (i.e., they should lie in the same functional space). A linear mixed-effects

representation is then obtained that is used for estimation and inference in the general functional

mixed-effects model. Adapting recent methodologies in linear mixed-effects and nonparametric

regression models, we provide hypothesis testing procedures for both fixed-effects (testing whether

certain fixed-effects functional components or contrasts are equal to zero) and random-effects

(testing whether the random-effects functional components are equal to zero). We also apply

wavelet-based estimation procedures for both fixed-effects and random-effects in the general

functional mixed-effects model. We illustrate the usefulness of the proposed estimation and

testing procedures by means of two real-life datasets arising from endocrinology and physiology.
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Spaces; Linear Mixed-Effects Models; Linear Wavelet Estimation; Longitudinal

Data; Nonlinear Wavelet Estimation; Nonparametric Estimation; Nonparametric

Hypothesis Testing; Nonparametric Mixed-Effects Models; Nonparametric Model

Selection; Smoothing Spline Estimation; Wavelets.
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1 Introduction

There is a growing interest to incorporate complex designs and correlation structures in standard

nonparametric and semiparametric regression models. Most of the recent developments in this

direction are for longitudinal data studies used in many fields of research, including epidemiology,

clinical trials, and survey sampling (see, e.g., Diggle et al., 1994; Verbeke & Molenberghs,

2000). Longitudinal data are collected either prospectively, following subjects forward in time, or

retrospectively, by extracting multiple measurements on each subject from historical records. They

are characterized by the dependence of repeated observations over time within the same subject,

and this correlation should be taken into account to draw valid scientific inferences.

Nowadays, another form of data, called functional data (see, e.g., Ramsay & Silverman, 1997,

2002), are collected in many fields of research. Such data are encountered, for example, when units

are observed over time or when, although a whole function itself is not observed, a sufficiently

large number of evaluations over individual is available – a common feature of modern recording

equipments. Sophisticated on-line sensing and monitoring equipments are now routinely used in

research in medicine, seismology, meteorology, physiology, and many other fields. Since functional

data arise as curves it is therefore natural to use a curve as the basic unit in functional data analysis.

Although both longitudinal data analysis and functional data analysis are concerned with the

analysis of data consisting of repeated measurements of subjects over time, there some important

differences, perhaps due to the structural differences of the involved measurements. Longitudinal

data usually involve small number of repeated measurements per subject, taken typically at sparsely,

and often irregularly, spaced time points for different subjects. Functional data, in contrast, tend to

involve a larger number of repeated measurements per subject, and these measurements are usually

recorded at the same, often equally spaced, time points for all subjects, and with the same high

sampling rate. The aims of longitudinal data analysis and functional data analysis are also often

somewhat different, partly because to differences in the nature of scientific questions that are being

addressed. The aims of longitudinal data analysis have a stronger inferential component, whereas

those of functional data analysis tend to be more exploratory - to represent and display data in

order to highlight interesting characteristics, perhaps as input for further analysis (see, e.g., Chapter

1 in Diggle et al., 1994; Chapter 1 in Ramsay & Silverman, 1997). Despite these differences in

focus, there are many common aims, among them are the following: estimation of individual (and

functional of these) curves from noisy data, characterising homogeneity and patterns of variability

among curves, and assessing the relationships of shapes of curves to covariates (see Rice, 2004).

It is therefore challenging to build models for longitudinal or functional data that are reasonably

flexible, yet feasible to fit. Linear mixed-effects models provide a flexible likelihood framework to

model such data parametrically (see Laird & Ware, 1982). In the corresponding analysis, however,

the parametric assumption in linear mixed-effects models may not always be appropriate. For

example, in a longitudinal hormone study on progesterone (see Zhang et al., 1998), the progesterone

level varies over time in a complicated manner and it is difficult to model its trend using a simple

parametric function. It is therefore of potential interest to model the time-effect nonparametrically
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while accounting for the correlation of observations within the same subject. Extensions of linear

mixed-effects models by including nonparametric fixed-effects and parametric random-effects have

been considered by many researchers, including Wypij et al. (1993) and Wang & Taylor (1995)

(regression splines were used to model fixed-effects); Hart & Wehrly (1986) and Zeger & Diggle

(1994) (kernel methods were used to model time-trends); Barry (1996) (an empirical Bayes method

was considered to model fixed-effects); and Wang (1998a,b), Zhang et al. (1998), Verbyla et al.

(1999) and Guo (2002a) (cubic smoothing splines were used to model fixed-effects). The limitation

of these approaches, however, is that they have used parametric random-effects, which may not be

adequate to handle flexible subject-specific deviations.

Various approaches to include, directly or indirectly, nonparametric methods for serial correlation

in longitudinal or functional data analysis models have also been proposed. For direct methods we

refer to, for example, Rice & Silverman (1991) (the within-subject covariance was modelled as

function of the first few eigenfunctions with random amplitudes) while for indirect methods we refer

to, for example, Hoover et al. (1998) and Wu et al. (1998) (the within-subject covariance was taken

into account via a bandwidth selection by using a leave-one-subject-out cross-validation approach).

The limitation of these approaches is that the population-average curve and the subject-specific

curves do not have the same smoothness property because the fixed-effects and the random-effects

are not modelled by a unified approach. Obviously, this causes difficulty in interpreting the resulting

model as a functional data model since it contradicts the intuition that, if each outcome is a curve

(which is the basic unit in functional data analysis), then the population-average curve and the

subject-specific curves should have the same smoothness property (i.e., they should lie in the same

functional space). The above limitation was, however, addressed by Shi et al. (1996) and Rice &

Wu (2001) (cubic B-splines were used to model both the population-average curve as well as the

subject-specific curves), and by Wu & Zhang (2002) (local-polynomials were used to model both the

population-average curve as well as the subject-specific curves).

Although much work has been done on the estimation in various functional mixed-effects models,

as discussed above, only limited work has been done regarding inference in these or more complex

models. Both estimation and inference in a general functional mixed-effects model were recently

considered by Guo (2002b). In this model, both fixed-effects and random-effects are modelled in

the same functional space, and therefore they both have the same smoothness property. The idea

behind this formulation is to model the fixed-effects as a single realisation of a partially diffuse

integrated Wiener process, while the random-effects are modelled as random realisations from the

same partially integrated Wiener process with proper variances. Then, an estimation procedure

can be developed by taking advantage of the connection between cubic smoothing splines (at the

design points) and linear mixed-effects models, a fact that originally pointed out by Speed (1991)

and later used by, amongst others, Brumback & Rice (1998), Wang (1998a,b), Zhang et al. (1998),

Verbyla et al. (1999) and Guo (2002a). Adopting the formulation of Wahba (1978) which was

used to show that the estimate of a cubic smoothing spline can be obtained through the posterior

estimate of a partially integrated Wiener process, it can be shown that the posterior means of the

fixed-effects (based on all the data) and the posterior means of the random effects (based only on
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the data from the specific subject) are both cubic smoothing splines which share the same degree

of smoothness. Furthermore, conditional on the restricted (or residual) maximum likelihood (RML)

(or generalised maximum likelihood (GML) in the spline smoothing literature) estimates and other

variance components, the resulting cubic smoothing splines estimates are simply the best linear

unbiased predictors (BLUP). Although computationally efficient for small data sets, the resulting

estimation approach is not computationally efficiently for large data sets, since it requires inversion of

high-dimensional matrices. Alternatively, Guo (2002b) proposed a sequential estimation procedure

that exploits the state-space representation of a cubic smoothing spline (see Wecker & Ansley, 1998)

and uses the modified Kalman filtering and smoothing algorithm of Koopman & Durbin (2000)

to estimate the smoothing parameters and the functional effects. This approach can be efficiently

implemented (by avoiding inversion of high-dimensional matrices) and, therefore, can be applied

to large data sets. A likelihood-ratio (LR) test was also proposed by Guo (2002b) for testing the

fixed-effects using the connection between cubic smoothing splines (at the design points) and linear

mixed-effects models, and the non-standard asymptotic theory for LR tests developed by Self &

Liang (1987). Furthermore, RML estimation was suggested as a unified criterion for estimation,

model selection, and inference. However, inference for the random-effects was not considered in Guo

(2002b).

Although cubic smoothing splines provide a continuum of models from a trend linear in time to

treating time as a factor (obtained as the smoothing parameter tends to ∞ and 0 respectively), the

corresponding modelling methodology of Guo (2002b) seems to have its own drawbacks. Formulating

cubic spline smoothing as a mixed-effects model is simply a mathematical device; the suggested

logical distinction between the fixed linear trend and the random smooth variation about it is

artificial, so one should not freely adopt random-effects methodology in this context (see Green,

1999). Furthermore, although a conceptual connection between cubic smoothing splines methods

and Bayesian formulation of inference about functions is often made in the literature, there always

seems to be an implicit or explicit warning not to take this connection too literately. Formal use

of such connections is rarely made, a notably exception being the Bayesian connection to construct

confidence intervals about spline estimates, as proposed in Wahba (1983), since the frequentist

properties of such intervals are well-known to be problematical (see Green, 2000). More importantly,

as emphasized in subsequent sections, the non-standard asymptotic theory for LR or restricted

likelihood ratio (RLR) tests, which is used when the parameter under the null hypothesis is on

the boundary of the parameter space (see Self & Liang, 1987), cannot be blindly applied for testing

variance components in linear mixed-effects models; an approach adopted by Guo (2002b) for testing

fixed-effects in a general functional mixed-effects models. We point out that a general functional

mixed-effects model, similar to the one studied by Guo (2002b), has also been recently studied by

Morris & Carroll (2004). Their methodology is based on fully Bayesian wavelet-based approaches,

yielding nonparametric estimates of both fixed-effects and random-effects, as well as the various

between-curve and within-curve covariance matrices. Using the posterior samples for all model

quantities, pointwise or joint Bayesian inference or prediction on the quantities of the model is

discussed. However, a proper testing methodology for both fixed-effects and random-effects is lacking
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from the analysis described in Morris & Carroll (2004).

In this paper, our aim is to study both estimation and inference in a general functional

mixed-effects model through wavelet decomposition approaches. Note that estimation and

inference in nonparametric settings are entirely different problems since the optimal rates for

smoothing parameters in nonparametric function estimation are different from the ones obtained

in nonparametric hypothesis testing (see, e.g., Ingster, 1982). In the former context, the smoothing

parameters are usually based on minimising the mean integrated squared error, thus balancing the

trade-off between bias and variance of the corresponding nonparametric estimates, while, in the

latter context, the ‘optimal’ smoothing rules are defined so that contiguous alternative hypotheses

with the fastest possible rate of convergence to the null hypothesis can be detected consistently, thus

leading to powerful testing procedures.

We now introduce the two real-life datasets that have motivated our methodological thinking,

and which we analyse in this paper.

Progesterone Data: Urinary metabolite progesterone curves measured over patients with healthy

reproductive function were obtained by the Institute of Toxicology and Environmental Health at the

University of California at Davis, USA (see Munro et al., 1991). The data consist of a sample

of 69 nonconceptive and 22 conceptive women’s menstrual cycles. As is standard practice in

endocrinological research, progesterone profiles are aligned by the day of ovulation, here determined

by serum luteinizing hormone, then truncated at the end around the day of ovulation to present

curves of the same length, so that all individual curves possess 24 scheduled distinct points. There

are about 8.3% missing data. The data are highly correlated; the correlation coefficients in the

nonconceptive and conceptive groups are bigger than 0.70 and 0.50 respectively. Figure 5.1 shows

the urinary metabolite progesterone curves for the nonconceptive and conceptive groups (12 curves

have been selected from each group) together with their means. The data have been analysed by,

e.g., Brumback & Rice (1998), Fan & Zhang (2000) and Wu & Zhang (2002), and our analysis will

be considered in detail in Section 5. One of the aim of the analysis is to characterize differences in

conceptive and nonconceptive menstrual cycles prior to implantation, which is typically done a week

after ovulation.

Orthosis Data: Human movement data were acquired and computed at the Laboratoire Sport

et Performance Motrice, Grenoble University, France (see Cahouët et al., 2002). The purpose

of recording such data was the interest to better understand the processes underlying movement

generation under various levels of an externally applied moment to the knee. In this experiment,

stepping-in-place was a relevant task to investigate how muscle redundancy could be appropriately

used to cope with an external perturbation while complying with the mechanical requirements related

either to balance control and/or minimum energy expenditure. For this purpose, 7 young male

volunteers wore a spring-loaded orthosis of adjustable stiffness under 4 experimental conditions:

a control condition (without orthosis), an orthosis condition (with the orthosis only), and two

conditions (spring1, spring2) in which stepping in place was perturbed by fitting a spring-loaded

orthosis onto the right knee joint. The experimental session included 10 trials of 20 seconds under
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each experimental condition for each subject. Data sampling started 5 seconds after the onset of

stepping, and lasted for 10 seconds for each trial. So, anticipatory and joint movements induced

by the initiation of the movement were not sampled. For each of the 7 subjects, 10 stepping-cycles

of data were analyzed under each experimental condition. The resultant moment at the knee is

derived by means of body segment kinematics recorded with a sampling frequency of 200 Hz. For

each stepping-in-place replication, the resultant moment was computed at 64 time points equally

spaced and scaled so that a time interval corresponds to an individual gait cycle. The data set

consists of 280 separate runs and involves the 7 subjects over 4 described experimental conditions,

replicated 10 times for each subject. Figure 5.6 shows the available data set; typical moment plots

over gait cycles. The data have been analysed by Abramovich & Angelini (2003) and Abramovich et

al. (2004), and our analysis will be considered in detail in Section 5. One of the aim of the analysis

is to understand how a subject can cope with the external perturbation, and we need to quantify

the ways in which the individual mean cross-sectional functions differ over the various conditions.

The paper is organised as follows. In Section 2, we first provide a formulation for a general

functional mixed-effects model and discuss some special cases of interest. We then briefly recall

some relevant facts about the wavelet series expansion and the discrete wavelet transform that we

need further. Wavelet decomposition approaches are then developed to model both fixed-effects

and random-effects in the same functional space. This help us in interpreting the resulting model

as a functional data model. Finally, a linear mixed-effects representation, that is subsequently

used for estimation and inference in the general functional mixed-effects model, is also derived.

In Section 3, we provide hypothesis testing procedures for both fixed-effects and random-effects

in the general functional mixed-effects model. In particular, the hypothesis testing procedures

for random-effects (testing whether the random-effects functional components are equal to zero)

are based on adapting recent work by Crainiceanu & Ruppert (2004a) who have derived finite

sample and asymptotic null distributions for the LR and RLR test statistics for testing the null

hypothesis that a variance component is zero, in linear mixed-effects model with one variance

component, against that it is positive. On the other hand, the hypothesis testing procedures for

fixed-effects (testing whether certain fixed-effects functional components or contrasts are equal to

zero) are based on adapting recent work by Baraud et al. (2003) who have derived a nonasymptotic

procedure, based on model selection methods, for testing the null hypothesis that the expectation

of a Gaussian vector with n independent components belongs to a certain linear subspace of Rn

against a nonparametric alternative. By adapting the recent work of Durot & Rozenholc (2004),

these hypothesis testing procedures can be also used for a vector that is not assumed Gaussian

nor having identically distributed components but consisting of random variables with symmetrical

distributions. In Section 4, we apply wavelet-based estimation procedures for both fixed-effects

and random-effects in the general functional mixed-effects model. In Section 5, we illustrate the

usefulness of the proposed estimation and testing procedures by applying them on the progesterone

and orthosis datasets described above. Some concluding remarks are made in Section 6. Finally,

in the Appendix, we briefly recall some relevant facts about the penalized and regularized linear
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wavelet estimators (Appendix – A1) and the (inhomogeneous) Besov spaces on the unit interval

(Appendix – A2), necessary to understand some of the technical details used in the development

of the proposed methodology, as well as outlines of the proofs of the theoretical results obtained in

earlier sections (Appendix – A3).

2 Functional Mixed-Effects Models

In this section, we provide a formulation for a general functional mixed-effects model and discuss

some special cases of interest. Wavelet decomposition approaches are then developed to model both

fixed-effects and random-effects in the same functional space. A linear mixed-effects representation,

that is subsequently used for estimation and inference in the general functional mixed-effects model,

is also derived.

2.1 The General Setup And Some Special Cases

Suppose that Yij (i = 1, 2, . . . , n; j = 1, 2, . . . ,mi) is the response of the i-th subject at point tij

(where t is an index such as time or distance) and can be modelled as

Yij = Xijβ(tij) + Zijα
(i)(tij) + εij , (1)

where β(t) = (β1(t), . . . , βp(t))T is a p × 1 vector of fixed functions, α(i)(t) = (α(i)
1 (t), . . . , α(i)

q (t))T

is a q × 1 vector of random functions that are modelled as realisations of zero-mean Gaussian

processes a(t) = (a1(t), . . . , aq(t))T (a q × 1 collection of such processes), Xij = (Xij [1], . . . , Xij [p])

and Zij = (Zij [1], . . . , Zij [q]) are, respectively, 1 × p and 1 × q design vectors that can include

dummy variables as well as covariates, and εij are independent and identically distributed Gaussian

random variables (independent of a(t)) with zero-mean and variance σ2
ε , denoted by εij ∼ N(0, σ2

ε ).

Hereafter, “T” denotes the transpose of a vector or matrix.

Model (1) can be easily extended to accommodate (possibly different number of) repetitions per

subject, say li (i = 1, 2, . . . , n), and will be considered in specific cases in subsequent sections. Also,

as in Lin & Carroll (2000), where nonparametric regression estimation was considered for clustered

data with a single covariate measured without error, we assume that when the design matrices Xij

and Zij contain covariates they have been measured accurately.

Similar to the interpretation of linear mixed-effects models in longitudinal data settings, Xijβ(t)

can be interpreted as the population-average curve profile, Zijα
(i)(t) can be interpreted as the

i-th curve-specific deviation (also called the subject-specific deviation if each curve is from a

different subject) from the population-average curve profile that accounts for correlation, and

Xijβ(t) + Zijα
(i)(t) can be interpreted as the i-th curve-specific function. Model (1) includes many

useful models commonly used in the literature for analysing functional data, some of them are

mentioned below:

1. Linear Mixed-Effects Models: When the fixed functional components of β(t) are considered

to be a p × 1 vector β of fixed unknown population parameters and the random functional
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components of a(t) are considered to be a q×1 vector a of random unknown individual effects

modelled by zero-mean Gaussian distributions, then model (1) reduces to the classical linear

mixed-effects model for longitudinal data studied by Laird & Ware (1982).

2. Semiparametric and Nonparametric Longitudinal Data Models: When the population-average

curve profile Xijβ(t) is taken to be the single element β(t) that is modelled by either a

parametric or a nonparametric approach, the i-th curve-specific deviation Zijα
(i)(t) is taken to

be the single element U (i) + W (i)(t), where the U (i) are mutually independent and identically

distributed zero-mean Gaussian random variables, and the W (i)(t) are mutually independent

zero-mean stationary Gaussian processes, then model (1) reduces respectively to the so-called

semiparametric or nonparametric longitudinal data model studied by Diggle et al. (1994,

Section 5). Furthermore, if β(t) is modelled by a cubic smoothing spline approach and

W (i)(t) are mutually independent zero-mean standard Ornstein-Uhlenbeck or nonhomogeneous

Ornstein-Uhlenbeck processes, then model (1) reduces to a special case of the nonparametric

longitudinal data model studied by Zhang et al. (1998).

3. Functional Regression Models, Functional Fixed-Effects Analysis of Variance Models, and

Functional Analysis of Covariance Models: When the random functional components of a(t)

are set to zero, then model (1) reduces to the functional linear or varying-coefficient model,

which includes functional regression models (if the design matrix Xij contains covariates),

functional fixed-effects analysis of variance models (if the design matrix Xij contains dummy

variables), and functional analysis of covariance models (if the design matrix Xij contains

both covariates and dummy variables). Although there is limited work on fitting functional

regression models (see, e.g., Hastie & Tibshirani, 1993; Ramsay & Silverman, 1997, 2002; Fan &

Zhang, 2000), and on estimating and testing the components in functional fixed-effects analysis

of variance models (see, e.g., Fan & Lin, 1998; Dette & Derbort, 2001; Gu, 2002; Abramovich

et al., 2004; Cuevas et al., 2004), we are not aware of any related work for functional analysis

of covariance models.

4. Nonparametric Mixed-Effects Models and Functional Mixed-Effects Analysis of Variance

Models: When the design matrices Xij and Zij are of dimension one and include only dummy

variables, and both the fixed functional component β(t) and the random functional component

a(t) are modelled in the same functional space (by a nonparametric approach), then model

(1) reduces to the nonparametric mixed-effects model studied by Shi et al. (1996), Rice & Wu

(2001), Wu & Zhang (2002) and Crainiceanu & Ruppert (2004b). In the case where the fixed

functional component β(t) and the random functional component a(t) are not (necessarily)

modelled in the same functional space, then model (1) reduces to the functional mixed-effects

analysis of variance model studied by Abramovich & Angelini (2003).

5. Smoothing Spline Mixed-Effects Analysis of Variance Models: When the design matrix Xij

includes only dummy variables, β(t) is a p-dimensional nonparametric function lying in a

reproducing kernel Hilbert space and possesses an ANOVA like decomposition (where some of
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its terms could be set to zero to achieve parsimony), and the random functional components

of a(t) are considered to be a q×1 vector a of random unknown individual effects modelled by

zero-mean Gaussian distributions, then model (1) reduces to the smoothing spline mixed-effects

analysis of variance model studied by Wang (1998b) and Guo (2002a).

6. Nested and Crossed Samples of Curves Models: When the design matrices Xij and Zij are

appropriately used to create block-diagonal fixed-effects and block-diagonal random-effects

design matrices respectively, model (1) reduces to the nested mixed-effects and crossed mixed-

effects models studied by Brumback & Rice (1998). It also includes the nested hierarchical

functional model considered by Morris et al. (2003).

In the nonparametric analysis of functional data, both the fixed functional components of β(t)

and the random functional components of a(t) should be modelled as nonparametric functions

lying in infinite dimensional spaces (since the basic unit in functional data analysis is the curve).

Furthermore, in order to make the population-average curve profile and subject-specific deviation

have the same smoothness assumptions, the fixed elements of β(t) and the random elements of a(t)

should both lie in the same functional space. This can be accomplished, e.g., if the fixed elements

of β(t) and the random elements of a(t) are both modelled as cubic smoothing splines, as proposed

in Guo (2002b). In addition to the drawbacks discussed in Section 1, this formulation also restricts

the smoothness of the underlying functions since it is well known that cubic smoothing splines

are optimal representations only for functions lying in Hilbert-Sobolev spaces of positive integer

regularity index. However, deviations from smooth effects may be present and this behaviour should

also be included in the modelling formulation (see, e.g., Morris & Carroll, 2004). If replicates are

available at the design points, then the presence of non-smooth effects can be possible accommodated

by fitting a cubic smoothing spline to the means at the replicated values, as suggested by Verbyla

et al. (1999). A more natural framework to include non-smooth effects is, however, through wavelet

decompositions, and it is developed below. We briefly recall first some relevant facts about the

wavelet series expansion and the discrete wavelet transform that we need further.

2.2 The wavelet series expansion

Throughout the article we assume that we are working within an orthonormal basis generated

by dilations and translations of a compactly supported scaling function, φ(t), and a compactly

supported mother wavelet, ψ(t), associated with an r-regular (r ≥ 0) multiresolution analysis of(
L2[0, 1], 〈·, ·〉), the space of squared-integrable functions on [0, 1] endowed with the inner product

〈f, g〉 =
∫
[0,1] f(t)g(t) dt. For simplicity in exposition, we work with periodic wavelet bases on [0, 1]

(see, e.g., Mallat, 1999, Section 7.5.1), letting

φp
jk(t) =

∑

l∈Z
φjk(t− l) and ψp

jk(t) =
∑

l∈Z
ψjk(t− l), for t ∈ [0, 1],

where

φjk(t) = 2j/2φ(2jt− k), ψjk(t) = 2j/2ψ(2jt− k).

9



For any given primary resolution level j0 ≥ 0, the collection

{φp
j0k, k = 0, 1, . . . , 2j0 − 1; ψp

jk, j ≥ j0; k = 0, 1, . . . , 2j − 1}

is then an orthonormal basis of L2[0, 1]. The superscript “p” will be suppressed from the notation for

convenience. Despite the poor behavior of periodic wavelets near the boundaries, where they create

high amplitude wavelet coefficients, they are commonly used because the numerical implementation

is particular simple. Therefore, for any f(t) ∈ L2[0, 1], we denote by uj0k = 〈f(t), φj0k(t)〉
(k = 0, 1, . . . , 2j0−1) the scaling coefficients and by wjk = 〈f(t), ψjk(t)〉 (j ≥ j0; k = 0, 1, . . . , 2j−1)

the wavelet coefficients of f(t) for the orthonormal periodic wavelet basis defined above; the function

f(t) is then expressed in the form

f(t) =
2j0−1∑

k=0

uj0kφj0k(t) +
∞∑

j=j0

2j−1∑

k=0

wjkψjk(t), t ∈ [0, 1].

For detailed expositions of the mathematical aspects of wavelets we refer to, e.g., Meyer (1992),

Daubechies (1992) and Mallat (1999), while comprehensive expositions and reviews on wavelets

applications in statistical settings are given in, e.g., Antoniadis (1997), Vidakovic (1999), Abramovich

et al. (2000) and Antoniadis et al. (2001).

2.3 The discrete wavelet transform

In statistical settings we are more usually concerned with discretely sampled, rather than continuous,

functions. It is then the wavelet analogy to the discrete Fourier transform which is of primary interest

and this is referred to as the discrete wavelet transform (DWT). Given a vector of function values

f = (f(t1), ..., f(tn))′ at equally spaced points ti, the discrete wavelet transform of f is given by

d = Wn×nf ,

where d is an n × 1 vector comprising both discrete scaling coefficients, cj0k, and discrete wavelet

coefficients, djk, and Wn×n is an orthogonal n× n matrix associated with the orthonormal periodic

wavelet basis chosen. The cj0k and djk are related to their continuous counterparts uj0k and wjk

(with an approximation error of order n−1) via the relationships cj0k ≈
√

nuj0k and djk ≈
√

nwjk.

Note that, because of orthogonality of Wn×n, the inverse DWT (IDWT) is simply given by

f = WT
n×nd,

where WT
n×n denotes the transpose of Wn×n.

If n = 2J for some positive integer J , the DWT and IDWT may be performed through a

computationally fast algorithm developed by Mallat (1989) that requires only order n operations.

In this case, for a given primary resolution level j0 and under periodic boundary conditions,

the DWT of f results in an n-dimensional vector d comprising both discrete scaling coefficients

cj0k, k = 0, ..., 2j0 − 1 and discrete wavelet coefficients djk, j = j0, ..., J − 1; k = 0, ..., 2j − 1. We

do not provide technical details here of the order n DWT algorithm mentioned above. Essentially
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the algorithm is a fast hierarchical scheme for deriving the required inner products which at each

step involves the action of low and high pass filters, followed by a decimation (selection of every

even member of a sequence). The IDWT may be similarly obtained in terms of related filtering

operations. For a nice account of the DWT and IDWT in terms of filter operators we refer to, e.g.,

Nason & Silverman (1995).

2.4 Wavelet-based Model Specifications for the Fixed and Random Effects:

A Karhunen-Loève Representation

Recall that Guo (2002b), adopting the formulation of Wahba (1978) which was used to show that the

estimate of a cubic smoothing spline can be obtained through the posterior estimate of a partially

integrated Wiener process, has shown that the posterior means of the fixed-effects (based on all

the data) and the posterior means of the random effects (based only on the data from the specific

subject) are both cubic smoothing splines which share the same degree of smoothness. Furthermore,

conditional on the various parameters, the resulting cubic smoothing splines estimates are simply

the BLUP.

Similar formulations can also be developed through wavelet decompositions by modelling the

fixed-effects as a single realisation of a partially diffuse Karhunen-Loève representation, while

the random-effects are modelled as random realisations from the same partially Karhunen-Loève

representation with appropriate normalisation. More specifically, for each r1 = 1, 2, . . . , p, let the

fixed functional components βr1(t) of β(t) be modelled as

βr1(t) =
m−1∑

k=0

b
(r1)
k ζk(t) + δ

(r1)
β W (r1)(t), t ∈ [0, 1] (2)

and, for each r2 = 1, 2, . . . , q, let the random functional components ar2(t) of a(t) be modelled as

ar2(t) =
m−1∑

k=0

c
(r2)
k ζk(t) + δ(r2)

α W (r2)(t), t ∈ [0, 1], (3)

where ζk(t) are known linearly independent squared-integrable functions, b
(r1)
k are independent

and identically distributed N(0, τ2
1 ) random variables with τ2

1 → 0 (a vague prior), c(r2) =

(c(r2)
0 , . . . , c

(r2)
m−1)

T ∼ N(0, τ2
2,r2

D), for some fixed 0 < τ2
2,r2

< ∞ and a nonnegative-definite

covariance matrix D (a proper prior), δ
(r1)
β and δ

(r2)
α are unknown positive constants, and W (r1)(t),

W (r2)(t) are both copies of a second-order zero-mean stochastic process Z(t) with covariance kernel

E(Z(s)Z(t)) = W(s, t).

The covariance kernel W(s, t) is assumed to satisfy the conditions:
∫ 1
0 W(t, t)dt < ∞ and∫ 1

0

∫ 1
0 [W(s, t)]2dsdt < ∞. The first condition ensures that the sample paths of Z(t) (and hence

of βr1(t) and ar2(t)) are in L2[0, 1] almost surely, while the second condition ensures that W(s, t)

has an eigenfunction-eigenvalue decomposition by the Hilbert-Schmidt theorem. That is, there exist

functions ξν(t), ν = 1, 2, . . ., and a non-increasing sequence of non-negative numbers λ1 ≥ λ2 . . . ≥ 0

such that W(s, t) =
∑

ν λνξν(s)ξν(t). Thus, the process Z(t) has the so-called Karhunen-Loève

representation, i.e., Z(t) ∼ ∑
ν γνξν(t), where “∼” means “equal in distribution”, and γν(t),
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ν = 1, 2, . . ., is a sequence of uncorrelated random variables with zero means and variances λν ,

ν = 1, 2, . . . . Observe that each of the representations (2) and (3) is a nonparametric mixed-effects

model itself; the coefficients b
(r1)
k and c

(r2)
k are the “fixed-effects” and the random-coefficients γν(t)

are the “random-effects” (see Huang & Lu, 2000; Angelini et al., 2003).

Fix now a primary resolution level j0 ≥ 0, take m = 2j0 and consider the orthonormal periodic

wavelet basis {φj0k(t), k = 0, 1, . . . , 2j0 − 1; ψjk(t), j ≥ j0; k = 0, 1, . . . , 2j − 1} discussed in

Section 2.2 as our choice of basis for (ζk(t), ξν(t)) (k = 0, 1, . . . ,m − 1; ν = 1, 2, . . .). Based on this

choice of basis, representation (2), for the fixed functional components βr1(t) of β(t), takes the form

βr1(t) =
2j0−1∑

k=0

b
(r1)
k φj0k(t) + δ

(r1)
β

∞∑

j=j0

2j−1∑

k=0

γjkψjk(t), t ∈ [0, 1] (4)

while representation (3), for the random functional components ar2(t) of a(t), takes the form

ar2(t) =
2j0−1∑

k=0

c
(r2)
k φj0k(t) + δ(r2)

α

∞∑

j=j0

2j−1∑

k=0

γjkψjk(t), t ∈ [0, 1], (5)

where γjk are uncorrelated random variables with zero means and V(γjk) = λj .

Theorem 2.1 Under the above modelling methodology, assume further that γjk are independent

random variables, i.e., they are Gaussian random variables (which is equivalent to assuming that

Z(t) is a centered Gaussian process), and that D is a diagonal matrix. Then, for each r1 = 1, 2, . . . , p,

β̂r1(t) := lim
τ2→∞

E(βr1(t) | Y) = f̃λβ
(t)

and, for each i = 1, 2, . . . , n and r2 = 1, 2, . . . , q,

α̂(i)
r2

(t) := E(ar2(t) | Yi) = f̃
(i)
λα

(t),

where Y is all the data Yij (i = 1, 2, . . . , n; j = 1, 2, . . . ,mi), Yi is the data from the ith subject

(i = 1, 2, . . . , n), and f̃λβ
(t), f̃

(i)
λα

(t) are the penalized linear wavelet estimators for appropriate

smoothing parameters λβ, λα > 0.

Theorem 2.1 ensures that β̂r1(t) and α̂
(i)
r2 (t) are both penalized linear wavelet estimators (see

Appendix – A1) and, obviously, the subject-specific prediction curve Xijβ̂(t) + Zijα̂
(i)(t) is also

a penalized linear wavelet estimator. The differences between the fixed functional components of

β(t) and the random functional components of a(t) are that (i) each fixed functional component

of β(t) is modelled as a single realisation of a partially diffuse Karhunen-Loève representation,

while the random functional components of a(t) are modelled as random realisations from the

same partially Karhunen-Loève representation with appropriate normalisation, and (ii) each fixed

functional components of β(t) is estimated by its posterior mean conditional on all data, while each

random functional component of a(t) is estimated as a posterior mean conditional on the i-th subject

only. As each realisation of a Karhunen-Loève representation is a curve whose smoothness property

is characterised by the covariance kernel of the underlying second-order zero-mean stochastic process,
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the random functional components of a(t) for different subjects (different i’s) share the same degree

of smoothness because they share the same correlation structures. Therefore, the fixed functional

components of β(t) and the random functional components of a(t) both share the same degree of

smoothness, i.e., they lie in the same functional space, the Hilbert-Sobolev space, Hs
2 [0, 1], with

noninteger regularity index s > 1/2 (see Appendices – A1 and A2).

Note that the above wavelet-based representation extends the results of Guo (2002b) since the

penalized linear wavelet estimator generalizes the corresponding nonparametric regression estimation

problem over Hilbert-Sobolev spaces, Hs
2 [0, 1], with noninteger regularity index s > 1/2. Note that

this space consists of relatively smooth functions, but not as smooth as the usual Hilbert-Sobolev

spaces with integer regularity index s ≥ 1 used in cubic spline smoothing (see, e.g., Antoniadis,

Grégoire & McKeague, 1994). Furthermore, conditional on the parameters and working along the

lines given in Theorems 3.1 and 3.2 of Huang & Lu (2000) or Theorem 4.2 of Angelini et al. (2003),

the resulting penalized linear wavelet estimator in each case is the BLUP. This connection can

therefore be used to develop an estimation procedure similar to the one developed by Guo (2002b)

for cubic smoothing splines (and it has been applied in the analysis of the examples presented in

Section 5). However, as in cubic spline smoothing, we point out that the conceptual connection

between linear wavelet methods and Bayesian formulation of inference about functions should not

be taken too literately.

2.5 Wavelet-based Model Specifications for the Fixed and Random Effects:

A Sequence-Space Representation

A different approach to modelling the fixed and random effects, that allows a wide range of irregular

effects (for both fixed-effects and random-effects) on the one hand and overcomes the drawback

mentioned in Section 2.4 on the other hand, is through the sequence space representation of Besov

spaces. The (inhomogeneous) Besov spaces on the unit interval, Bs
ρ1,ρ2

[0, 1], consist of functions

that have a specific degree of smoothness in their derivatives. The parameter ρ1 can be viewed as

a degree of function’s inhomogeneity while s is a measure of its smoothness. Roughly speaking,

the (not necessarily integer) parameter s indicates the number of function’s (fractional) derivatives,

where their existence is required in an Lρ1-sense; the additional parameter ρ2 is secondary in its

role, allowing for additional fine tuning of the definition of the space (see Appendix – A2).

By exploiting the relation between the hyperparameters of a prior model and the parameters

of those Besov spaces within which realisations from the prior will fall, as originally suggested by

Abramovich et al. (1998) and further considered by, among others, Di Zio & Frigessi (1999) and

Botchkina (2002), the fixed functional components of β(t) and the random functional components

of a(t) can be both made to share the same degree of smoothness (i.e., they should lie in the same

Besov space).

Fix now a primary resolution level j0 ≥ 0 and consider the orthonormal periodic wavelet basis

{φj0k(t), k = 0, 1, . . . , 2j0 − 1; ψjk(t), j ≥ j0; k = 0, 1, . . . , 2j − 1} discussed in Section 2.2. For

each r1 = 1, 2, . . . , p, assume that βr1(t) ∈ Bs
ρ1,ρ2

[0, 1] for 0 < s < r, 1 ≤ ρ1, ρ2 ≤ ∞. For each
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i = 1, 2, . . . , n and r2 = 1, 2, . . . , q, consider now the following random wavelet series expansion

α(i)
r2

(t) =
2j0−1∑

k=0

c
(r2,i)
j0k φj0k(t) +

∞∑

j=j0

2j−1∑

k=0

θ
(r2,i)
jk ψjk(t), t ∈ [0, 1],

where, for each i = 1, 2, . . . , n and r2 = 1, 2, . . . , q, the wavelet coefficients θ
(r2,i)
jk are assumed to be

independent and identically distributed random variables, distributed as

θ
(r2,i)
jk ∼ π

(r2,i)
jk N(0, v

(r2,i)
jk ) + (1− π

(r2,i)
jk )δ(0),

where δ(0) is a point mass at zero. Furthermore, we assume that, for each i = 1, 2, . . . , n and

r2 = 1, 2, . . . , q, the quantities π
(r2,i)
jk and v

(r2,i)
jk are functions of the resolution level j only. In

particular, we assume that they decrease exponentially as a functions of the resolution level j, i.e.,

π
(r2,i)
jk = min(1, Cθ2−jβi), for some βi ≥ 0,

and

v
(r2,i)
jk = σ2

θ2
−jαi , for some αi ≥ 0,

where Cθ and σ2
θ are some positive quantities.

A relationship between the Besov space parameters and the hyperparameters of the prior model

considered above can be now established. The interesting cases correspond to considering 0 ≤ βi ≤ 1

(see Section 4.1 in Abramovich et al., 1998). Then, exploiting the equivalence between the Besov

norm of the function α
(i)
r2 (t) and the corresponding sequence space norm (see Appendix – A2), and

using Theorem 1 in Abramovich et al. (1998), for any given values of c
(r2,i)
j0k (k = 0, 1, . . . , 2j0 − 1),

and for each i = 1, 2, . . . , n; r2 = 1, 2, . . . , q,

α(i)
r2

(t) ∈ Bs
ρ1,ρ2

[0, 1] almost surely

if and only if

s + 1/2− βi/ρ1 − αi/2 < 0

or

s + 1/2− βi/ρ1 − αi/2 = 0 for 0 ≤ βi < 1, 1 ≤ ρ1 < ∞ and ρ2 = ∞.

In order to take into account the Besov space parameter ρ2 as well, we can also allow a more

delicate dependence on the variance parameter v
(r2,i)
jk by introducing a second parameter γi ∈ R,

i.e., v
(r2,i)
jk = σ2

θ2
−jαijγi . By following Theorem 2 in Abramovich et al., 1998), for any given values

of c
(r2,i)
j0k (k = 0, 1, . . . , 2j0 − 1), and for each i = 1, 2, . . . , n; r2 = 1, 2, . . . , q,

α(i)
r2

(t) ∈ Bs
ρ1,ρ2

[0, 1] almost surely

if and only if

s + 1/2− βi/ρ1 − αi/2 < 0

or

s + 1/2− βi/ρ1 − αi/2 = 0

and γ satisfies the appropriate one of the following conditions:
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(a) γ < −2/ρ2 for (i) ρ1, ρ2 < ∞ and 0 ≤ βi < 1, (ii) ρ1, ρ2 < ∞ and βi = 1, and (iii) ρ1 = ∞,

ρ2 < ∞ and βi = 1;

(b) γ < −1− 2/ρ2 for ρ1 = ∞, ρ2 < ∞ and 0 ≤ βi < 1;

(c) γ ≤ 0 for ρ1 < ∞, ρ2 = ∞ and 0 ≤ βi < 1;

(d) γ ≤ −1 for ρ1, ρ2 = ∞ and 0 ≤ βi < 1;

(e) γ < 0 for (i) ρ1 < ∞, ρ2 = ∞ and βi = 1, and (ii) ρ1, ρ2 = ∞ and βi = 1.

The above results show that, in each case, the fixed functional components of β(t) and the

random functional components of a(t) can be both made to share the same degree of smoothness

(i.e., they can both lie in the same functional space, Bs
ρ1,ρ2

[0, 1], with 0 < s < r, 1 ≤ ρ1, ρ2 ≤ ∞),

by appropriately relating the Besov space parameters s, ρ1 and ρ2 to the hyperparameters αi, βi

and/or γi of the prior models discussed above.

Remark 2.1 The hyperparameter π
(r2,i)
jk is the prior probability that a wavelet coefficient at

resolution level j and scale k is important for representing the i-th random curve, and v
(r2,i)
jk is

the prior variance of the important wavelet coefficient at resolution level j and scale k. This model

allows us to adapt between sparse and dense random effects.

Remark 2.2 Note that, for each i = 1, 2, . . . , n and r2 = 1, 2, . . . , q, we have used the same

mother wavelet ψ(t) in the formulations given above. Different mother wavelets can be used to

get the required characterizations as long as their regularities are larger than the regularity of the

corresponding Besov space.

2.6 A Linear Mixed-Effects Representation

In this section, we provide a linear mixed-effects representation that is subsequently used for

estimation and testing in the general functional mixed-effects model (1). We assume that the within-

subject design is equispaced on fine grid, a common model for many instrumental devices usually

used to collect functional data. Furthermore we take mi = m for all i = 1, 2, . . . , n with m = 2J for

some positive integer J . This setting allows one to consider the discrete wavelet transform which can

be performed through the computationally fast algorithm of Mallat (1989) mentioned in Section 2.3.

Note that this assumption is not especially restrictive, since if the grid is fine enough, interpolation

can used to obtain a common grid (of power two) without substantively changing the observed data.

Fix now a primary resolution level j0 ≥ 0 and consider the orthonormal periodic wavelet basis

{φj0k(t), k = 0, 1, . . . , 2j0 − 1; ψjk(t), j ≥ j0; k = 0, 1, . . . , 2j − 1} discussed in Section 2.2.

For each r1 = 1, 2, . . . , p, we set βr1(t) = (βr1(t1), . . . , βr1(tm))T, where t = (t1, . . . , tm) with

tj = j/m for j = 1, 2, . . . , m. Considerations related to asymptotic minimax optimality theory

suggest taking as a maximal resolution level j1 a level such that m/ ln(m) ≤ 2j1 ≤ 2m/ ln(m) (see

Delyon & Juditsky, 1996). We recommend hereafter the choice m∗ = 2j1 = [m/ ln(m)] because

the resulting wavelet estimators perform well for both smooth and piecewise smooth functions with
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isolated points of singularity. Obviously, such a choice does not affect the conclusions of Theorems 1

and 2 in Abramovich et al. (1998) discussed in Section 2.5. With this notation, we can write

βr1(t) = WT
m×m∗d̃r1 , where Wm∗×m is the m∗ ×m matrix associated with the orthonormal periodic

wavelet basis, and d̃r1 is the m∗ × 1 vector of the corresponding scaling and wavelet coefficients

{b̃(r1)
j0k , k = 0, 1, . . . , 2j0 − 1; d̃

(r1)
jk , j = j0, . . . , j1 − 1; k = 0, 1, . . . , 2j − 1}. We assume that, for each

r1 = 1, 2, . . . , p, βr1(t) ∈ Bs
ρ1,ρ2

[0, 1] for 0 < s1 < r, 1 ≤ ρ1, ρ2 ≤ ∞.

Similarly, for each i = 1, 2, . . . , n and r2 = 1, 2, . . . , q, we set α
(i)
r2 (t) = (α(i)

r2 (t1), . . . , α
(i)
r2 (tm))T

and we can write α
(i)
r2 (t) = WT

m×m∗ θ̃
(i)
r2

, where again Wm∗×m is the m∗ ×m matrix associated with

the orthonormal periodic wavelet basis, and θ̃
(i)
r2

is the m∗ × 1 vector of the corresponding scaling

and wavelet coefficients {c̃(r2,i)
j0k , k = 0, 1, . . . , 2j0 − 1; θ̃

(r2,i)
jk , j = j0, . . . , j1 − 1; k = 0, 1, . . . , 2j − 1}.

We assume that, for each i = 1, 2, . . . , n and r2 = 1, 2, . . . , q, the wavelet coefficients θ̃
(r2,i)
jk

are independent and identically distributed N(0, v
(r2,i)
jk ) random variables with probability π

(r2,i)
jk

or a point mass at zero with probability (1 − π
(r2,i)
jk ). By analogy to Section 2.5, we take

π
(r2,i)
jk = min(1, Cθ2−jβi), for some βi ≥ 0, and v

(r2,i)
jk = σ2

θ2
−jαi or v

(r2,i)
jk = σ2

θ2
−jαijγi , for some

αi ≥ 0 and γi ∈ R, where σ2
θ and Cθ are some positive quantities. Certain combinations of the

Besov parameters and hyperparameters of the prior model can now be exploited in order the fixed

functional components of β(t) and the random functional components of a(t) lie in the same Besov

space Bs
ρ1,ρ2

[0, 1], with 0 < s < r, 1 ≤ ρ1, ρ2 ≤ ∞ (see Section 2.5). For identifiability reasons,

that will be clear later, we assume that [n(ln(m)− q)] > p, where [x] denotes the integer part of x.

Finally, we assume that, for each i = 1, 2, . . . , n and r2 = 1, 2, . . . , q, εi and θ̃
(r2,i)
jk are independent.

Let Yi = (Yi1, . . . , Yim)T and d̃ = (d̃
T
1 , . . . , d̃

T
p )T, and let X̃i = XiW(p) and Z̃i = ZiW

(q)
n , where

Xi = diag(Xi1, . . . ,Xim) (each element is an appropriately constructed matrix containing dummy

variables and/or covariates), W(p) = diag(WT
m×m∗ , . . . , WT

m×m∗) (p blocks), Zi = diag(Zi1, . . . ,Zim)

(each element is an appropriately constructed matrix containing dummy variables and/or covariates),

W(q)
n = diag(W(q), . . .W(q)) (n blocks) and W(q) = diag(WT

m×m∗ , . . . , WT
m×m∗) (q blocks). Let also

θ̃i = (θ̃i1, . . . , θ̃iq)T and ε̃i = (εi1, . . . , εim)T. With this notation, the general functional mixed-effects

model (1) can be rewritten as

Y = X̃d̃ + Z̃θ̃ + ε̃, (6)

where Y = (YT
1 , . . . ,YT

n )T, X̃ = (X̃
T

1 , . . . , X̃
T

n )T, Z̃ = (Z̃
T

1 , . . . , Z̃
T

n )T, θ̃ = (θ̃
T

1 , . . . , θ̃
T

n )T and

ε̃ = (ε̃T
1 , . . . , ε̃T

n )T. Model (6) is clearly a linear mixed-effects model with one variance component

where the fixed-effects are parameterized by the wavelet coefficients of βr1(t) (r1 = 1, 2, . . . , p) and

the random-effects are parameterized by the wavelet coefficients of α
(i)
r2 (t) (i = 1, 2, . . . , n; r2 =

1, 2, . . . , q).

Obviously, E(θ̃, ε̃)T = (Onm∗q,Onm)T, where Ok is a k × k matrix with zero entries. Moreover,

it is not difficult to see that V(θ̃, ε̃)T = diag(σ2
θΣ, σ2

ε Inm), where Σ = diag
(
Σ(1), . . . ,Σ(n)

)

(n-components) with Σ(i) being a diagonal matrix with diagonal entries corresponding to the

elements min(1, Cθ2−jβi)2−jαi or min(1, Cθ2−jβi)2−jαijγi for each i = 1, 2, . . . , n (the same for all

r2 = 1, 2, . . . , q), and Ik is the k × k identity matrix. Therefore,

E(Y) = X̃d̃ and V(Y) = σ2
εVλ,
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where Vλ = Inm + λZ̃ΣZ̃
T

and λ = σ2
θ/σ2

ε . The parameter λ can be considered a signal-to-noise

ratio since σ2
θ determines the size of the “signal” given by E(Y | θ̃) = X̃d̃ + Z̃θ̃ and σ2

ε determines

the size of the “noise”. Note that σ2
θ = 0 if and only if λ = 0, and the parameter space for λ is

[0,∞).

Remark 2.3 We point out that the independence assumption of the random effects in the wavelet

domain discussed above only implies independence in the data domain when the variance components

of the random effects are identical across all resolution levels j and locations k, implying that our

modelling methodology allows to model correlation between observations over the same individual

which is typical for longitudinal or functional data.

Remark 2.4 An alternative model can be also built by taking different priors with hyperparameters

αi, βi and γi for i ∈ {1, 2, . . . , n1}, i ∈ {n1 + 1, n1 + 2, . . . , n2}, . . ., i ∈ {np−1 + 1, np−1 + 2, . . . , np},
where n1 + n2 + . . . + np = n. In other words, using similar notation, model (6) is now replaced by

Y = X̃d̃ + Z̃1θ̃1 + . . . + Z̃qθ̃q + ε̃. (7)

Model (7) is clearly a linear mixed-effects model with q variance components where the fixed-effects

are parameterized by the wavelet coefficients of βr1(t) (r1 = 1, 2, . . . , p) and the random-effects are

parameterized by the wavelet coefficients of α
(i)
r2 (t) (i = 1, 2, . . . , n; r2 = 1, 2, . . . , q).

3 Inference in Functional Mixed-Effects Models

In this section, we provide hypothesis testing procedures for both fixed-effects and random-effects

in the general functional mixed-effects model (1).

3.1 Testing for Random-Effects

According to the modelling formulation in Section 2.6, testing for random-effects in the general

functional mixed-effects model (1) is equivalent to testing for a zero variance component in the

linear mixed-effects model (6) which, in turn, is equivalent to testing the following hypotheses

H0 : σ2
θ = 0 (λ = 0) versus HA : σ2

θ > 0 (λ > 0). (8)

Testing the above hypotheses is non-standard because the parameter under the null hypothesis is

on the boundary of the parameter space. Therefore, using non-standard asymptotic theory developed

by Self & Liang (1987) for independent data, one may be tempted to conclude that the finite sample

null distributions of the resulting LR and RLR tests could be approximated by a 0.5δ(0) + 0.5χ2
1

distribution, i.e., a 50:50 mixture of a point mass at zero and a chi-square distribution with one

degree of freedom. However, a second problem is lack of independence, at least under the alternative

hypothesis. Because the response variable Y in the linear mixed-effects model (6) is usually not a

vector of independent random variables, the non-standard asymptotic theory of Self & Liang (1987)

does not apply. Stram & Lee (1994) showed that the theory of Self & Liang (1987) can be still applied
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to testing for a zero variance component in linear mixed-effects model with one variance component

if the response vector Y can be partitioned into independent and identically distributed subvectors

and the number of independent subvectors tends to infinity (while the number of observations per

subvector can be either fixed or also increasing to infinity). However, they assumed that the random-

effects are independent from subject to subject, and they implicitly assumed that the number of

subjects increases to infinity. Their results would not hold for a fixed number of subjects, even if

the observations per subject increased to infinity.

It is therefore evident that the non-standard asymptotic theory for LR and RLR tests cannot be

applied blindly for testing the hypotheses in (8), since the stated assumptions on Y and on random-

effects usually do not hold in the liner mixed-effects model (6). With this in mind, Crainiceanu &

Ruppert (2004a) have recently derived finite sample and asymptotic null distributions for the LR

and RLR test statistics in linear mixed-effects model with one variance component. This is the

approach that we consider in the following development for testing the hypotheses in (8).

3.1.1 Profile and Restricted Profile Log-Likelihood Functions

Twice the log-likelihood function for the linear mixed-effects model (6) is (up to a constant that

does not depend on the parameters)

L(d̃, λ, σ2
ε ) = −nm log(σ2

ε )− log |Vλ| −
(Y − X̃d̃)TV−1

λ (Y − X̃d̃)
σ2

ε

. (9)

Under the alternative hypothesis HA in (8), by fixing λ and solving the first order minimum

conditions for d̃ and σ2
ε , one gets the maximum profile likelihood estimates

̂̃d(λ) = (X̃
T
V−1

λ X̃)−1X̃
T
V−1

λ Y (10)

and

σ̂2
ε (λ) =

1
nm

(Y − X̃̂̃d(λ))TV−1
λ (Y − X̃̂̃d(λ)). (11)

Plugging the expressions (10) and (11) into (13) we obtain (up to a constant that does not depend

on the parameters), the profile log-likelihood function

L(λ) = − log |Vλ| − nm log (YTPT
λV−1

λ PλY), (12)

where

Pλ = Inm − X̃(X̃
T
V−1

λ X̃)−1X̃
T
V−1

λ .

In order to take into account the loss in degrees of freedom due to estimation of the m∗p-

dimensional d̃ parameters, and thereby to obtain unbiased variance components estimators,

Patterson & Thompson (1971) introduced the notion of RML. RML consists of maximizing the

likelihood function associated with (nm−m∗p) linearly independent contrasts. It makes no difference

which (nm −m∗p) linearly independent contrasts are used because the likelihood function for any

such set differs by no more than an additive constant (see Harville, 1977). Twice the restricted log-

likelihood function for the linear mixed-effects model (6) is (up to a constant that does not depend
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on the parameters)

l(d̃, λ, σ2
ε ) = L(d̃, λ, σ2

ε )−m∗p log(σ2
ε )− log(|X̃T

V−1
λ X̃|). (13)

Using arguments similar to the ones used to obtain the maximum profile likelihood estimates, the

maximum restricted profile likelihood estimate of d̃(λ) is still given by (10) while the maximum

restricted profile likelihood estimate of σ2
ε (λ) is now given by

σ̂2
ε (λ) =

1
nm−m∗p

(Y − X̃̂̃d(λ))TV−1
λ (Y − X̃̂̃d(λ)). (14)

The restricted profile log-likelihood function (up to a constant that does not depend on the

parameters) is then given by

l(λ) = − log |Vλ| − log |X̃T
V−1

λ X̃| − (nm−m∗p) log{YTPT
λV−1

λ PλY}. (15)

By following Crainiceanu & Ruppert (2004a) and Claeskens (2004), and taking into account that

[n(ln(m)− q)] > p, one can show that both profile and restricted profile log-likelihood functions can

be written as functions of latent eigenvalues. In particular, the profile log-likelihood function (12)

can be written, up to a constant that does not depend on the parameters, as

L(λ) = −
nm∗q∑

s=1

log(1 + λξs,nm)− nm log



σ2

ε

nm∗q∑

s=1

1
1 + λµs,nm

ω2
s +

nm−m∗p∑

s=nm∗q+1

ω2
s



 ,

while, the restricted profile log-likelihood function (15), can be written as

l(λ) = −
nm∗q∑

s=1

log(1 + λµs,nm)− (nm−m∗p) log



σ2

ε

nm∗q∑

s=1

1
1 + λµs,nm

ω2
s +

nm−m∗p∑

s=nm∗q+1

ω2
s



 ,

where ωs are independent and identically distributed N(0, 1) random variables, and µs,nm and ξs,nm

are the eigenvalues of the matrices Kµ = Σ1/2Z̃
T
P0Z̃Σ1/2 and Kξ = Σ1/2Z̃

T
Z̃Σ1/2 respectively.

Here, Σ1/2 is the unique symmetric square root of Σ and P0 = Inm − X̃(X̃
T
X̃)−1X̃

T
.

3.1.2 Finite Sample Null Distributions of the LR and RLR Tests

As in Crainiceanu & Ruppert (2004a), the finite sample LR test statistic is defined as

LRnm ≡ sup
λ≥0

LRnm(λ)

≡ sup
λ≥0

(L(λ)− L(0)),

while the finite sample RLR test statistic is defined as

RLRnm ≡ sup
λ≥0

RLRnm(λ)

≡ sup
λ≥0

(l(λ)− l(0)).

The following theorem gives the spectral representations of the finite sample null distributions of

the LRnm and RLRnm test statistics that can be used for testing the hypotheses in (8).
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Theorem 3.1 Let µs,nm and ξs,nm be the eigenvalues of the matrices Kµ = Σ1/2Z̃
T
P0Z̃Σ1/2 and

Kξ = Σ1/2Z̃
T
Z̃Σ1/2 respectively, where P0 = Inm−X̃(X̃

T
X̃)−1X̃

T
. Then, under the null hypothesis

H0 in (8),

LRnm
D= sup

λ≥0


nm log

{
1 +

Nnm(λ)
Dnm(λ

}
−

nm∗q∑

s=1

log(1 + λξs,nm)


 (16)

and

RLRnm
D= sup

λ≥0


(nm−m∗p) log

{
1 +

Nnm(λ)
Dnm(λ

}
−

nm∗q∑

s=1

log(1 + λµs,nm)


 , (17)

where the notation “D=” denotes equality in distribution,

Nnm(λ) =
nm∗q∑

s=1

λµs,nm

1 + λµs,nm
ω2

s , Dnm(λ) =
nm∗q∑

s=1

ω2
s

1 + λµs,nm
+

nm−m∗p∑

s=nm∗q+1

ω2
s ,

and ωs, s = 1, 2, . . . , nm∗q, are independent and identically distributed N(0, 1) random variables.

Remark 3.1 Each of the finite sample null distributions of the LRnm and RLRnm test statistics

has a probability mass at zero, and this mass can be very large indeed. Although there is no

simple expression for these probabilities, there is a good approximation. By following Crainiceanu

& Ruppert (2004a), the probabilities

π0 = P




∑nm∗q
s=1 µs,nω2

s∑nm−m∗p
s=1 ω2

s

≤ 1
nm

nm∗q∑

s=1

ξs,n


 and π1 = P




∑nm∗q
s=1 µs,nω2

s∑nm−m∗p
s=1 ω2

s

≤ 1
nm−m∗p

nm∗q∑

s=1

µs,n




(18)

provide good approximations for the probability masses at zero of the finite sample null distributions

for the LRnm and RLRnm test statistics respectively, and can be easily obtained by simulations.

The finite sample null distributions of the RLnm and RLRnm test statistics given by (16) and

(17) respectively depend only on the eigenvalues µs,nm and ξs,nm. Following Crainiceanu & Ruppert

(2004a), the following algorithm, which we have used in the analysis of the examples presented in

Section 5, provides a simple way to simulate the finite sample null distributions of the LRnm and

RLRnm test statistics, once the eigenvalues µs,nm and ξs,nm have been calculated.

An Algorithm for the Finite Sample Null Distributions of the

LRnm and RLRnm Test Statistics

Step 1. Define a grid 0 = λ1 < λ2 < . . . < λK of possible values of λ.

Step 2. Simulate nm∗q independent χ2
1 random variables ω2

1, . . . , ω
2
nm∗q.

Step 3. Independently of step 2, simulate Xnm,m∗p,nm∗q =
∑nm−m∗p

s=nm∗q+1 ω2
s with χ2

nm−m∗p−nm∗q

distribution.

Step 4. For every grid point λi, compute

Nnm(λi) =
nm∗q∑

s=1

λiµs,nm

1 + λiµs,nm
ω2

s and Dnm(λ) =
nm∗q∑

s=1

ω2
s

1 + λiµs,nm
+ Xnm,m∗p,nm∗q.
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Step 5. Determine λLR
max which maximizes

fLR
nm(λi) =


nm log

{
1 +

Nnm(λi)
Dnm(λi)

}
−

nm∗q∑

s=1

log(1 + λiξs,nm)




and λRLR
max which maximizes

fRLR
nm (λi) =


(nm−m∗p) log

{
1 +

Nnm(λi)
Dnm(λi)

}
−

nm∗q∑

s=1

log(1 + λiµs,nm)




over λ1, λ2, . . . , λK .

Step 6. Compute

LRnm = fLR
nm(λLR

max) and RLRnm = fRLR
nm (λRLR

max ).

Step 7. Repeat Steps 2 - 6.

The above algorithm could, however, be computationally very expensive since its speed depends

on the number of random-effects, nm∗q, in the linear mixed-effects model (6) (which obviously

depends on the number of subjects, n, the number of observations, m (recall that m∗ = [m/ ln(m)]),

per subject, and the number of random-effects, q, in the general functional mixed-effects model (1)).

Alternatively, the asymptotic null distributions of the LRnm and RLRnm test statistics can be

easily obtained; they actually depend on the asymptotic behaviour of the eigenvalues µs,nm and ξs,nm

used to calculated the finite sample null distributions of the LRnm and RLRnm test statistics. Note

that all these asymptotic null distributions essentially depend on the asymptotic behaviour of the

eigenvalues µs,nm and ξs,nm. When these eigenvalues cannot be computed explicitly it may simple

to study the asymptotic behaviour of the corresponding matrices. Once the asymptotic behaviour

of the eigenvalues µs,nm and ξs,nm is available, one can either obtain closed-form expressions for or

easily simulated from the corresponding asymptotic null distributions.

3.1.3 Asymptotic Null Distributions of the LR and RLR Tests

The following theorem provides the asymptotic null distributions of the LRnm and RLRnm test

statistics.

Theorem 3.2 Let µs,nm and ξs,nm be the eigenvalues of the matrices Kµ = Σ1/2Z̃
T
P0Z̃Σ1/2 and

Kξ = Σ1/2Z̃
T
Z̃Σ1/2 respectively, where P0 = Inm − X̃(X̃

T
X̃)−1X̃

T
. Suppose that there exists a

constant η ≥ 0 so that, for every s, the eigenvalues µs,nm and ξs,nm satisfy limnm→∞(nm)−ηµs,nm =

µs and limnm→∞(nm)−ηξs,nm = ξs, where µs 6= 0 for at least one s. Then, under the null hypothesis

H0 in (8),

LRnm ⇒ sup
d≥0





nm∗q∑

s=1

dµs,nm

1 + dµs,nm
ω2

s −
nm∗q∑

s=1

log(1 + d ξs,nm)





and

RLRnm ⇒ sup
d≥0





nm∗q∑

s=1

dµs,nm

1 + dµs,nm
ω2

s −
nm∗q∑

s=1

log(1 + dµs,nm)



 ,
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where the notation “⇒” denotes weak convergence and ωs, s = 1, 2, . . . , nm∗q, are independent and

identically distributed N(0, 1) random variables.

Remark 3.2 Each of the asymptotic null distributions of the LRnm and RLRnm test statistics

has a probability mass at zero, and this mass can be very large indeed. Although there is no

simple expression for these probabilities, there is a good approximation. By following Crainiceanu

& Ruppert (2004a), the probabilities

p0 = P




nm∗q∑

s=1

µsω
2
s ≤

nm∗q∑

s=1

ξs


 and p1 = P




nm∗q∑

s=1

µsω
2
s ≤

nm∗q∑

s=1

µs


 (19)

provide excellent approximations for the probability masses at zero of the asymptotic null

distributions for the LRnm and RLRnm test statistics respectively.

Remark 3.3 The results of Theorem 3.2 can be expressed as

LRnm ⇒ p0δ(0) + (1− p0)G0 and RLRnm ⇒ p1δ(0) + (1− p1)G1

where G0 and G1 denote probability distributions that are generally different than χ2
1, and p0 and

p1 are the asymptotic probability masses at zero given in (19), which are typically different than

0.5. Although the form of these asymptotic null distributions are similar to the asymptotic null

distribution 0.5δ(0)+0.5χ2
1 that can be used for testing the variance component in the linear mixed-

effects model (6), under the assumption of independent and identically distributed data Y (for

all values of the parameter) or when the response vector Y can be partitioned into independent

subvectors and the number of independent subvectors tends to infinity (see Stram & Lee, 1994),

the probability masses at zero p0 and p1 and the second distributions G0 and G1 in the mixtures

differ. The probabilities p0 and p1 can be computed either directly using well-known tabulated

probability distributions or using an algorithm of Farebrother (1990) or using Monte Carlo (or other

more efficient schemes to) simulations. These latter schemes to simulations could also be used to

simulate quantiles of the distributions G0 and G1 if closed-form expressions are not available.

We have just seen that the asymptotic null distributions discussed above depend on the

asymptotic behaviour of the eigenvalues µs,nm and ξs,nm. In the following, we treat a simple example

of practical interest showing how these conditions can be reduced to a simple expression.

Example 3.1 (Balanced One-Way Functional Mixed-Effects ANOVA Model)

Consider the following balanced one-way functional mixed-effects ANOVA model with n levels, m

discretised values per level, and l repetitions per level, i.e.,

Yijk = β(tij) + α(i)(tij) + εijk, i = 1, . . . , n; j = 1, . . . ,m; k = 1, . . . , l, (20)

where β(t) is an unknown functional mean, α(i)(t) are realisations of a zero-mean Gaussian process

a(t), and εijk are independent and identically distributed N(0, σ2
ε ) random variables that are also

independent of a(t). Using the wavelet transform parameterisation discussed in Section 2.6, the
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matrix X̃ for fixed-effects is simply an nml×m∗ matrix with nl block columns equal to WT
m×m∗ and

the matrix Z̃ for random-effects is the nml × nm∗ matrix, with l row blocks each made by a block

diagonal nm×nm∗ with the matrix WT
m×m∗ on the diagonal. We consider the asymptotic situation,

where the number of levels n is fixed, while m, l → ∞. Recall that P0 denotes the orthogonal

projector of Rnml onto the space orthogonal to the column space of X̃. By the orthogonality of the

columns of WT
m×m∗ , it is easy to see that the rank of X̃ is m∗ and, therefore, P0 has nml − m∗

eigenvalues equal to 1 and m∗ eigenvalues equal to 0. Using again the orthogonality of the columns

of WT
m×m∗ , it is easy to prove that Z̃

T
P0Z̃ has m∗(n− 1) eigenvalues equal to l and the remaining

eigenvalues equal to 0. Moreover, the eigenvalues of Kµ are given by the product of eigenvalues of

Σ and Z̃
T
P0Z̃ while the eigenvalues of Kξ are given by the product of eigenvalues of Σ and Z̃

T
Z̃.

Given the behaviour of the diagonal matrix Σ, it follows that both µs,nm and ξs,nm are therefore

O(l(m∗)−η). The conditions of Theorem 3.2 reduce then in assuming that there exists a constant

η ≥ 0 such that l1−η(nm)η(m∗)−η = O(1).

3.1.4 Signal-to-Noise Ratio Estimators

In this section, we discuss three possible ways of obtaining consistent estimators of the signal-to-noise

ratio parameter λ = σ2
θ/σ2

ε .

Profile and Restricted Profile Maximum Likelihood Estimators

By maximizing (12) or (15) one can obtain the profile and restricted profile maximum likelihood

estimators λ̂LR and λ̂RLR respectively of λ. Under some regularity conditions, one can show that

λ̂LR and λ̂RLR are consistent estimators of λ (see Claeskens, 2004).

An Estimating Function Based Estimator

Consider first the QR decomposition (see, for example, Thistead, 1986) of the fixed-effects design

matrix X̃

X̃ = [Q1 Q2]

[
R

0

]
,

where R is upper triangular. It follows from the definition of the QR decomposition that the columns

of Q2 define a set of orthonormal vectors that span the orthogonal complement of the column space

of X̃. The image Y∗ = QT
2 Y is, therefore, a zero-mean Gaussian vector with covariance matrix

σ2
εV

∗
λ, where V∗

λ = IN∗ + λZ̃
∗
ΣZ̃

∗T
with Z̃

∗
= QT

2 Z̃ and N∗ = nm−m∗p.

Assuming for the moment that σ2
ε is known, the vector Y∗ takes its values in the N∗-dimensional

vector statistical space S = {RN∗
,B, µλ, λ ≥ 0}, with µλ denoting the zero-mean Gaussian

probability measure on the Borel σ-algebra B of subsets of RN∗
given by µλ = L(Y∗), where

L(X) denotes the law (distribution) of the random vector X, with covariance operator given by

σ2
ε

(
IN∗ + λ Z̃

∗
ΣZ̃

∗T)
. Recall that an estimating function (see Godambe, 1960) for the vector

statistical space S is any map g : RN∗×R→ R such that, given an observed value y∗ of the random

vector Y∗ in S, an estimate of λ is obtained by solving the equation g(y∗;λ) = 0 with respect to

λ. The estimating function g is said to be unbiased if Eλ(g) = 0 for any λ. Following Antoniadis &
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Lavergne (1994), the explicit unbiased estimating function that we consider is

g(y∗; λ) = ‖y∗‖2 − σ2
ε tr

(
IN∗ + λ Z̃

∗
ΣZ̃

∗T)

= ‖y∗‖2 − σ2
ε

(
N∗ + λ tr

(
Z̃
∗
ΣZ̃

∗T))
, y∗ ∈ RN∗

, λ ≥ 0,

where tr(A) denotes the trace of the square matrix A. When σ2
ε is known, the corresponding

estimate λ̂ that solves g(Y∗; λ) = 0 is given by

λ̂ =
‖Y∗‖2/σ2

ε −N∗

tr
(
Z̃
∗
ΣZ̃

∗T) .

It is clear that the above estimator can assume negative values. Starting form λ̂ it is then

natural to define an admissible estimator λ̂+ by the rule λ̂+ = max(λ̂, 0). Suppose now that one has

available an independent and identically distributed sample (y∗1, . . . ,y
∗
r) from the above considered

model (which obviously arises when one has repetitions per subject in the general functional mixed-

effects model (1)). An efficient estimator of λ can be obtained as follows. Let γk, k = 1, . . . , N∗ be

the eigenvalues of the matrix Z̃
∗
ΣZ̃

∗T
, and define

λ̃ = λ̂+ +
1√
r
I−1(λ̂+)∆(λ̂+), (21)

where

I(λ) =
1
2

N∗∑

k=1

γ2
k

(1 + λγk)2
,

and

∆(λ) =
1

2
√

r

r∑

i=1

N∗∑

k=1

(y∗2ik − (1 + λγk))
γk

(1 + λγk)2
.

Under fairly general conditions on the mixed-effects design matrix Z̃, one may then show that λ̃

is consistent, asymptotically Gaussian and reaches the highest possible efficiency as r → ∞ (see

Antoniadis & Lavergne, 1994).

Obviously, λ̃ depends on the unknown σ2
ε . Nevertheless, using a QR decomposition of the

matrix [X̃ | Z̃], one may derive an unbiased and consistent estimator of σ2
ε that may be employed

in expression (21) to provide a final estimator of λ. However, the resulting Gaussian distribution

becomes degenerate as the parameter λ approaches its boundary and we will not pursue this approach

furthermore. Let us just say that the use of the estimator λ̃ defined in (21) can be very appealing

in practical applications when repetitions are available.

A Wavelet Domain Based Estimator

Following the wavelet-based model formulation discussed in Section 2.5, one can take αi = α, βi = β

and γi = γ for all i = 1, 2, . . . , n. Their values can be chosen, e.g., by combining the prior knowledge

of the smoothness of the individual data curves and the visual appearance of simulated functions

under this prior formulation, as shown in Abramovich et al. (1998).

It is not difficult to see that, for each individual data curve, the empirical wavelet coefficients

of the data, at each resolution level j, are independent random variables, distributed as mixtures of
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two Gaussian distributions with appropriate means, variances and mixture proportions, depending

on π
(r2,i)
jk and v

(r2,i)
jk . The maximum likelihood estimators of π

(r2,i)
jk and v

(r2,i)
jk cannot be obtained

explicitly, and numerical procedures should be adopted. However, given σ2
ε , it is possible to get

their estimators in closed form, say π̂
(r2,i)
jk and v̂

(r2,i)
jk respectively, by the method of moments (see

Abramovich & Angelini, 2004). By noting that for j = 0 and γ = 0, one gets v
(r2,i)
jk = σ2

θ , an

estimator of σ2
θ can be obtained for each value of r2 = 1, 2, . . . , q, and then estimate σ2

θ by averaging

its q estimates obtained, resulting in the estimator σ̂2
θ . The results of Abramovich & Angelini (2004)

justify its consistency property.

However, in most applications, the noise variance σ2
ε can also be estimated in the wavelet domain.

In wavelet function estimation, the common practice is to robustly estimate σε by the median of

the absolute deviation of the empirical wavelet coefficients of the data at the highest resolution level

divided by 0.6745. This can be done for all the individual data curves and then estimate σε by

averaging its n robust estimates obtained from each individual data curve, resulting in the estimator

σ̂2
ε . A consistent estimator of λ is then simply obtained by λ̂wd = σ̂2

θ/σ̂2
ε .

Remark 3.4 Since the linear mixed-effects model (6) has been modelled by the wavelet-based model

discussed in Section 2.5, which involves π
(r2,i)
jk and v

(r2,i)
jk , we have applied the wavelet domain based

estimator λ̂wd in the analysis of the examples presented in Section 5. Preliminary simulation results

indicate a very good performance, and our findings agree with those of Abramovich & Angelini

(2004). On the other hand, the profile and restricted profile maximum likelihood estimators λ̂LR

and λ̂RLR are strongly biased and with high variability, whereas the estimating function based

estimator λ̃ is not expected to perform well due to the low number of repetitions.

Remark 3.5 If one considers the linear mixed-effects model (7) instead, then the above process can

be repeated to estimate the various variance components. Then, as in Claeskens (2004), one can get

estimates of the various σ̂2
θ,r2

for each r2 = 1, 2, . . . , q, leading to different estimates λ̂wd
r2

= σ̂2
θ,r2

/σ̂2
ε

for each r2 = 1, 2, . . . , q.

Let us conclude this section by saying that the testing ideas described above have been applied

for testing functional random-effects in the examples section provided below.

3.2 Testing for Fixed-Effects

The wavelet decomposition proposed in Section 2.6 for the general functional mixed-effects model

(1) can also provide an efficient way to make meaningful inference on the fixed-effects by testing

whether certain fixed-effects or contrasts are equal to zero. The proposed method will be based

on an appropriately defined F-test based procedure for testing that the expectation of a Gaussian

vector with nm independent components belongs to a linear subspace of Rnm against a nonparametric

alternative. The testing procedure is available even when the variance of the observations is unknown

and does not depend on any prior information on the alternative. The properties of the test are

nonasymptotic and the test will be rate optimal (up to a logarithmic factor) over various classes of

alternatives simultaneously.
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To begin with, consider the linear mixed-effects model (6) and take the case where σ2
ε is unknown

but the signal-to-noise ratio λ = σ2
θ/σ2

ε is known. The general functional mixed-effects model (1)

and the specific wavelet-based modelling approach that we have used in Section 2.5 for representing

the random-effects functional components show that one has to take βi = 0 in order the vector of

observations Y be Gaussian. (However, an analogous test that can also be used when the vector

of observations is not assumed Gaussian nor having identically distributed components but only

consisting of random variables with symmetrical distributions, that is the case when one considers

βi 6= 0, will be briefly discussed in Remark 3.7 below.) In this case, the image of the vector Y by

V
−1/2
λ leads to the linear regression model

Yλ = V
−1/2
λ Y

= V
−1/2
λ X̃d̃ + σεη, (22)

where η is a random vector with independent and identically distributed standard Gaussian

components, i.e., ηi ∼ N(0, 1) for i = 1, 2, . . . , nm. Let ν denote the expectation of Y and let µ be

its image by V
−1/2
λ . The space of means E of model (22) is the m∗p-dimensional linear subspace of

Rnm spanned by the columns of the matrix V
−1/2
λ X̃, i.e.,

E = {µ ∈ Rnm : µ = V
−1/2
λ X̃d̃ with d̃ ∈ Rm∗p}.

Testing for significant fixed-effects functional components or contrasts is formally a test of the

null hypothesis Hc : Acd̃ = 0 for a suitable defined matrix Ac, against general alternatives. A

powerful approach to such a high-dimensional hypothesis testing is available by adapting the model

selection based procedures proposed recently in Baraud et al. (2003), which are naturally generalized

to our present scenario.

Let Vc be the linear subspace of E defined by

Vc = {V −1/2
λ X̃d̃, Acd̃ = 0}

for a suitable defined contrast matrix Ac. Following the idea of Baraud et al. (2003), we propose

below a test of µ ∈ Vc against that it does not. The testing procedure relies upon appropriately

defined F -statistics which have been widely used for hypothesis testing in the linear model framework

due to their intuitional appeal and their equivalence to LR for fixed-effects models. It is described

as follows.

We consider a finite collection {S` : ` ∈ L} of linear subspaces included in the orthogonal

complement V⊥c ∩ E of Vc in E , such that for each ` ∈ L, S` 6= V⊥c ∩ E and S` 6= {0}. The index set

L is allowed to depend on the number of observations nm. Given a suitable sequence {ᾱ` : ` ∈ L}
of numbers in (0, 1), we consider for each ` ∈ L, the Fisher test of level ᾱ` for testing

H0,c : µ ∈ Vc versus HA,` : µ ∈ (Vc + S`)\Vc, (23)

and denote by Tc,` the corresponding test statistic. The resulting test can then be regarded as an

adaptive test of linear hypothesis based on a multiple testing procedure rejecting H0,c against HA,`

as soon as there exists ` ∈ L such that Tc,` is larger than some threshold.
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To pursue, let us first introduce notations that will be repeatedly used throughout this section.

The distribution of the vector of observations Yλ will be denoted by Pµ. For any linear subspace

A of Rnm, we denote by ΠA the orthogonal projector onto A (with respect to the Euclidean norm

|| · ||). For any u ∈ R, Φ̄(u), χ̄D(u) and F̄D,N (u) denote respectively the probability for a standard

Gaussian variable, a chi-square with D degrees of freedom, and a Fisher with D and N degrees of

freedom to be larger than u. For any c, dc will denote the dimension of Vc and, for each ` ∈ L, D`

and N` will respectively denote the dimensions of S` and (Vc + S`)⊥ ∩ E . Let also kc be the rank of

Ac.

3.2.1 Description of the Test

Let ᾱ ∈ (0, 1) be a fixed significance level. Assume that the collection {S` : ` ∈ L} of linear

subspaces of V⊥c ∩ E is such that 1 ≤ D` ≤ nm−m?p + kc − 1. We set

Tc,` =
N`‖ΠS`

Yλ‖2

D`‖Π(Vc+S`)⊥∩EYλ‖2
,

and we define

Tᾱ = sup
`∈L

{Tc,` − F̄−1
D`,N`

(ᾱ`)}, (24)

where {ᾱ` : ` ∈ L} is a sequence of numbers in (0, 1) such that, for all µ ∈ Vc,
∑

`∈L ᾱ` ≤ α. We

then reject the null hypothesis (23) when Tᾱ is positive.

3.2.2 Level of the Test

We first study the level of the test statistic defined in (24) and show that it is of level ᾱ. Indeed,

the following theorem holds.

Theorem 3.3 The test statistic Tᾱ defined in (24), under the null hypothesis (23), satisfies

∀ µ ∈ Vc, Pµ{Tᾱ > 0} ≤ ᾱ.

The proof of Theorem 3.3 shows clearly that the above procedure is a Bonferroni-like procedure

in which the p-value ᾱ is composed by #L significance levels, where #L is the total number of models

that are tested. It is well known that the Bonferroni approach is overly conservative when #L is

large; the choice of L is therefore important and connected to optimal model selection procedures

(see Section 3.2.4).

3.2.3 Power of the Test

We now study the power of the test statistic defined in (24). Let 0 < γ < 1, and let us first introduce

some quantities that depend on ᾱ`, γ, D` and N`. For each u > 0 and each ` ∈ L, we set

L` = log(1/ᾱ`) L = log(2/γ), r` = 2 exp(4L`/N`),

K`(u) = 1 + 2
√

u

N`
+ 2r`

u

N`
, Λ1(`) = 2.5 (1 + max(K`(L`), r`))

D` + L`

N`
,
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Λ2(`) = 2.5
√

1 + K2
` (L)

(
1 +

√
D`

N`

)
, Λ3(`) = 2.5

[
max

(
r`K`(L)

2
, 5

)](
1 + 2

D`

N`

)
.

With the above notation, the following theorem holds.

Theorem 3.4 Let Tᾱ be the test statistic defined by (24), and assume that X̃
T
V −1

λ X̃ converges to

a positive definite matrix as m →∞. Let Fm and ρ2
m be defined as follows

Fm = {µ(d̃) ∈ E ; d2
m(d̃,Vc) ≥ ρ2

m} (25)

and

ρ2
m = inf

`∈L

[
(1 + Λ1(`)) d2

m(ΠV⊥c ∩Eµ, S`) + v2
`

]
,

where

v2
` =

[
Λ2(`)

√
D` log

(
2

γᾱ`

)
+ Λ3(`) log

(
2

γᾱ`

)]
σ2

ε

m?p
.

Then,

lim
m→∞ sup

˜d∈Fm

P
µ(

˜d)
(Tᾱ ≤ 0) = 0.

According to Theorem 3.4, one can see that the larger the Fm is the better the power of

the test. The definition of the set Fm suggests that we would take advantage in considering a

collection of linear subspaces {S` : ` ∈ L} with good approximation properties in order to decrease

the bias term, d2
m(ΠV⊥c ∩Eµ, S`) (as well as ρ2

m). In fact, there is a balance to achieve between

d2
m(ΠV⊥c ∩Eµ(d̃), S`) and v2

` . If, for example, the collection {S` : ` ∈ L} is totally ordered for the

inclusion, d2
m(ΠV⊥c ∩Eµ, S`) decreases with D` but v2

` increases with D`. Therefore, the choice of L
has to be done carefully, as we see for a specific case in Section 3.2.4 below.

Remark 3.6 (i) Under the condition

[HL] : For all ` ∈ L, ᾱ` ≥ exp(−N`/10) and γ ≥ 2 exp(−N`/21),

which is usually met for reasonable choices of {S` : ` ∈ L} and {ᾱ` : ` ∈ L}, the quantities Λ1(`),

Λ2(`) and Λ3(`) behave like constants (see Baraud et al., 2003).

(ii) The proposed test statistic (24) cannot directly be computed in practical applications because

it depends on the unknown quantity λ. However, this problem can be solved by replacing λ

with a consistent estimator, regardless that H0 is true or not (see Horowitz & Spokoiny, 2001,

Section 2.5). This is exactly the case for the signal-to-noise estimators λ̂LR, λ̂RLR and λ̂wd discussed

in Section 3.1.4.

3.2.4 Nonasymptotic minimax rates for testing the nullity of functional fixed-

effects contrasts

Here, we derive an upper bound for the rate of testing the nullity of a given contrast of the functional

fixed-effects in the general functional mixed-effects model (1). We are therefore able to evaluate

the general bounds and power of the testing procedure discussed above. The connection with the
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procedure given above is clear when relating the discrete wavelet coefficients d̃ with the mean vector

µ(d̃), which is in this case nothing else than the vector of sampled values of the contrast, at least when

the sampling grid is the same for all individuals. Indeed, for two functions f and g sampled on an

equidistant grid on [0, 1] of size m, we set ‖f−g‖2
m =

∑m
i=1(f(ti)−g(ti))2/m and dm(f ,g) = ‖f−g‖m.

For u and v in Rm we set ‖u − v‖2
m =

∑m
i=1(ui − vi)2/m and dm(u,v) = ‖u − v‖m. Note that if

u and v (in Rm) are the discrete wavelet coefficients of the functions f and g respectively, sampled

on an equidistant grid on [0, 1] of size m, we then have that ‖u− v‖2
m = ‖f − g‖2

m (see Antoniadis,

1994).

Let s ∈ (0, 1] and R > 0. We assume that the functional fixed-effects contrast that we wish to

test its nullity belongs to a class within a Besov space Bs∞,∞([0, 1], R) (a Hölder space on [0, 1] of

regularity s),

Bs
∞,∞([0, 1], R) = {f : |f(x)− f(y)| ≤ R|x− y|s},

i.e., the desired class is expressed as

F(R, s, ρm) = {f ∈ Bs
∞,∞([0, 1], R) : dm(f , µ(d̃)) ≥ ρm},

where µ(d̃) is the wavelet reconstruction from the wavelet coefficients of the true mean of the

estimated contrast.

Here, our concern will be the rate at which the distance between the null and alternative

hypotheses can decrease to zero while still permitting consistent testing, the set of alternatives should

be also separated away from the null hypothesis in the dm-distance by ρm. Theorem 3.5 below gives

a upper bound for the minimum separation from zero (see, e.g., Ingster 1982; Abramovich et al.,

2004), uniformly over F(R, s, ρm), by considering a specific collection of subspaces S` and a series

of levels ā`. Denote by Mm the set of all indices j such that 2j ≤ [m/2]. For each index j ∈ Mm,

let Kj = {k : 1 ≤ k ≤ 2j} and set Bkj = [(k − 1)/2j , k/2j). Therefore, for each j ∈ Mm, the

intervals (Bkj)k∈Kj define a partition of [0, 1) = ∪k∈KjBkj . For each j ∈Mm, the subspaces Sj that

we consider is the linear space spanned by the following set of vectors



1
#Bkj

m∑

i=1

∑

ti∈Bkj

ei; k ∈ Kj





where #Bkj = #{ti ∈ Bkj , i = 1, . . . ,m} and (e1, . . . , em) be the canonical basis of Rm. Note that

Sj , as it is defined above, is related to the basis of piecewise constant functions on [0, 1). Indeed,

for each j ∈ Mm and for each k ∈ Kj , denoting by gk(x) = 1Bkj
(x), it is easily seen that Sj is the

vector space spanned by the vectors gk = (gk(t1), . . . , gk(tm)). When Vc = {0} (i.e., we test the

nullity of the corresponding functional contrast c), Sj is in V⊥c = Rm.

For a given f , let ρ2
m(f) be the “indifference threshold” for testing f ≡ 0 against that

f ∈ F(R, s, ρm). With the above notation, the following theorem holds.

Theorem 3.5 Assume that R2 ≥ σ2
ε

m

√
ln ln(m). Let ᾱ be an overall significance level. Then, there

exists a constant Cᾱ (depending on ᾱ), such that for all s ∈ (0, 1], one has

ρ?2
m := sup

f∈F(R,s,ρm)
ρ2

m(f) ≤ Cᾱ

[
R

2
(1+4s)

(
σ2

ε

m

√
ln ln(m)

) 4s
(1+4s)

+ R2m−2s +
σ2

ε

m
ln ln(m)

]
.
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Recall that the optimal rate of testing is the fastest rate at which ρ?
m can approach zero while

permitting consistent testing uniformly over F(R, s, ρ?
m). Note that when 1/4 ≤ s ≤ 1, the rate of

testing of our procedure, in the sense of Ingster (1982), is
(

1
m

√
ln ln(m)

) 2s
(1+4s) . The minimax rate of

testing is, however, m
− 2s

(1+4s) . The loss of efficiency by a ln ln(m) factor is unavoidable and is due to

the fact that our procedure is adaptive with respect to s and R. On the other hand, when s < 1/4,

the rate of testing is of order m−s, but it is not known whether such a rate is optimal or not. When

σ2
ε is assumed to be known, the rate of testing for regular functions, as the ones we consider for

testing contrasts, is m−1/4 (see Baraud, 2002).

Remark 3.7 The general functional mixed-effects model (1) and the specific wavelet-based

modelling approach that we have used in Section 2.5 for representing the random-effects functional

components show that if one takes βi 6= 0 then the vector of observations Y is not Gaussian

but consisting of random variables with symmetrical distributions. Then, one can develop similar

hypothesis testing procedures for testing functional fixed-effects contrasts by adapting the recent

work of Durot & Rozenholc (2004) that parallels the work of Baraud (2002) and Baraud et al.

(2003) and provides a non-asymptotic procedure, based on model selection methods, for testing the

null hypothesis that the expectation of a vector consisting of random variables with symmetrical

distributions is zero against a nonparametric composite alternative. Moreover, this test achieves

the optimal rate of testing (up to the unavoidable logarithmic factor) over a class of Hölderian

functions with smoothness parameter s ∈ (1/4, 1] in the case when the errors satisfy a Bernstein-

type condition, and achieves the optimal rate of testing for s ≥ 1/4+1/p in the case when the errors

possess bounded moments of order 2v for v ≥ 2. However, although more powerful in the case where

the errors have strongly non-symmetrical distributions, their test is somewhat more computationally

intensive than the one provided by Baraud et al. (2003) since the corresponding quantile that is

used to reject the null hypothesis is estimated from the observed data. For this reason, and the fact

that the two tests do not show any significant differences in the analysis of the examples considered

below, we have decided not to develop this methodology any further.

Let us conclude this section by saying that the testing ideas described above have been applied

for testing functional fixed-effects in the examples section provided below.

4 Estimation in Functional Mixed-Effects Models

In this section, we briefly discuss how one can apply wavelet-based estimation procedures for both

fixed-effects and random-effects in the general functional mixed-effects model (1).

For the estimation of the functional fixed-effects (i.e., the population-average curve profiles),

one can apply either the penalised linear wavelet estimator (which is also the BLUP) discussed in

Section 2.4 or the classical weighted least-squares methodology based on the linear mixed-effects

model (6). Both methods are easily implemented and have been used in the analysis of the examples

considered below.
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The penalised linear wavelet estimator can obviously be used for the estimation of the functional

random-effects (i.e., the curve-specific functions). On other hand, the linear mixed-effects model

(6) can be automatically used for the estimation of the functional random-effects via (restricted)

maximum likelihood estimation of variance components, as is commonly used in standard liner

mixed-models software such as PROC MIXED in SAS and lme() in S-PLUS (see, e.g., Ngo & Wand,

2004). Since the entire numerical study considered below was carried out using the MATLAB

programming environment, and using the fact that both methods do not show any significant

differences in the analysis of the examples considered below, we have decided only to present the

application of the penalised linear wavelet estimator for the estimation of the functional random-

effects.

5 Examples

The purpose of this section is to illustrate the usefulness of the proposed estimation (see Section 4)

and testing (see Section 3) procedures, by applying them on the progesterone and orthosis datasets

discussed in Section 1.

The computational algorithms related to wavelet analysis were performed using Version 8 of the

WaveLab toolbox for MATLAB (Buckheit, Chen, Donoho, Johnstone & Scargle, 1995) that is freely

available from http://www-stat.stanford.edu/software/software.html. The entire study was

carried out using the MATLAB programming environment.

5.1 Progesterone Data Analysis

From the original dataset of 91 curves that exemplified the methods of Brumback & Rice (1998),

Fan & Zhang (2000) and Wu & Zhang (2002), we selected a subset of 24 curves relevant for our

mixed-effects FANOVA application. Following the wavelet-based formulation and using the matrix

notation of Section 2.6, it is not difficult to see that, in this particular situation, we have n = 24,

m = 32 (m? = 8), p = 2 and q = 1, and the general functional mixed-effects model (1) can be now

expressed as a linear mixed-effects model with one variance component, written as

Y = X̃d̃ + Z̃θ̃ + ε̃,

where

• Y = (YT
1 , . . . ,YT

24)
T (a 768× 1 vector of data points);

• X̃ = XW(2) (a 768× 32 fixed-effects design matrix), X = (AT
1 , AT

2 )T, where Ai (i = 1, 2) are

12 × 2 block-zero matrices apart from their ith column which consists of 12 identity matrices

each one of size 32× 32, and W(2) = diag(WT
32×8,W

T
32×8);

• d̃ = (d̃
T
1 , d̃

T
2 )T (a 16× 1 vector of fixed-effects wavelet coefficients);

• Z̃ = I768W(24) (a 768 × 192 random-effects design) and W(1)
24 = diag(WT

32×8, . . . , W
T
32×8) (24

blocks);
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Figure 5.1: Progesterone Dataset: Urinary metabolite progesterone curves (thin lines) and the

corresponding group means (thick lines): (a) Nonconceptive menstrual cycles; (b) Conceptive

menstrual cycles.

• θ̃ = (θ̃
T

1 , . . . , θ̃
T

24)
T (a 192× 1 vector of random-effects wavelet coefficients);

• ε̃ = (ε̃T
1 , . . . , ε̃T

24)
T (a 768× 1 vector of standard Gaussian errors).

Figure 5.1 shows the urinary metabolite progesterone curves for the nonconceptive and conceptive

groups (12 curves have been selected from each group) together with their means. One of the aim

of the analysis is to understand how a subject can cope with the external perturbation, and we

need to quantify the ways in which the individual mean cross-sectional functions differ over the

various conditions. To our knowledge, the various methods appeared in the literature for analysing

the progesterone data are mainly concerned with the estimation of the population curves as well

as the estimation of the individual curves. Below, we apply our general methodology described in

previous sections in order to test both functional fixed-effects (i.e., if there is difference between the

two group mean curves) and functional random-effects (i.e., if there is any random-effect present in

the dataset) as well as to estimate the various functional components.

Regarding the functional random-effects, the application of the testing methodology presented

in Section 3.1 reveals that σ̂θ = 0.8241, σ̂ε = 0.1854 resulting in λ̂wd = 19.7578. The finite

sample restricted likelihood ratio test statistic, computing on a grid of 400 points and taking 100000

simulations from the null, takes the value of 22.9039 and the corresponding probability at zero value

is 0.5166 which shows that the corresponding testing methodology is feasible. Figure 5.2 shows the

histogram with 50 bins of the restricted likelihood ratio test statistic values under the null hypothesis.

The corresponding p-value is 0, showing that there is significant evidence of random-effects in this

case. By following the discussion in Section 4, Figure 5.3 shows the random-effects estimates for

both groups. As observed in the figure, the estimates on both groups reveal a smooth behaviour.
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Figure 5.2: Random-Effects Testing for the Progesterone Dataset: The histogram with 50 bins of

the RLR test statistic values under the null hypothesis.

0 5 10 15 20 25
−2

−1

0

1

2

3

4

Day in cycle

Lo
g(

P
ro

ge
st

er
on

e)

Conceptive menstrual cycles

(a)

0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Day in cycle

Lo
g(

pr
og

es
te

ro
ne

)

Nonconceptive menstrual cycles

(b)

Figure 5.3: Random-Effects Estimates for the Progesterone Dataset: The BLUP method for (a) The

Nonconceptive Group; (b) The Conceptive Group.

Regarding the functional fixed-effects, the application of the testing methodology presented in

Section 3.2 reveals that a piecewise constant functions collection {S` : ` ∈ L} of orders 1, 3 and

7 gives a Bonferroni based test statistic value (where each of the corresponding Bonferroni level is

taken as 0.0166) of 90.2814. This shows that the fixed-effects hypothesis that the two group means

are the same is rejected. By following the discussion in Section 4, Figure 5.4 and Figure 5.5 show

the mean estimates for the conceptive and nonconceptive groups based on the BLUP and weighted

least-squares methods. As observed in the figures, in each group, both estimation methods are

visually identical.
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Figure 5.4: Fixed-Effects Estimates for the Conceptive Group: (a) The BLUP method; (b) The

Weighted Least-Squares method.
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Figure 5.5: Fixed-Effects Estimates for the Nonconceptive Group: (a) The BLUP method; (b) The

Weighted-Least Squares method.

5.2 Orthosis Data Analysis

Abramovich et al. (2004) analysed this dataset as arising from a fixed-effects FANOVA model with

2 qualitative factors (Subjects and Treatments), 1 quantitative factor (Time) and 10 replications

for each level combination. They considered a block design model, treating subjects as blocks,

which allowed them to make inference about the treatments of interest; they found significant global

differences between treatments although under Spring 1 and Spring 2 conditions the subjects behave

similarly, the same being less true under Control and Orthosis conditions. They also found a highly

significant global trend over time.

However, as in Abramovich & Angelini (2003), it is more reasonable to treat subjects as random
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effects and to apply the proposed estimation and testing procedures. (We point out at this point that

testing for functional random-effects is lacking from the mixed-effects FANOVA testing methodology

of Abramovich & Angelini (2003).) Averaging over the 10 repetitions for each subject, following the

wavelet-based formulation, and using the matrix notation of Section 2.6, it is not difficult to see

that, in this particular situation, we have n = 28, m = 64 (m? = 8), p = 4 and q = 1, and the

general functional mixed-effects model (1) can be expressed as a linear mixed-effects model with one

variance component, written as

Y = X̃d̃ + Z̃θ̃ + ε̃,

where

• Y = (YT
1 , . . . ,YT

28)
T (a 1792× 1 vector of data points);

• X̃ = XW(4) (a 1792 × 32 fixed-effects design matrix), X = (AT
1 , AT

2 , AT
3 , AT

4 )T, where Ai

(i = 1, . . . , 4) are 7 × 4 block-zero matrices apart from their ith column which consists of 7

identity matrices each one of size 64× 64, and W(4) = diag(WT
32×8, . . . , W

T
32×8) (4 blocks);

• d̃ = (d̃
T
1 , . . . , d̃

T
4 )T (a 32× 1 vector of fixed-effects wavelet coefficients);

• Z̃ = I1792W(28) (a 1792× 224 random-effects design) and W(1)
28 = diag(WT

32×8, . . . , W
T
32×8) (28

blocks);

• θ̃ = (θ̃
T

1 , . . . , θ̃
T

28)
T (a 224× 1 vector of random-effects wavelet coefficients);

• ε̃ = (ε̃T
1 , . . . , ε̃T

28)
T (a 1792× 1 vector of standard Gaussian errors).

Figure 5.6 shows the available data set; typical moment plots over gait cycles. One of the aim of

the analysis is to understand how a subject can cope with the external perturbation, and we need

to quantify the ways in which the individual mean cross-sectional functions differ over the various

conditions. Below, we apply our general methodology described in previous sections in order to

test both functional fixed-effects (i.e., if there is difference between specific functional contrasts of

interest) and functional random-effects (i.e., if there is any random-effect present in the dataset) as

well as to estimate the various functional components.

Regarding the functional random-effects, the application of the testing methodology presented

in Section 3.1 reveals that σ̂θ = 40.3127, σ̂ε = 1.0799 resulting in λ̂wd = 1393.5311. The finite

sample restricted likelihood ratio test statistic, computing on a grid of 400 points and taking 100000

simulations from the null, takes the value of 3.2743 and the corresponding probability at zero value

is 0.5255 which shows that the corresponding testing methodology is feasible. Figure 5.7 shows the

histogram with 50 bins of the restricted likelihood ratio test statistic values under the null hypothesis.

The corresponding p-value is 0.0304, showing that there is significant evidence of random-effects in

this case. By following the discussion in Section 4, Figure 5.8 shows the random-effects estimates of

the averaged curves in each group. As observed in the figure, the corresponding estimates reveal an

inhomogeneous behaviour.
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Figure 5.6: Orthosis Dataset: The panels in rows correspond to Treatments while the panels in

columns correspond to Subjects; there are ten repeated measurements in each panel.
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Figure 5.7: Random-Effects Testing for the Orthosis Dataset: The histogram with 50 bins of the

RLR test statistic values under the null hypothesis.
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Figure 5.8: Random-Effects Estimates for the Orthosis Dataset: The BLUP method.

Regarding the functional fixed-effects, the application of the testing methodology presented in

Section 3.2 reveals that a piecewise constant functions collection {S` : ` ∈ L} of orders 1, 3, 7

and 15 gives the following Bonferroni based test statistic value (where, in each case, each of the

corresponding Bonferroni level is taken as 0.0125): 4.8472 for Spring 1 vs Spring 2 conditions,

8.9922 for Control vs Orthosis conditions, and 48.7512 for Spring 1 + Spring 2 vs Control +

Orthosis conditions. These show that the various fixed-effects hypotheses of a similar behaviour

under the different conditions are all rejected. Note that the different behaviour under Spring 1 and

Spring 2 conditions, that is further supported by the empirical evidence of the scientists provided

us with the data, it is not captured by the testing methodologies of Abramovich & Angelini (2003)

and Abramovich et al. (2004). By following the discussion in Section 4, Figure 5.9 shows the

corresponding group means estimates based on the BLUP and weighted least-squares methods. As

observed in the figure, in each group, both estimation methods are visually identical.
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Figure 5.9: Fixed-Effects Estimates for the Orthosis Dataset: (a) The BLUP method; (b) The

Weighted Least-Squares method.

6 Concluding Remarks

We considered a general functional mixed-effects model that inherits the flexibility of linear mixed-

effects models in handling complex designs and correlation structures. Wavelet decomposition

approaches were used to model both fixed-effects and random-effects in the same functional space.

This help us in interpreting the resulting model as a functional data model since it does not contradict

the intuition that, if each outcome is a curve, which is the basic unit in functional data analysis,

then the population-average curve and the subject-specific curves should have the same smoothness

property (i.e., they should lie in the same functional space). A linear mixed-effects representation

was then obtained that was used for estimation and inference in the general functional mixed-effects

model. Adapting recent methodologies in linear mixed-effects and nonparametric regression models,

hypothesis testing procedures for both fixed-effects (testing whether certain fixed-effects functional

components or contrasts are equal to zero) and random-effects (testing whether the random-effects

functional components are equal to zero) were provided. Wavelet-based estimation procedures for

both fixed-effects and random-effects in the general functional mixed-effects model were also applied.

The usefulness of the proposed estimation and testing procedures was illustrated by means of two

real-life datasets arising from endocrinology and physiology.

Although the particular examples were modelled as functional mixed-effects analysis of variance

models, the methodology presented in this paper is very general and can be applied to other

functional mixed-effects models, depending on the particular applications at hand. Furthermore,

although the matrix representation used to construct the general linear mixed-effects model that

was subsequently considered for further analysis increases the computational and storage demands,

the sparsity of the corresponding matrices due to the properties of compactly supported wavelets

can be explored to improve upon these limitations. However, this has not been taken care of in our

implementation since the particular examples analysed were easily handled.
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Appendix

A1: Penalised and Regularised Linear Wavelet Estimators

We briefly introduce the penalized and regularized linear wavelet estimators and point out some

of their properties. Let Hs[0, 1] be the Hilbert-Sobolev spaces of functions f(t) ∈ L2[0, 1] with

noninteger regularity index s > 1/2. Endowing Hs[0, 1] with the orthonormal periodic wavelet basis

defined Section 2.2, it is possible to show (see, e.g., Angelini et al., 2003) that Hs = H0
⊕

H1, where

H0 and H1 are both reproducing kernel Hilbert spaces with reproducing kernels

K0(s, t) =
2j0−1∑

k=0

φj0k(s)φj0k(t) and K1(s, t) =
∞∑

j=j0

2j−1∑

k=0

ψjk(s)ψjk(t)
22sj

, (s, t) ∈ [0, 1]2.

Hence, the Hilbert-Sobolev norm ‖f‖Hs ≡ ‖f‖Bs
2,2

can be rewritten as ‖f‖Hs = ‖P0f‖Hs +‖P1f‖Hs ,

where P0 and P1 denote the orthogonal projectors in H0 and H1 respectively. In such a setting, the

standard nonparametric regression problem can be solved by the classical regularisation approach

min
f∈Hs

1
n

n∑

i=1

(Yi − f(ti))
2 + λ ‖P1f‖2

Hs . (26)

The term ‖P1f‖2
Hs penalise the details in the wavelet expansion of f(t), and the regularisation

parameter λ > 0 gives the best compromise between smoothness and goodness-of-fit of the

investigated solution f̂λ(t). The penalized linear wavelet estimator f̂λ has the same optimal statistical

properties as the one obtained with cubic smoothing splines, but it generalizes the corresponding

nonparametric regression estimation problem over Hilbert-Sobolev spaces, Hs[0, 1], with non-integer

regularity index s > 1/2.

Since f̂λ is computational very expensive, Antoniadis (1996), Amato & Vuza (1997) and Angelini

et al. (2003) proposed an alternative estimator, called the regularised linear wavelet estimator, f̃λ,

that is easier and computationally very fast to compute. This estimator arises as solution to a

penalized least squares problem (which is a tight approximation to problem (26)) and it has the

form

f̃λ(t) =
2j0−1∑

k=0

α̃j0kφj0k(t) +
J−1∑

j=j0

2j−1∑

k=0

β̃jkψjk(t), t ∈ [0, 1], (27)
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where (α̃j0k)k and (β̃jk)j,k are defined by




α̃j0k = cj0k, k = 0, 1, . . . , 2j0 − 1,

β̃jk = 1

(1 + λ22sj)
djk, j0 ≤ j ≤ J − 1; k = 0, 1, . . . , 2j − 1,

β̃jk = 0, j ≥ J ; k = 0, 1, . . . , 2j − 1.

(28)

Here λ > 0 is the regularisation parameter that gives the best compromise between smoothness

and goodness-of-fit of the investigated solution, φ and ψ are the scaling and wavelet functions

respectively of the selected orthonormal periodic wavelet system, and cj0k (k = 0, 1, . . . , 2j0 − 1) and

djk (j = j0, . . . , J − 1; k = 0, 1, . . . , 2j − 1) are the corresponding scaling and wavelet coefficients of

the function f sampled at n = 2J points for some J > 0.

Note that Angelini et al. (2003) have obtained the estimator f̃λ for a general grid design where,

earlier, the same (in form) estimator was obtained for an equispaced grid design by Antoniadis

(1996) and Amato & Vuza (1997). Furthermore, its optimal global convergence rate has been

proved by Antoniadis (1996) and Amato & Vuza (1997), its optimal pointwise convergence rate

has been proved by Angelini & De Canditiis (2002), and the appropriateness of the Generalized

Cross Validation (GCV) criterion for selecting the smoothing parameter λ from the sample has been

studied by Amato & De Canditiis (2001).

A2: Besov Spaces on the Unit Interval

The (inhomogeneous) Besov spaces on the unit interval, Bs
ρ1,ρ2

[0, 1], consist of functions that have

a specific degree of smoothness in their derivatives. More specifically, let the rth difference of a

function f(t) be

∆(r)
h f(t) =

r∑

k=0

(
r

k

)
(−1)kf(t + kh),

and let the rth modulus of smoothness of f(t) ∈ Lρ1 [0, 1] be

νr,ρ1(f ; t) = sup
h≤t

(||∆(r)
h f ||Lρ1 [0,1−rh]).

Then the Besov seminorm of index (s, ρ1, ρ2) is defined for r > s, where 1 ≤ ρ1, ρ2 ≤ ∞, by

|f |Bs
ρ1,ρ2

=
[∫ 1

0

{
νr,ρ1(f ; h)

hs

}ρ2 dh

h

]1/ρ2

, if 1 ≤ ρ2 < ∞,

and by

|f |Bs
ρ1,∞ = sup

0<h<1

{
νr,ρ1(f ; h)

hs

}
.

The Besov norm is then defined as

||f ||Bs
ρ1,ρ2

= ||f ||Lρ1 + |f |Bs
ρ1,ρ2

and the Besov space on [0, 1], Bs
ρ1,ρ2

[0, 1], is the class of functions f : [0, 1] → R satisfying

f(t) ∈ Lρ1 [0, 1] and |f |Bs
ρ1,ρ2

< ∞, i.e. satisfying ||f ||Bs
ρ1,ρ2

< ∞. The parameter ρ1 can be viewed

as a degree of function’s inhomogeneity while s is a measure of its smoothness. Roughly speaking,
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the (not necessarily integer) parameter s indicates the number of function’s derivatives, where their

existence is required in an Lρ1-sense; the additional parameter ρ2 is secondary in its role, allowing

for additional fine tuning of the definition of the space.

The Besov classes include, in particular, the well-known Hilbert-Sobolev (Hs
2 [0, 1], s = 1, 2, . . .)

and Hölder (Cs[0, 1], s > 0) spaces of smooth functions (Bs
2,2[0, 1] and Bs∞,∞[0, 1] respectively), but

in addition less-traditional spaces, like the space of bounded-variation, sandwiched between B1
1,1[0, 1]

and B1
1,∞[0, 1]. The latter functions are of statistical interest because they allow for better models

of spatial inhomogeneity (see, e.g., Meyer, 1992; Donoho & Johnstone, 1998).

The Besov norm for the function f(t) is related to a sequence space norm on the wavelet

coefficients of the function. As noted in Section 2.2, confining attention to the resolution and

spatial indices j ≥ j0 and k = 0, 1, . . . , 2j − 1 respectively, and denoting by s′ = s + 1/2− 1/ρ1, the

sequence space norm is given by

||w||bs
ρ1,ρ2

= ||uj0 ||ρ1 +





∞∑

j=j0

2js′ρ2 ||wj ||ρ2
ρ1





1/ρ2

, if 1 ≤ ρ2 < ∞,

||w||bs
ρ1,∞ = ||uj0 ||ρ1 + sup

j≥j0

{
2js′ ||wj ||ρ1

}
,

where

||uj0 ||ρ1
ρ1

=
2j0−1∑

k=0

|uj0k|ρ1 and ||wj ||ρ1
ρ1

=
2j−1∑

k=0

|wjk|ρ1 .

If the mother wavelet ψ(t) is of regularity r > 0, it can be shown that the corresponding

orthonormal periodic wavelet basis defined in Section 2.2 is an unconditional basis for the Besov

spaces Bs
ρ1,ρ2

[0, 1] for 0 < s < r, 1 ≤ ρ1, ρ2 ≤ ∞. In other words, we have

K1||f ||Bs
ρ1,ρ2

≤ ||w||bs
ρ1,ρ2

≤ K2||f ||Bs
ρ1,ρ2

,

where K1 and K2 are constants, not depending on f(t). Therefore the Besov norm of the function f(t)

is equivalent to the corresponding sequence space norm defined above; this allows one to characterize

Besov spaces in terms of wavelet coefficients (see, e.g., Meyer, 1992; Donoho & Johnstone, 1998). For

a more detailed study on (inhomogeneous) Besov spaces we refer to, e.g., DeVore & Popov (1988)

and Meyer (1992).

A3: Outlines of the Proofs of the Theoretical Results

For sake of brevity, we omit most of the details and just provide outlines of the proofs of the

theoretical results obtained in Sections 2 and 3.

Proof of Theorem 2.1. The proof of the theorem can be obtained by working along the same

lines of the proof of Theorem 4 in Angelini et al. (2000). ¤

Proof of Theorem 3.1. The proof of the theorem can be obtained by working along the same

lines of the proof of Theorem 1 in Crainiceanu & Ruppert (2004a), taking into account that

[n(ln(m)− q)] > p. ¤
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Proof of Theorem 3.2. The proof of the theorem can be obtained by working along the same lines

of the proof of Theorem 2 in Crainiceanu & Ruppert (2004a), taking also into account the discussion

in their Section 3 and that [n(ln(m)− q)] > p. ¤

Proof of Theorem 3.3. Under the null hypothesis (23), and for each `, the random variables

‖ΠS`
Yλ‖2 and ‖Π(Vc+S`)⊥∩EYλ‖2 are independent and distributed as χ2 variables with D` and N`

degrees of freedom respectively. Thus, for each ` ∈ L, the test statistics Tc,` are distributed under

the null as Fisher variables with D` and N` degrees of freedom and, therefore, we have

∀ µ ∈ Vc, Pµ{Tc,` > F̄−1
D`,N`

(ᾱ`)} ≤ ᾱ`.

Using now the Bonferroni inequality, it follows that

∀ µ ∈ Vc, Pµ{Tᾱ > 0} ≤
∑

`∈L
Pµ{Tc,` > F̄−1

D`,N`
(ᾱ`)} ≤

∑

`∈L
ᾱ` ≤ ᾱ,

which is our claim. ¤

Proof of Theorem 3.4. The proof of the theorem can be obtained by working along the same

lines of the proof of Theorem 1 in Baraud et al. (2003), by taking into account the way the space

Vc is defined, which follows by noting that the extra assumption on the design matrix X̃ and the

properties of the discrete wavelet transform of a discretised function do not affect the orders of

d2
m(ΠV⊥c ∩Eµ(d̃), S`) and of v`. ¤

Proof of Theorem 3.5. Let Dj be the dimension of Sj . Note first that for all j ∈ Mm, Dj ≤ 2j .

Since, by assumption, for all j ∈Mm we have that sj ≤ [m/2], we get

ρm(f) ≤ inf
j∈Mm

{(
1 +

kᾱ

2

)
d2

m(f , Sj) + kᾱ

[√
2j

(
ln

(
1

ᾱm

)
+ ln ln(m)

)
+ ln

(
1

ᾱm

)
+ ln ln(m)

]
σ2

ε

m

}
,

where ᾱm = ᾱ
#Mm

and kᾱ is a positive constant depending only on ᾱ.

Now, by definition,

d2
m(f , Sj) = inf

gj∈Sj





1
m

m∑

i=1

∑

k∈Kj

(f(xi)− [gm]i)
2 1Bkj

(xi)





≤ inf
gj∈Sj





1
m

m∑

i=1

∑

k∈Kj

sup
Bkj

|f(xi)− gj(xi)|




2

, (29)

where gj is a piecewise constant on [0,1] which coincides with a constant on each interval Bkj and

such that gj(xi) = [gj ]i.

By Corollary 3.1 in Dahmen et al. (1980), we know that each function in Bs∞,∞([0, 1], R) is

uniformly approximated by a piecewise function on [0,1]. Therefore, there exists a piecewise constant

function ḡ, which is constant on each rectangle Bkj for each j ∈ Kj , such that

sup
x∈Bkj

|f(x)− ḡj(x)| ≤ CR2−js,
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where C > 1 is a constant. Using (29), we easily get

d2
m(f , Sj) = C2R22−2js. (30)

The cardinality of the set Mm is less than log2([m/2]). Therefore, for all j ∈ Mm, we have that

ᾱm ≥ C/ log2([m/2]), and that

ln
(

ln(m)
ᾱm

)
≤ ln ln(m). (31)

Using inequalities (30) and (31), we obtain

ρm(f) ≤ C

[
inf

j∈Mm

{
R22−2js +

σ2
ε

m

√
2j ln ln(m)

}
+

σ2
ε

m
ln ln(m)

]
.

The conclusion of the theorem now follows by working along the lines of the proof of Corollary 2 in

Baraud et al. (2003). Indeed, note that

R22−2js ≤ σ2
ε

m

√
2j ln ln(m)

if and only if

2j ≥ ρ? :=

(
R2m

σ2
ε

√
ln ln(m)

) 2
(1+4s)

.

By the assumptions, we therefore have ρ? ≥ 1. If there exists a j′ ∈Mm such that ρ? ≤ 2j′ , then

inf
j∈Mm

{
R22−2js +

σ2
ε

m

√
2j ln ln(m)

}
≤ 2

σ2
ε

m

√
2j′ ln ln(m) ≤ 2

√
2R

2
(1+4s)

(
σ2

ε

m

√
ln ln(m)

) 4s
(1+4s)

.

(32)

Otherwise, take j′ ∈ Mm such that m/4 ≤ 2j′ ≤ m/2. Since 2j′ ≤ max(ρ?,m/2), we obtain the

upper bound

inf
j∈Mm

{
R22−2js +

σ2
ε

m

√
2j ln ln(m)

}
≤ 2R22−2j′s ≤ 2R2

(m

4

)−2s
.

Since s ≤ 1, we obtain

inf
j∈Mm

{
R22−2js +

σ2
ε

m

√
2j ln ln(m)

}
≤ CR2m−2s. (33)

From (31), (32) and (33), the requested inequality is proved. ¤
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[15] Antoniadis, A., Grégoire, G. & McKeague, I.W. (1994). Wavelet methods for curve estimation.

Journal of the American Statistical Association, 89, 1340–1353.

[16] Baraud, Y. (2002). Non-asymptotic minimax rates of testing in signal detection. Bernoulli, 8,

577–606.

[17] Baraud, Y., Huet, S. & Laurent, B. (2003). Adaptive tests of linear hypotheses by model

selection. Annals of Statistics, 31, 225–251.

[18] Barry, D. (1996). An empirical Bayes approach to the growth curve analysis. The Statistician,

45, 3–19.

44



[19] Botchkina, N. (2002). Wavelets for non-parametric regression and a test of significance. Ph.D.

Thesis, School of Mathematics, University of Bristol, United Kingdom.

[20] Brumback, B.A. & Rice, J.A. (1998). Smoothing spline models for the analysis of nested and

crossed samples of curves (with comments). Journal of the American Statistical Association, 93,

961–994.

[21] Buckheit, J.B, Chen, S., Donoho, D.L., Johnstone, I.M & & Scargle, J. (1995). About WaveLab.

Technical Report, Department of Statistics, Stanford University, USA.
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