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summary

We explore the convergence rates of a kernel-based distribution function estima-

tor with variable bandwidth. As in density estimation, a considerable bias reduction

from O(h2) to O(h4) can be obtained by replacing the bandwidth h by h/f1/2(Xi).

We show that the necessary replacement of f 1/2 by some pilot estimator �f 1/2
g , de-

pending on a second bandwidth g, has no penalizing effect on bias and variance,

provided we undersmooth with the pilot bandwidth g, that is g/h→ 0 in a certain

way. Due to the considerable bias reduction a simple plug-in normal reference band-

width selector works effectively in practice. Distribution function estimators with

good convergence properties and with simple bandwidth selectors are desirable for

repetitive use in smoothed bootstrap algorithms.
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integrated squared error; Smoothed bootstrap
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1. introduction

If X1, . . . ,Xn is a random sample from a smooth distribution function (df) F ,

then the classical nonparametric kernel estimator for F is given by

�Fn,h(x) = 1

n

n3
i=1

K

w
x−Xi
h

W
, (1.1)

where K is a known df having a density k that is symmetric around zero and where

h is the bandwidth. We will assume throughout that k has unbounded support

(−∞,+∞). Under the conditions that F has two continuous derivatives f and f I,
it is well known (see e.g. Azzalini (1981)) that, as n→∞,

E( �Fn,h(x)) = F (x) +
1

2
h2f I(x)µ2(k) + o(h2), (1.2)

Var( �Fn,h(x)) =
F (x)(1− F (x))

n
− 2hf(x)c1

n
+ o

w
h

n

W
, (1.3)

where µf(k) =

8 +∞

−∞
zfk(z)dz (f = 2, 4) and c1 =

8 +∞

−∞
zk(z)K(z)dz.

Optimal choices for the bandwidth h can be obtained by minimizing the approximate

mean integrated squared error (MISE) calculated from the expressions in (1.2) and

(1.3).

There have been many proposals in the literature for improving the bias property

of the basic kernel density estimator. Typically, under sufficient smoothness con-

ditions placed on the underlying density f , the bias reduces from O(h2) to O(h4),

and the variance remains of order (nh)−1. Those density estimators, that could
potentially have greater practical impact, include variable bandwidth kernel esti-

mators (Abramson, 1982), variable location estimators (Samiuddin & El-Sayyad,

1990), nonparametric transformation estimators (Ruppert & Cline, 1994) and mul-

tiplicative bias correction estimators (Jones et al., 1995). A comparative study was

carried out by Jones & Signorini (1997) for all these estimators with bias O(h4).

However it seems that hardly any work has been done to reduce the bias of the

classical df estimator �Fn,h in (1.1). Nevertheless, an important motivation for de-
signing a ‘better’ df estimator is its use in the smoothed bootstrap. The accuracy

of the latter clearly depends on the quality of the proposed smooth estimator for

F . For example, one could use a so-called higher-order kernel K, but this has the

disadvantage of not leading to bona fide df estimates. Another approach, which is

based on a nonparametric transformation of the data, has recently been developed
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in Swanepoel & Van Graan (2005). They propose to use an estimator

4Fn(x) = 1

n

n3
i=1

K

X �Fn,g(x)− �Fn,g(Xi)
h

~
, (1.4)

where �Fn,g is the kernel estimator in (1.1) with bandwidth g. They obtain a serious
bias reduction and propose an easy method for choosing the bandwidths g and h.

In the present paper we study a different estimator which is obtained by consid-

ering a variable bandwidth version of (1.1). It consists of replacing the bandwidth

h by h/ �f 1/2
g (Xi), where �fg is some pilot estimator for the density function f . Our

df estimator is defined as

�Fn,h,g(x) = 1

n

n3
i=1

K

w
x−Xi
h
�f 1/2
g (Xi)

W
, (1.5)

where

�fg(x) = 1

ng

n3
i=1

k

w
x−Xi
g

W
, (1.6)

is the Parzen-Rosenblatt kernel density estimator for f = F I with kernel k = K I

and bandwidth g. The form of the adaptation in (1.5) is found after a careful study

of the asymptotic MISE in Section 2. We prove that the bias reduces from O(h2) to

O(h4) and that the bias reduction has no penalizing effect on the O(h/n) term in the

variance, keeping the same order compared to the classical kernel estimator, but with

a different constant. It requires that we undersmooth with the pilot bandwidth g in

the sense that g/h→ 0 and h3/g → 0. In Section 3, we present a plug-in bandwidth

selector that can be calculated in an easy and quick way. This is desirable in view

of its repetitive use in the generation of smoothed bootstrap samples. We give the

algorithm in Section 4. Proofs are given in Section 5.

Two different ways of bias reduction in df estimation (variable location method

and multiplicative method) will be the content of a forthcoming paper by the same

authors.

2. asymptotic expansion for mean and variance

Our starting point is to take expression (1.5), but we replace �f 1/2
g temporarily

by some general smooth function ϕ. We then put

Tn =
1

n

n3
i=1

K

w
x−Xi
h

ϕ(Xi)

W
. (2.1)
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The function ϕ will be specified after we have calculated expressions for bias and

variance of Tn. This is done in the following theorem.

Theorem 1. Assume

(C1) F has four continuous derivatives in a neighborhood of x and f(x) = F I(x) > 0.

(C2) K is a df with unbounded support (−∞,+∞), having a density k that is sym-
metric around zero. The density k is bounded and has four continuous deriva-

tives k(i) (i = 1, . . . , 4) and |u|6k(u), |u|7|k(1)(u)|, |u|8|k(2)(u)| and |u|8|k(3)(u)|
all tend to zero as u tends to +∞ or −∞.

Suppose that h is a bandwidth sequence tending to zero as n→ ∞. Then, for any
function ϕ, having three continuous derivatives in a neighborhood of x and ϕ(x) > 0,

we have, as n→∞,

E(Tn) = F (x) + h2Q0(x) + h
4Q1(x) + o(h

4), (2.2)

Var(Tn) =
F (x)(1− F (x))

n
− 2h

n

f(x)

ϕ(x)
c1 + o

w
h

n

W
, (2.3)

where

Q0(x) =
1

2

µ2(k)

ϕ3(x)
[f I(x)ϕ(x)− 2f(x)ϕI(x)] ,

Q1(x) =
µ4(k)

24ϕ7(x)

J−120f(x)(ϕI(x))3 + 60f(x)ϕ(x)ϕI(x)ϕII(x)
−4f(x)ϕ2(x)ϕIII(x) + 60f I(x)ϕ(x)(ϕI(x))2
−12f I(x)ϕ2(x)ϕII(x) + 12f II(x)ϕ2(x)ϕI(x)
+f III(x)ϕ3(x)

o
.

The proof of this theorem is a straightforward but lengthy calculation. A sketch is

given in Section 5.

To obtain an estimator with reduced bias, we choose the function ϕ in such a way

that Q0(x) vanishes, i.e. ϕ is such that, for all x, it satisfies the differential equation

f I(x)ϕ(x)− 2f(x)ϕI(x) = 0.

This leads to the choice ϕ(x) = f 1/2(x), and in this case

E(Tn) = F (x) + h
4 4Q1(x) + o(h4), (2.4)
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where

4Q1(x) = µ4(k)

24f 4(x)

J
6f(x)f I(x)f II(x)− 6(f I(x))3 − f 2(x)f III(x)o . (2.5)

Our estimator in (1.5) is then obtained by replacing ϕ in (2.1) by �f 1/2
g , where �fg is

the estimator for f given in (1.6).

The next theorem summarizes the effect of this substitution and it provides the

mean and variance of the estimator �Fn,h,g in (1.5).
Theorem 2. Assume (C1) and (C2) of Theorem 1. Suppose that g and h are

bandwidths tending to zero as n→∞ and such that g/h→ c as n→∞, for some
constant c, 0 ≤ c <∞. Then it follows that

(a) if ngh3 →∞ and ng2 →∞ as n→∞,

E
p �Fn,h,g(x)Q = F (x) + h4 4Q1(x)

+
1

4
g2h2µ22(k)

}
f I(x)f II(x)
f 2(x)

− f
III(x)
f(x)

]
+ o(h4), (2.6)

where 4Q1(x) is given in (2.5).
(b) if ngh3 →∞ and ngh3/ng2 = h3/g → 0 as n→∞,

Var
p �Fn,h,g(x)Q =

F (x)(1− F (x))
n

− 2h
n
f1/2(x)c1 + o

w
h

n

W
. (2.7)

The proof of this theorem is sketched in Section 5.

Note that the first term in the variance expression remains unchanged compared

to that of the kernel df estimator, and that the second term is also of the order

O(h/n). Also note that the choice g/h → c with c > 0 leads to an additional

term of order O(h4) in the bias expression. Therefore we recommend to take a pilot

bandwidth g for which g/h→ 0. This gives a bias expression

E( �Fn,h,g(x)) = F (x) + h4 4Q1(x) + o(h4). (2.8)
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Remark 1.

Note that for the coefficient 4Q1(x) of h4 we also have that
4QI1(x) =

µ4(k)

24

\−36f−4(x)(f I(x))2f II(x) + 8f−3(x)f I(x)f III(x)
+6f−3(x)(f II(x))2 − f−2(x)f (4)(x) + 24f−5(x)(f I(x))4�

in correspondence with the density counterpart in e.g. Silverman (1986), and also

that

4Q1(x) = µ4(k)

24

w
1

f(x)

WIII
in correspondence with the integral of the formula in Hall, Hu & Marron (1995).

The MISE is a typical global measure of accuracy and we therefore consider the

asymptotic expression for

MISE
p �Fn,h,gQ = E }8 +∞

−∞
( �Fn,h,g(x)− F (x))2w(x)dF (x)] , (2.9)

where w is some weight function.

Under the conditions of Theorem 2 and with g/h→ 0, we obtain that, as n→∞,

MISE
p �Fn,h,gQ ∼= 1

n

8 +∞

−∞
F (x)(1− F (x))w(x)dF (x)

−2h
n
c1

8 +∞

−∞
f1/2(x)w(x)dF (x) + h8

8 +∞

−∞
4Q21(x)w(x)dF (x),

with 4Q1(x) as in (2.5). From this it follows that the asymptotic optimal bandwidth
is

hopt =

⎛⎜⎜⎜⎝
c1

8 +∞

−∞
f 1/2(x)w(x)dF (x)

4

8 +∞

−∞
4Q21(x)w(x)dF (x)

⎞⎟⎟⎟⎠
1/7

n−1/7, (2.10)

and that for this optimal bandwidth the approximate MISE is given by

1

n

8 +∞

−∞
F (x)(1− F (x))w(x)dF (x)− 7

4

w
c1

8 +∞

−∞
f 1/2(x)w(x)dF (x)

W8/7
w
4

8 +∞

−∞
4Q21(x)w(x)dF (x)W1/7 n

−8/7.

6



The minus sign of the second term in this expression clearly shows the improve-

ment compared to the classical empirical distribution function. The order of the

improvement n−8/7 also compares favorably to that of the classical kernel estimator,
viz. n−4/3 which can be derived from (1.2) and (1.3), and to that of the estimator

of Swanepoel and Van Graan (2005), which is n−16/15−δ, for arbitrary δ > 0.

3. bandwidth selection

Because the estimator has small bias, we propose to use a simple plug-in normal

reference bandwidth selector (see e.g. Silverman (1986)). We choose the weight

function w in (2.9) as w(x) =

w
1

σ
φ
px
σ

QW2
and calculate hopt in (2.10) explic-

itly for f(x) =
1

σ
φ
px
σ

Q
, where φ is the standard normal density function and

σ the population standard deviation. Substituting f I(x) = − x
σ3
φ
px
σ

Q
, f II(x) =

1

σ3

w
x2

σ2
− 1
W
φ
px
σ

Q
and f III(x) =

1

σ4

w
3x

σ
− x

3

σ3

W
φ
px
σ

Q
into the definition of 4Q1

in (2.5), we obtain

4Q1(x) = µ4(k)

24φ
px
σ

Q }3x
σ3
+
x3

σ5

]
.

This gives 8 +∞

−∞
4Q21(x)w(x)dF (x) = 7µ24(k)

96σ6
.

Also 8 +∞

−∞
f 1/2(x)w(x)dF (x) =

1

σ5/2

5
2

7

1

(2π)5/4
.

From (2.10), it follows that

hopt =

X
24c1

7µ24(k)(2π)
5/4

w
2

7

W1/2~1/7
σ1/2n−1/7.

This gives a bandwidth selector �h if in this formula we replace σ by the sample
standard deviation S, or by a measure suggested by Silverman (1986, p.47) that is

more robust to deviations from normality, which is given by �σ = min(S, IQR/1.349),
where IQR is the interquartile range.
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In the example of a standard normal kernel K = Φ, we have µ2(k) = 1, µ4(k) = 3,

c1 =
1

2
√
π
and

�h = 0.479 �σ1/2n−1/7.
Here �g can e.g. be taken as �g = �c �hα for some constants 0 < �c <∞ and α > 1.

Remark 2.

The expression for the bandwidth selector is somewhat more complicated if we work

under the conditions of Theorem 2 with g/h → c > 0. A similar calculation with4Q1(x) replaced by
µ4(k)

24φ
px
σ

Q }3x
σ3
+
x3

σ5

]
− c2µ

2
2(k)

2σ4
x

gives that in this case

hopt =

⎛⎜⎜⎜⎝c14
1

σ5/2

5
2

7

1

(2π)5/4

7µ24(k)

96σ6
+ c4

µ42(k)

24
√
3πσ8

− c23µ4(k)µ
2
2(k)

64
√
πσ7

⎞⎟⎟⎟⎠
1/7

n−1/7.

In the example of a standard normal kernel K = Φ, we have

�h = 0.685 D12.213�σ−7/2 + 0.144c4�σ−11/2 − 1.488c2�σ−9/2i−1/7 n−1/7,
and �g = c�h. It is easily verified that the quantity in brackets is strictly positive.
Preliminary Monte Carlo results show that this �h and �g work effectively in practice.

4. illustration: generating bootstrap samples

Generating bootstrap samples requires a good quality estimator for F . For anyone

who wants to perform bootstrap calculations, the following algorithm based on the

estimator �Fn,h,g can be used:
(1) obtain X∗1 , . . . ,X

∗
n by sampling with replacement from X1, . . . , Xn

(2) generate, independently, a random sample Z1, . . . , Zn from K

(3) put Y ∗i = X
∗
i + hZi/

�f 1/2
g (X∗i ).
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Step (3) in the algorithm clearly shows how the variable bandwidth adapts to the

available information. Our estimator is easier to use than the estimator 4Fn(x) in
(1.4). There 4Y ∗i = 4F−1n ( 4X∗i + hZi), where 4X∗1 , . . . , 4X∗n are obtained by sampling
with replacement from �Fn,g(Xi), i = 1, . . . , n. Taking the inverse to generate 4Y ∗i is
problematic if the argument falls outside the range [0, 1].

5. proofs

5.1 Proof of Theorem 1

Integration by parts gives that

E(Tn) =

8 +∞

−∞
F (x− hz)k(zg(x− hz))[g(x− hz)− hzgI(x− hz)]dz.

Next we expand F (x − hz), k(zg(x − hz)), g(x − hz) and gI(x − hz) in a Taylor
series up to terms with (hz)4. Then follows a long and tedious calculation where we

also use that

8 +∞

−∞
umkI(u)du = 0 if m is even, = −3µ2(k) if m = 3, = −5µ4(k) if

m = 5;

8 +∞

−∞
umkII(u)du = 0 if m is odd, = 12µ2(k) if m = 4, = 30µ4(k) if m = 6;8 +∞

−∞
umkIII(u)du = 0 if m is even, = −210µ4(k) if m = 7 and

8 +∞

−∞
u8k(4)(u)du =

1680µ4(k). Collecting all the terms leads to the expansion of E(Tn) as given in

Theorem 1. A similar calculation is done for the variance:

Var(Tn) =
1

n
Var

w
K

w
x−X1
h

g(X1)

WW

=
1

n

}
E

w
K2

w
x−X1
h

g(X1)

WW
− F 2(x) +O(h2)

]
and

E

w
K2

w
x−X1
h

g(X1)

WW
= 2

8 +∞

−∞
F (x− hz)K(zg(x− hz))k(zg(x− hz))
[g(x− hz)− hzgI(x− hz)]dz.
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5.2 Proof of Theorem 2

Applying the Taylor approximations

1

n

n3
i=1

K

w
x−Xi
h
�f 1/2
g (Xi)

W
∼= 1

n

n3
i=1

K

w
x−Xi
h

f 1/2(Xi)

W
+
1

n

n3
i=1

k

w
x−Xi
h

f1/2(Xi)

Ww
x−Xi
h

Wp�f 1/2
g (Xi)− f 1/2(Xi)

Q
,

and also

�f 1/2
g (Xi)− f1/2(Xi) ∼= 1

2

�fg(Xi)− f(Xi)
f 1/2(Xi)

∼= 1

2

^ �fg(x)− f(x)
f1/2(x)

+
�f Ig(x)− f I(x)
f1/2(x)

(Xi − x)−
�fg(x)− f(x)
2f 3/2(x)

f I(x)(Xi − x)
�
,

we obtain

�Fn,h,g(x) ∼= Sn + Σ1 + Σ2 + Σ3, (5.1)

where

Sn =
1

n

n3
i=1

K

w
x−Xi
h

f 1/2(Xi)

W
,

Σ1 =
1

2n

n3
i=1

k

w
x−Xi
h

f1/2(Xi)

Ww
x−Xi
h

W �fg(x)− f(x)
f 1/2(x)

,

Σ2 =
1

2n

n3
i=1

k

w
x−Xi
h

f1/2(Xi)

Ww
x−Xi
h

W �f Ig(x)− f I(x)
f 1/2(x)

(Xi − x),

Σ3 = − 1
2n

n3
i=1

k

w
x−Xi
h

f 1/2(Xi)

Ww
x−Xi
h

W �fg(x)− f(x)
2f 3/2(x)

f I(x)(Xi − x).

The expectation of the first term in the right hand side of (5.1) is given in (2.5).

For Σ1 we have , withAi = k

w
x−Xi
g

W
−gf(x) andBi = k

w
x−Xi
h

f 1/2(Xi)

Ww
x−Xi
h

W
,
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i = 1, . . . , n, that

E(Σ1) =
1

2f 1/2(x)n2g
E

X
n3
i=1

Ai

n3
j=1

Bj

~

=
1

2f 1/2(x)n2g

X
n3
i=1

E(AiBi) +
n3
i=1

n3
j = 1

j W= i

E(Ai)E(Bj)

~

=
1

2f 1/2(x)n2g
(nE(A1B1) + n(n− 1)E(A1)E(B1)) .

Applying Taylor series expansions, we find that E(A1) =
1

2
g3f II(x)µ2(k) + o(g3),

E(B1) =
1

2
h2
f I(x)
f 3/2(x)

µ2(k) + o(h
2) and E(A1B1) = O(g

2/h) if c > 0 and o(g2/h) if

c = 0.

And hence, under the assumptions that ngh3 →∞ and ng2 →∞, it readily follows
that

E(Σ1) =
1

8
g2h2

f I(x)f II(x)
f 2(x)

µ22(k) + o(g
2h2).

Completely similar we find that

E(Σ2) = −1
4
g2h2

f III(x)
f(x)

µ22(k) + o(g
2h2)

E(Σ3) =
1

8
g2h2

f I(x)f II(x)
f 2(x)

µ22(k) + o(g
2h2).

Combining the above we find the expansion for E( �Fn,h,g(x)).
A similar treatment holds for Var( �Fn,h,g(x)). From (5.1) we have that

Var( �Fn,h,g(x)) ∼= Var(Sn) + Var(Σ1) + Var(Σ2) + Var(Σ3)

+2(Cov(Sn,Σ1) + Cov(Sn,Σ2) + Cov(Sn,Σ3) + Cov(Σ1,Σ2)

+Cov(Σ2,Σ3) + Cov(Σ1,Σ3)).

The variance of Sn is given in (2.3) with ϕ = f
1/2. For Σ1 we have

Var(Σ1) =
1

4f(x)n4g2
Var

X
n3
i=1

Ai

n3
j=1

Bj

~

=
1

4f(x)n4g2

⎡⎣E
⎧⎨⎩
X

n3
i=1

Ai

~2X n3
j=1

Bj

~2⎫⎬⎭−
l
E

^X
n3
i=1

Ai

~X
n3
j=1

Bj

~�M2⎤⎦ .
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A careful examination of all possible terms shows that under the stated conditons

Var(Σ1) =
1

4f(x)n4g2
\
n(n− 1)(n− 2)(n− 3)(E(A1)E(B1))2

−n2(n− 1)2(E(A1)E(B1))2
�
+ o

w
h

n

W
= o

w
h

n

W
.

Completely similar we find that Var(Σ2), Var(Σ3), Cov(Sn,Σ1), Cov(Sn,Σ2), Cov(Sn,Σ3)

are all o

w
h

n

W
. Also Cov(Σ1,Σ2), Cov(Σ2,Σ3) and Cov(Σ1,Σ3) are o

w
h

n

W
by a sim-

ple application of the Cauchy-Schwarz inequality.
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