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Abstract

When multicenter clinical trial data are analyzed, it has become more and more

popular to look for possible heterogeneity in outcome between centers. However,

beyond the investigation of such heterogeneity, it is also interesting to consider het-

erogeneity in treatment effect over centers. For time-to-event outcomes, this may be

investigated by including a random center effect and a random treatment by center

interaction in a Cox proportional hazards model .

Assuming independence between the random effects, we propose a Bayesian ap-

proach to fit our proposed model. The parameters of interest are the variance

components σ20 and σ
2
1 of these random effects, which can be interpreted as a mea-

sure of center and treatment effect over centers heterogeneity of the hazard. These

variance components are estimated from their marginal posterior density after in-

tegrating out the fixed treatment effect and the random effects. As this integration

cannot be performed analytically, the marginal posterior density is approximated

using the Laplace integration technique. Statistical inference is then based on the

characteristics of the posterior marginal density, such as the mode and the stan-

dard deviation. We demonstrate the proposed technique using data from a pooled

database of seven EORTC bladder cancer clinical trials. Substantial center and

treatment effect over centers heterogeneity in disease free interval was found.
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1 Introduction

In previous work [1], we showed that the Cox proportional hazards model including a

random center effect (frailty model) can be used to investigate heterogeneity in time-to-

event outcome over centers when considering data from large multicenter cancer clinical

trials. Assuming a one-parameter gamma distribution (with mean 1) for the random

center effect, we fitted this model using the Expectation-Maximization (EM) algorithm,

or equivalently, using the penalized partial likelihood approach [2].

It is also of interest to look at the heterogeneity in hazard due to treatment by center

interaction. As proposed by Yamaguchi and Ohashi [3] this may be done by adding a

random interaction between the treatment and center effect in the frailty model. Assuming

a normal distribution of the random center effect and the random treatment by center

interaction, they estimated this model using an extension of the McGilchrist approach [4]

to accomodate for the two random effects.

We propose in this paper an alternative approach, computationaly less intensive and

therefore more convenient, especially for large databases. Assuming that the random cen-

ter effect and the random interaction are independent and follow a normal distribution

with variance, respectively, σ20 and σ21, we extend the Bayesian approach originally pro-

posed by Ducrocq and Casella [5] to allow the joint estimation of the variance components

of the two random effects. Following the Bayesian paradigm, the marginal posterior distri-

bution, obtained after integrating out the fixed and random effects from the joint posterior

density, is considered to contain all the information on the parameters of interest. As this

integration cannot be performed analytically, we use the Laplace integration technique

[6] to approximate the marginal posterior density. The estimates of the variance compo-

nents of the random effects are then provided by the mode of this approximate marginal

posterior density. If needed, further information, such as the standard deviation or the

skewness of this marginal posterior density can then be obtained from this approximate

marginal posterior density.

This Bayesian estimation approach has been implemented by extending The Survival

Kit [7, 8], a package of Fortran programs developed in the field of animal genetics, to

jointly estimate the variance components of two normally distributed random effects and
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the first three moments of the approximate marginal posterior density. Using this software

we investigate heterogeneity in disease free interval due to center and treatment by center

interaction in a large bladder cancer database including data from seven randomized

clinical trials conducted by the Genito-Urinary Group of the European Organisation for

Research and Treatment of Cancer (EORTC).

Section 2 describes the model and introduces some notation. The estimation technique

is summarized in Section 3. The Survival Kit and its extension is discussed in Section 4

while Section 5 presents the results obtained for the bladder data set, with a discussion

of the results. Section 6 contains some concluding remarks.

2 Frailty model with a random center effect and a

random treatment by center interaction

In the following, we assume that we have data from a total of N patients coming from

G different centers, ni patients coming from center i (N =
∑G
i=1 ni). For the jth patient

in the ith center, we observe Yij = min
(
Tij , Cij

)
where Tij is the time-to-event for this

patient (possibly right-censored), and Cij is a random censoring time independent of

Tij . Additionally, a censoring indicator δij is observed, with δij equal to 1 if Yij = Tij ,

otherwise 0.

For each patient, we also observe the binary variable xij representing the treatment arm

to which the patient has been randomized. Without loss of generality, we will assume

that xij = 0 if the patient is in the standard arm and xij = 1 if the patient is in the

experimental arm.

We consider a Cox proportional hazards model including a fixed treatment effect, a

random center effect and a random treatment by center interaction. With such model,

the hazard for the jth patient in the ith center is given by

λij (t) = λ0 (t) exp
(
b0i + (β + b1i) xij

)
(1)

where λ0 (t) represents the unspecified baseline hazard at time t, β is the fixed treatment

effect coefficient and the random effects b0i and b1i are assumed to follow a particular

distribution with mean 0. The variance-covariance matrix of the vector of random effects
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bT =
(
bT0 , b

T
1

)
= (b01, . . . , b0G, b11, . . . , b1G) is denoted by

V (b) = V

⎛
⎜⎝ b0

b1

⎞
⎟⎠ =

⎛
⎜⎝ σ20IG 0G

0G σ21IG

⎞
⎟⎠ .

In this model, b0i can be interpeted as the influence of the ith center on the overall

underlying baseline risk, patients treated in a center with a value of b0i above (resp.

below) 0 having a higher (resp. lower) risk. Similarily, b1i, the random interaction term,

can be interpreted as the influence of the ith center on the overall treatment effect (β).

The variance components of the random effects σ20 and σ21 can be interpreted as a measure

of center and treatment effect over centers heterogeneity of the hazard.

3 Estimation: a Bayesian approach

For estimation of the model parameters we assume

b ∼ N (0,V (b)) (2)

and we define θ =
(
σ20, σ

2
1

)T
the vector of the diagonal elements of the variance-covariance

matrix.

The Bayesian approach proposed by Ducrocq and Casella [5] to estimate mixed survival

models is extended here. The variance components of the random effects are estimated

from their marginal posterior distribution after integrating out β and bT . In the case

of a normal distribution of the random effects, this integration cannot be performed

analytically and we therefore approximate the marginal posterior distribution using the

Laplace integration technique [6]. The details are as follows.

Applying the Bayes theorem, the joint posterior density for model (1) is proportional

to

π (β, b, θ | y) ∝ L (β, b | y)× π0 (b | θ)× π0 (β)× π0 (θ) .

In the Cox model, the likelihood L (β, b | y) is given in terms of the partial likelihood

function

L (β, b | y) =
G∏
i=1

ni∏
j=1

⎡
⎢⎢⎣ exp

(
b0i + (β + b1i)xij

)
∑

tkl≥tij

exp (b0k + (β + b1k)xkl)

⎤
⎥⎥⎦
δij

.
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The second factor is the joint prior distribution of the random effects given by

π0 (b | θ) =
G∏
i=1

1

2πσ0σ1
exp

(
−
1

2

(
b20i
σ20

+
b21i
σ21

))
.

The third and fourth factor represents the prior distribution for β and θ which we

assume to be flat

π0 (θ) ∝ 1 and π0 (β) ∝ 1.

The log joint posterior density is then given by

lnπ (β, b, θ | y) =
G∑
i=1

ni∑
j=1

δij

⎡
⎣b0i + (β + b1i) xij − ln

∑
tkl≥tij

exp (b0k + (β + b1k) xkl)

⎤
⎦

−G ln (2πσ0σ1)−
1
2

G∑
i=1

(
b20i
σ20

+
b21i
σ21

)
.

Remark at this point that the term posterior ”density” is in fact used here for con-

venience, acknowledging that it is obtained using the partial likelihood and not the full

likelihood.

According to the Bayesian principle, statistical inference on θ should be based on its

marginal posterior density obtained by integrating out the nuisance parameters β and b

from the joint posterior density

π (θ | y) =
∫ ∫

π (β, b, θ | y) dβdb.

This integral can not be solved analytically. Ducrocq and Casella [5] proposed to

approximate the integral for a particular value θ∗ of θ by Laplacian integration. Fixing

the value of θ∗, we thus denote π (β, b,θ∗ | y) = π (β, b | y, θ∗) and we can write

∫ ∫
π (β, b | y, θ∗) dβdb =

∫ ∫
exp (ln (π (β, b | y, θ∗))) dβdb.

In short the Laplacian integration consists of replacing ln (π (β, b | y, θ∗)) by the first

terms of its Taylor series expansion around the mode of the joint posterior density function

π (β, b | y, θ∗) given by

Ψ̂θ
∗ =

(
β̂θ∗, b̂θ∗

)T
= ArgΨmaxπ (Ψ | y, θ∗)

where Ψ = (β, b)T .
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At the mode, the gradient vector equals zero(
∂ lnπ (Ψ | y, θ∗)

∂Ψ

)
Ψ=Ψ̂θ∗

= 0

and the second term in the Taylor series expansion therefore cancels. For the third term

of the expansion we need the negative Hessian at Ψ̂θ
∗

Ĥθ
∗ =

(
−∂2 ln π (Ψ | y, θ∗)

∂Ψ∂ΨT

)
Ψ=Ψ̂θ∗

.

The integral is then approximately given by

π (θ∗ | y) ≈
∫
exp

(
ln π

(
Ψ̂θ

∗ | y, θ∗
)
−

1

2

(
Ψ− Ψ̂θ

∗

)T
Ĥθ

∗

(
Ψ− Ψ̂θ

∗

))
dΨ.

(3)

Furthermore, we can write

∫
(2π)−

1
2(2G+1)

∣∣∣∣Ĥ−1
θ
∗

∣∣∣∣−
1
2
exp

(
−
1

2

(
Ψ− Ψ̂θ

∗

)T
Ĥθ

∗

(
Ψ− Ψ̂θ

∗

))
dΨ = 1

as it corresponds to the kernel of a multivariate normal density function with mean Ψ̂θ
∗

and variance Ĥ
−1
θ
∗ , and thus the approximation of the integral can be rewritten as

π (θ∗ | y) ≈ (2π)G+
1
2

∣∣∣∣Ĥ−1
θ
∗

∣∣∣∣
1
2
π
(
Ψ̂θ

∗ | y, θ∗
)
. (4)

Taking the logarithm on both sides, we obtain the following approximation of the log

marginal posterior distribution

ln π (θ∗ | y) = constant + ln π
(
Ψ̂θ

∗ | y, θ∗
)
− 0.5 ln | Ĥθ

∗ | .

In the two-dimensional space of the two variance components, we use the Simplex

algorithm [9] with σ20 and σ21 as parameters and the approximated marginal posterior

density (4) as function to identify the values which maximize this approximated marginal

posterior distribution. Once these values are found, they are used as estimates of the

variance components σ̂20 and σ̂21 of the two random effects.

Apart from the mode, which will provide us with estimates of σ20 and σ21, other char-

acteristics based on the marginal posterior density, such as the skewness or credible sets,

might be of interest. As mentioned above, the Simplex algorithm is used to obtain the

mode of the marginal posterior density. Other characteristics such as the first three mo-

ments can be obtained by numerical integration based on the Gauss-Hermite quadrature

[10].
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4 The Survival Kit

The Survival Kit V3.12 [7, 8] is a package of Fortran programs developed by Ducrocq and

Sölkner in the field of animal genetics to analyse survival models with random effect(s) on

large databases. Freely available from internet (http://www.boku.ac.at/nuwi/software/sofskit.htm),

The Surival Kit can fit either semi-parametric (Cox) or parametric (Weibull) models,

including continuous and/or discrete covariates (eventually time-dependent) as well as

random effects (normal, multivariate normal, or log-gamma distributed) and can be used

on extremely large databases.

However the present version of The Survival Kit is not capable of estimating two

variance components simultaneously. Due to this restriction the maximisation of the

marginal posterior density is a one-dimensional problem solved by the bisection method.

The maximisation of the joint posterior density to estimate the fixed and random effects

coefficients β and b is implemented through a limited memory quasi-Newton method [11]

which only requires the computation of the vector of first derivatives. The approximate

Cholesky factor of the Hessian of the function to maximize, used to determine the next

quasi-Newton step, is stored in a very sparse form.

To fit the extended model discussed in the previous section, we needed to extend

the existing software so that joint estimation of the two variance components is possible.

The maximisation of the marginal posterior density now takes place in a two-dimensional

space and we therefore implemented the Simplex algorithm [9] to seek the mode of this

function. We also extended The Survival Kit so that information on the moments of the

approximated posterior marginal density is provided.

5 Bladder cancer database

Bladder cancer is a common urological malignancy and about 70-80 % of all bladder can-

cers are superficial (stage Ta-T1). Standard treatment typically consists of transurethral

resection (TUR) conducted with the aim of removing all the tumors. However, a high pro-

portion of patients will experience recurrences or progression to muscle invasive disease,

even after complete resection. Therefore, randomized controlled phase III trials have been
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conducted over the last decades to investigate the use of prophylactic treatment following

TUR. The objective of such treatment is both to remove residual, unresectable lesions

and to prevent recurrence after complete resection.

In this case study, we consider the individual patient data from 2649 eligible bladder

cancer patients randomized by 63 European centers in 7 consecutive phase III randomized

clinical trials conducted by the Genito-Urinary Group of the European Organization for

Research and Treatment of Cancer (EORTC 30781, 30782, 30791, 30831, 30832, 30845 and

30863)[12, 13, 14, 15, 16, 17]. All these patients had Ta-T1 bladder cancer, approximately

half with primary bladder cancer and half with recurrent disease. Within the context of

these trials, patients in each of these participating centers were treated with or without

further intravesical treatment after TUR. In total, 1204 patients (45.5%) received no

further intravesical treatment while 1445 patients (54.5%) received further intravesical

treatment.

Our analysis is based on disease free interval (DFI) defined as time from randomization

to the date of the first bladder recurrence, censoring the patients without recurrence at

the date of last available follow up cytoscopy. Considering this endpoint, a total of 1223

(46.2%) events were observed, with an overall median DFI of about 2.8 years. The DFI

was significantly longer in the intravesical treatment group (HR: 0.85 [95% CI: 0.76-0.95],

p = 0.0053).

However, for our analysis, we have restricted our attention to the centers which accrued

more than 20 patients in total. We therefore include in our analysis a total of 2292 patients,

1004 (43.8%) in the no intravesical treatment group and 1288 (56.2%) in the intravesical

treatment group from 35 centers in 9 European countries. The number of patients per

center varies from 21 to 249 with a median 52 and mean 65. Within this subset of

patients, the major baseline characeristics (Table I) were in general well balanced over

the two groups, with slightly more patients with multiple tumors and patients with Ta

disease in the intravesical treatment group.

A total of 1218 patients (53.1%) were considered as censored for DFI and 1074 patients

had a recurrence. The number of events over centers ranged from 7 to 117, with median

21 and mean 31. Using a Cox PH model including only a fixed effect for treatment in

this subset of patients, the DFI remained significantly longer in the intravesical treatment
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group (HR: 0.83 [95%CI:0.73-0.93], p-value = 0.0020) with a median DFI of 2.2 years

(95%CI: 1.9-2.6) in the no intravesical treatment group and of 3.3 years (95%CI: 2.6-4.4) in

the intravesical treatment group. Treatment effect estimates when stratifying for centers

or when considering centers as fixed effects are presented in Table II. Results of these two

models (Models 2 & 3) lead to rather similar results, with in both cases a treatment effect

estimate much closer to 0 and a 95% confidence interval for the hazard ratio including

1. However, with such a large number of centers and rather low number of events in

most centers these models are probably overparametrized. Furthermore Model 2 does not

provide any information about centers and therefore does not help us in investigating a

potential center effect.

We finally fit the model discussed in Section 2 with a fixed treatment effect, a random

center effect and a random treatment by center interaction. The estimate of the fixed

treatment effect is in between the results obtained by ignoring the center effect (Model

1) and by stratifying for center or introducing it as fixed effect (Models 2 & 3) (Table II).

In Figure 1, the predicted center baseline risks (exp(b0i)) are plotted along the horizontal

axis. These values represent the deviation of the ith centers from the overall baseline

hazard. The variance of this random center effect, which can be interpreted as a measure

of the heterogeneity in DFI over centers induced by the center effect, is estimated to be

0.10854. Similarily, the predicted treatment effect for each particular center, i.e. exp(β +

b1i) is plotted on the same figure along the vertical axis. The variance of the random

treatment by center interaction is estimated to be 0.10860 and can be interpreted as a

measure of the heterogeneity due to treatment by center interaction.

These results seem to indicate that there is substantial heterogeneity in DFI, both due

to center as to differing treatment effects over centers. However, these results can hardly

be interpreted as such as particular values of σ20 and σ21 do not have a straightforward

meaning.

To better understand the value we obtained for σ20, one possibility is to look at the

impact of such a value on the spread of the median DFI from center to center in the

no intravesical treatment group (x = 0) by considering the density function of Mc, the

median DFI in this group of patients over centers. Assuming a constant baseline hazard

λ0, normally distributed random center effects and x = 0, we show in the appendix that
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this density function is given by

fMc
(mc) =

1

mc

√
2πσ20

exp

⎛
⎝− 1

2σ20

(
ln

(
ln 2

λ0mc

))2⎞⎠ . (5)

By considering this density function and its tails, for example the 5% and the 95% quan-

tiles, we get an immediate interpretation of the impact of particular values of the variance

of the random center effect in the no intravesical treatment group. This density function

is depicted in Figure 2, assuming a constant yearly baseline hazard of 0.3151 (as observed

in our data). With these assumptions, 90% of the centers would have a median DFI in

the no intravesical treatment group between 1.3 and 3.8 years.

The same argument as above allows one to consider the impact of a particular value of

σ21 on the spread of ”treatment effect” or hazard ratio HR = exp(β+ b1i) over centers. In

the case of normally distributed center by treatment interactions b1i, the density function

of the hazard ratio HR over centers is given by

fHR(h) =
1

h
√
2πσ21

exp

(
−

1

2σ21
(ln h− β)2

)
. (6)

Considering a β value of −0.1011 as in our database, 90% of the centers would have a HR

between 0.53 and 1.56 (Figure 3).

The difficulty is clearly to interpret σ20 and σ21 simultaneously. One possibility is

to ”sum up” the impact of these two normally distributed random effects and plot the

density of the median DFI over centers, considering then heterogeneity from these two

sources of variability together. However this would not be very informative for physicians

who are clearly interested in distinguishing variability at the level of the baseline risk and

of the treatment effect. We could rather choose ”typical” values for the random center

effects, and for these fixed values of b0i consider the median DFI in the no intravesical

treatment group and the spread of median DFI over centers induced by the heterogeneity

in treatment effects over centers. For example, we can consider the 25th, 50th and 75th

quantile of b0i ∼ N(0, σ20 = 0.10854), i.e. −0.222, 0, and 0.222 as representing respectively

”good center outcome”, ”average center outcome” and ”poor center outcome”. Assuming,

as above, a constant yearly baseline hazard of 0.3151, this would correspond to centers

having a median DFI in the no intravesical treatment group (x = 0) of respectively 2.7,

2.2 and 1.8 years. With (β + b1i) ∼ N(0.3151, 0.10860), the density function of Me,

10



the median DFI over centers in the intravesical treatment group (x = 1) for these three

”typical” examples of centers is given by

fMe
(me) =

1

me

√
2πσ21

exp

⎛
⎝− 1

2σ21

(
ln

(
ln 2

λ0me

)
− b0 − β

)2⎞⎠ (7)

and the density functions are plotted in Figure 4.

6 Concluding remarks

Although clinical trial protocols are written with the objective of supressing as much vari-

ability as possible, it becomes more and more popular to apply frailty model methodology

to consider heterogeneity due to centers within large multicenter clinical trials. However,

apart from this source of heterogeneity, one further interesting step is to also consider

the potential heterogeneity due to treatment by center interaction. With this work, we

demonstrate that data from large cancer multicenter clinical trials can be used to inves-

tigate heterogeneity due to these two sources.

We describe a Bayesian approach implemented in The Survival Kit for the estimation

of a frailty model with two random effects. One random center effect deals with the

deviation of each center from the overall baseline hazard while a random treatment by

center interaction deals with deviation of each center from the overal treatment effect.

This Bayesian approach allows one to estimate the variance of these random effects by

maximising the posterior marginal distribution after integrating out the fixed treatment

effect and the random effects using the Laplace technique.

Variance components of these random effects can be interpreted as a measure of the

heterogeneity respectively in outcome and treatment effect over centers. However we show

in this paper one needs to be careful in interpreting a particular value of σ20 and σ21 and

we propose several graphical displays to better understand the impact of the variance

components. This is illustrated by fitting our model to a database of seven consecutives

Ta-T1 bladder cancer phase III randomized trials. Based on our results we can conclude

that there exists substantial heterogeneity over centers both in terms of DFI and treatment

effect.

Our methodology could be further generalized by adding a correlation term ρ between
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the two random effects within a center and then maximise the marginal posterior density

in a three-dimensional space θ = (σ20, σ
2
1, ρ). Such a model might better reflect clinical

reality as we might expect that the beneficial effect of a new treatment will be larger in

”good performing centers” while lower in ”poor performing centers”. The plot of predicted

values of the exp(b0i) versus exp(β + b1i) (Figure 1), as well as the correlation between

these values equal to 0.51, give some hints that such a correlation between the random

effects might indeed exist in our data. We are currently working on this extension of our

methodology and on implementing this into The Survival Kit.
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Table 1: Baseline characteristics

No intravesical treatment Intravesical treatment

N = 1004 N = 1288

N (%) N (%)

Gender

Male 781 (77.8%) 1047 (81.3%)

Female 219 (81.8%) 224 (17.4%)

Missing 4 ( 0.4%) 17 (1.3%)

Tumor status

Primary 545 (54.3%) 689 (53.5%)

Reccurent 455 (45.3%) 582 (45.2%)

Missing 4 (0.4%) 17 (1.3%)

Number of tumors

Single 615 (61.3%) 653 (50.7%)

Multiple 383 (38.1%) 617 (47.9%)

Missing 6 (0.6%) 18 (1.4%)

T category

Ta 500 (49.8%) 766 (59.5%)

T1 490 (48.8%) 483 (37.5%)

Missing 14 (1.4%) 39 (3.0%)

Grade

Grade G1 437 (43.5%) 503 (39.1%)

Grade G2 425 (42.5%) 557 (43.2%)

Grade G3 98 (9.8%) 154 (12.0%)

Missing 44 (4.4%) 74 (5.7%)
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Table 2: Treatment effect in various Cox PH models

Model Estimate (se) Hazard ratio [95%CI]

Model 1 -0.1890 (0.0612) 0.828 [0.734-0.933]

Model 2 -0.0130 (0.0696) 0.987 [0.861-1.131]

Model 3 0.0117 (0.0693) 1.012 [0.883-1.159]

Model 4 -0.1011 (0.0925) 0.904 [0.754-1.084]

Model 1: Fixed treatment effect

Model 2: Fixed treatment effect + stratified by center

Model 3: Fixed treatment effect + fixed center effect

Model 4: Fixed treatment effect + random center and random center*treatment effects
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Figure 1. Predicted baseline risk exp(b0i) (horizontal axis) versus predicted treatment

effect exp(β + b1i) (vertical axis) for each center (i = 1, ..., 35)
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Figure 2. Density function of the median DFI in the no intravesical treatment group

over centers.
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Figure 3. Density function of the Hazard Ratio HR = exp(β + b1i) over centers.

19



Figure 4. Density function of median DFI in the intravesical treatment group over

centers, considering (a) ”Good outcome” centers, (b) ”Average outcome” centers and (c)

”Poor outcome” centers.
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Appendix

Considering model (1) with the random effects bT = (bT0 , b
T
1 ) distributed according to

(2) and assuming a constant baseline hazard, the density of Mc, the median time to event

in the control arm (x = 0) over centers, is given by

fMc
(mc) =

1

mc

√
2πσ20

exp

⎛
⎝− 1

2σ20

(
ln

(
ln 2

λ0mc

))2⎞⎠ . (8)

Indeed, for a constant baseline hazard the conditional survival curve is given by

S(t | b0, b1, x) = exp (−λ0t exp (b0 + (β + b1)x))

and therefore the median time to event in the control arm satisfies S(Mc | b0, b1, x) = 0.5,

or (with x = 0 in the control group)

Mc = h(b0) =
ln 2

λ0 exp b0
.

Since Mc is a monotone transformation of b0, we have for mc ≥ 0

fMc
(mc) = fb0

(
h−1(mc)

)
|
d

dmc
h−1(mc)|

with b0 ∼ N(0, σ20) we easily obtain (8).

Similarily, considering HR = exp(β+b1) as a monotone transformation of the random

variable b1, and having in mind that b1 ∼ N(0, σ21), the density function of HR is given

by

fHR(h) =
1

h
√
2πσ21

exp

(
−

1

2σ21
(ln h− β)2

)
.

Under the same assumptions, but fixing b0 and β to a particular value, we obtain, by

noting that β + b1 ∼ N(β, σ21), that Me, the median time to event in the experimental

arm (x = 1) over centers is given by

fMe
(me) =

1

me

√
2πσ21

exp

⎛
⎝− 1

2σ21

(
ln

(
ln 2

λ0me

)
− b0 − β

)2⎞⎠ .
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