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Abstract

Proportional hazards models with multivariate random effects (frailties) acting mul-
tiplicatively on the baseline hazard is a topic of intensive research. Several estima-
tion procedures have been proposed to deal with these type of models. In this paper
four estimation procedures used to fit these models (McGilchrist and Aisbett, 1991;
Ducrocq and Casella, 1996; Ripatti and Palmgren, 2000; Cortiñas and Burzykowski
, 2004) are compared in a simulation study. The performance of the four methods
are compared based on their point estimates and the standard error associated to
the estimates. From the simulation study can be concluded that McGilchrist and
Aisbett approach face problems with the estimation of the standard error of the
variance parameters, while the other three methods produce comparable results.
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1 Introduction

In applied sciences, one is often confronted with the collection of correlated
data. This generic term embraces a multitude of data structures, such as
multivariate observations, clustered data, repeated measurements, longitudi-
nal data, and spatially correlated data. Instances of this type of research can
be encountered in virtually every empirical branch of science.

In this paper we will focus on clustered failure-time data. A way to model
the data is to use a proportional hazards model conditional on random effects
introduced to allow for correlation between the observations from the same
cluster. First proposals for such a modelling strategy concentrated on the
univariate mixed effects model (also called shared frailty model), which only
include a univariate random effect in the model.

However, shared frailty models have some limitations. For instance, they force
the unobserved factors (frailty) to be the same for all failure-times within
the cluster (Xue and Brookmeyer, 1996). This may not always be desirable.
Another drawback is that in most cases, a univariate frailty can only induce
positive association within the cluster (Xue and Brookmeyer, 1996). Clearly,
there are some situations in which the failure-times for subjects within the
same cluster may be negatively associated.

To avoid the limitations, models with multivariate, correlated random effects
have been proposed. The main problem with the use of such models is the
estimation of their parameters. Several estimation approaches have been pro-
posed. McGilchrist and Aisbett (1991), McGilchrist (1993) and McGilchrist
(1994) used a penalized likelihood approach. Xue and Brookmeyer (1996)
proposed the EM algorithm with numerical integration used at the E-step.
Ducrocq and Casella (1996) developed a Bayesian approach. Vaida and Xu
(2000) used the Monte Carlo EM (MCEM) algorithm, with Monte Carlo
Markov Chain (MCMC) sampling used at the E-step. Ripatti, Larsen and
Palmgren (2002), following the ideas of Vaida and Xu (2000), introduced an
estimation procedure based on the MCEM algorithm, in which they used re-
jection sampling to draw from a posterior distribution of the random effects at
the E-step. Cortiñas and Burzykowski (2004) proposed a modification of the
EM algorithm in which the Laplace approximation is used at the E-step. Xue
(1998) developed an alternative fitting method using estimating equations de-
rived from a Poisson regression formulation, while Xue and Ding (1999) used
a Gibbs sampling approach. Ripatti and Palmgren (2000) proposed estima-
tion based on a penalized partial likelihood developed by applying the Laplace
approximation to the marginal likelihood function.

The aim of this paper is to compare different estimation procedures used to
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fit proportional hazards models with random effects. To this aim, a simulation
study is conducted. We consider the methods developed by McGilchrist and
Aisbett (1991), Ducrocq and Casella (1996), Ripatti and Palmgren (2000) and
Cortiñas and Burzykowski (2004). The main reason for this choice was soft-
ware availability and numerical complexity. The paper is organized as follows.
Section 2 briefly recalls the proportional hazards model with random effects.
In Section 3 the four estimation methods are reviewed. Section 4 describes the
simulation study. The results are presented in Section 5. A short discussion of
the results in Section 6 concludes the paper.

2 The Proportional Hazards Model with Random Effects

We consider clustered failure-time data with N clusters. The failure-time vari-
able corresponding to subject j (j = 1, . . . , ni) from cluster i (i = 1, . . . , N)
will be denoted by Yij. It is assumed that observations of Yij can be right-
censored. Thus, for subject j in cluster i we observe Tij = min(Cij, Yij), where
Cij is a censoring time independent of Yij. Additionally, a censoring indicator
δij is observed, with δij equal to 1 if Tij = Yij, and 0 otherwise.

As we mentioned in the introduction the univariate shared frailty model was
the first proposal to handle clustered failure-times data. It can be written as

λ(tij|β, ωi) = λ0(tij)ωi exp(xT
ijβ), (1)

where λ0(t) is the baseline hazard function, β is a vector of fixed-effects cor-
responding to a vector of covariates xij, and cluster-specific random effects ωi

are assumed to be independent, identically distributed random variables with
a common density function f(ωi; θ), where θ is the parameter quantifying the
variability of frailties. One of the most common distribution assumed for the
frailties is the gamma distribution (Clayton, 1978; Vaupel, Manton and Stal-
lard, 1979; Oakes, 1982; Hougaard, 2000). The main reason is that in this
case it is easy to derive closed form expressions of marginal survival, density
and the hazard. In the case of a parametric hazard, if the random effects are
gamma distributed, analytic expression for the likelihood can be derived. On
the other hand, if the hazard is unspecified, then EM algorithm with closed
form expression for the conditional expectation of the frailties can be used. It
is worth noting that model (1) can be rewritten in the following form:

λ(tij|β, bi) = λ0(tij) exp(xT
ijβ + bi0), (2)

where bi0 = ln ωi. In what follow, we will distinguish between “frailties” ωi

and “random effects” bi.
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In this paper we consider the following extension of model (2), which can be
written as

λ(tij|β, b) = λ0(tij) exp(xT
ijβ + zT

ijbi), (3)

where λ0(t) and β are the baseline hazard function and the vector of fixed
effects, respectively, and bi is a d-dimensional vector of random effects asso-
ciated with a vector of covariates zij. We will assume that the random ef-
fects bT

i = (bi0, bi1, ..., bid) are normally distributed with mean 0 and variance-
covariance matrix D = D(θ). To simplify formulas, we will also use the baseline
cumulative hazard defined as

Λ0(t) =

t∫

0

λ0(u)du.

Model (3) can be seen as a linear mixed-effects model on the log-hazard scale.
The estimation of the parameters β and θ from the observed data on Tij is
our main interest. Assuming the conditional independence of the observations
within a cluster given bi, one might write the (conditional) log-likelihood for
the observed data as

lC(β, λ0, b) =
N∑

i=1

lCi (β, λ0, bi), (4)

where

lCi (β, λ0, bi)=
ni∑

j=1

[δij{ln λ0(tij)+xT
ijβ + zT

ijbi}−Λ0(tij) exp(xT
ijβ+zT

ijbi)] (5)

is the (conditional) log-likelihood for the observed data in the ith cluster,
and b denotes the vector resulting from “stacking” vectors bi for all clusters.
The (marginal) likelihood of the observed data for all clusters can then be
expressed as

LM(β, θ, λ0) =
N∏

i=1

∫
LA

i (β, θ, λ0, bi)dbi, (6)

where

LA
i (β, θ, λ0, bi) = f(bi; θ)

ni∏

j=1

elCi (β,λ0,bi). (7)
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and f(bi; θ) is the density function of bi. Note that (7) can be treated as
the likelihood of the “augmented” data for cluster i, treating bi as additional
observations. Consequently,

LA(β, θ, λ0, b) =
N∏

i=1

LA
i (β, θ, λ0, bi), (8)

is the likelihood of the “augmented” data for all clusters.

One might consider using directly the likelihood function (6) in the inference
on β and θ. There are, however, two major problems with using it for this
purpose. First, it depends on the baseline hazard function λ0. Unless a para-
metric form of the hazard can be assumed, the usefulness of (6) is limited.
Second, the integral in (6) will usually be multi-dimensional, unless a very
simple model is considered, and in general will not be available in a closed
form.

Several estimation approaches have been proposed to circumvent these prob-
lems. In the following section some of the methods are reviewed.

3 Estimation Methods

In this section the approaches proposed by McGilchrist and Aisbett (1991),
Ducrocq and Casella (1996), Ripatti and Palmgren (2000) and Cortiñas and
Burzykowski (2004) are reviewed. In what follows, we will assume that bi are
normally distributed with mean 0 and variance-covariance matrix

D(θ) =




θ0 0 ... 0

0 θ2 ... 0
...

...
. . .

...

0 0 ... θd




.

3.1 REML Estimation Method

McGilchrist and Aisbett (1991) used the penalized likelihood approach to
estimate the fixed effects and the residual maximum likelihood (REML) to
estimate the variance components of the random effects. Their method consists
of finding the best linear unbiased predictors (BLUP) of the fixed and random
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components in first place, and then to use them to find REML estimates of
the variance covariance parameters.

3.1.1 BLUP and REML Estimators

The estimation procedure is a generalization of the results developed by Schall
(1991). In order to find the BLUP it is necessary to maximize the sum of two
components. The first component is the partial log-likelihood of failure times
taking the random effects fixed:

l1 =
N∑

i=1

ni∑

j=1

δij



xT

ijβ + zT
ijbi − ln

∑

tkl≥tij

exp
(
xT

klβ + zT
klbk

)


 . (9)

The second component is related to the distribution associated to the random
effects

l2 = −1

2

d∑

g=0

(
N ln 2πθg +

N∑

i=1

b2
ig

θg

)
. (10)

The algorithm iterates between two steps. First, given an estimate for the
variance-covariance matrix D(θ) one iteration is performed to update the es-
timate parameters β and bi. Second, based on the updated values for β and
bi the REML estimator of D(θ) is used. Once D(θ) is estimated and updated,
the process starts all over again. The details are as follows.

Given values β(p) and b
(p)
i of the fixed and the random effects, the Newton-

Raphson iterative procedure is used for maximizing l1 + l2 to obtain BLUP
estimators β(p+1) and b

(p+1)
i . Let ηij = xT

ijβ + zT
ijbi and η = (ηT

1 , ηT
2 , ..., ηT

N),
where ηi = (ηi1, ηi2, ..., ηini

)T . In matrix form, η = Xβ+Zb, where X and Z are
design matrices for the fixed and the random effects, respectively. The random
effects are of the form b = (bT

0 , bT
1 , ..., bT

d )T , where bg = (b1g, b2g, ..., bNg)
T . The

Newton-Raphson procedure is carried out as follows:


 β(p+1)

b(p+1)


=


 β(p)

b(p)


−A−1


 0

{D(θ)(p)}−1 b(p)


+A−1


 XT

ZT


∂ l1

∂ η
, (11)

where

A=


 A11 A12

A21 A22


=


 XT

ZT




[ −∂2 l1
∂ η ∂ ηT

](
X Z

)
+


 0X 0Z

0Z {D(θ)(p)}−1 ⊗IN


 ,
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(p + 1) and (p) indicate the iterations of the algorithm, ⊗ indicates the Kro-
necker product and IN the identity matrix of dimension N×N . The dimension
of the zero matrices 0X and 0Z depends on the dimension of the vectors β and
b. Matrix 0X is a square matrix, while 0Z has the same number of rows as 0X ,
but its number of columns depends on the size of b. The inverse of A will be
denoted by M and can be expressed as

M =


 M11 M12

M21 M22




=


 A−1

11 + A−1
11 A12S

−1
A11

A21A
−1
11 −A−1

11 A12S
−1
A11

−S−1
A11

A21A
−1
11 S−1

A11


 ,

where SA11 = (A22 − A21A
−1
11 A12).

Given the estimated β and b, the REML estimator of θg is:

θ(p+1)
g =

b(p+1)T

g b(p+1)
g

N − θ
(p)−1

g tr(M22(g))
, (12)

where tr(M22(g)) indicates the sum of elements of the diagonal of the subma-
trix of M22 related to the component g of the random effects. The algorithm
alternates between (11) and (12) to estimate the values of the parameters.

3.1.2 Variance Estimation

The elements needed in the estimation of the variance-covariance matrices for
the estimated β̂ and θ̂ are computed in the iterative procedure. The variance-
covariance matrix for the estimate of β is given by M11. The asymptotic vari-
ance of θ̂g is given by:

2θ̂2
g

{
N − 2θ̂−1

g tr(M22(g)) + θ̂−2
g tr(M2

22(g))
}−1

. (13)

3.2 Approximate Marginal Likelihood Method

Using the derivation of a penalized likelihood solution obtained by Breslow and
Clayton (1993) for the generalized linear mixed model assuming Gaussian ran-
dom effects, Ripatti and Palmgren (2000) presented a parallel approximation
for model (3).
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3.2.1 Penalized Partial Likelihood

Ripatti and Palmgren (2000) approximate the marginal likelihood (6) using
the Laplace approximation. For Gaussian random effects the marginal likeli-
hood (6) can be rewritten as:

LM(β, λ0, b) = c|D(θ)|−N
2

∫
e−κ(b)db,

where

κ(b)=
N∑

i=1




ni∑

j=1

{δij(ln λ0(tij)+xT
ijβ+zT

ijbi)−Λ0(tij) exp(xT
ijβ+zT

ijbi)}

−1

2
bT
i {D(θ)}−1bi

]
. (14)

Let κ′, κ′′ denote the first and the second order partial derivatives of κ with
respect to b. Ignoring a multiplicative constant, the approximation of the log-
arithm of the marginal likelihood takes the form:

lM(β, λ0, b) ≈ −N

2
| ln D(θ)| − 1

2
ln |κ′′(b̃)| − κ(b̃), (15)

with b̃ = b̃(β, θ) the solution to κ′(b̃) = 0.

Ripatti and Palmgren (2000) show that, for fixed θ, the values β̂(θ) and b̂(θ),
which maximize the penalized log-likelihood (14), also maximize the penalized
partial log-likelihood

lPPL(β, λ0, b)=
N∑

i=1




ni∑

j=1

δij



(xT

ijβ+zT
ijbi)−ln

∑

tkl≥tij

exp
(
xT

klβ+zT
klbk

)




− 1

2
bT
i D(θ)−1bi

]
. (16)

Note that the penalized partial log-likelihood is just the sum of the elements
on equations (9) and (10) containing the parameters of interest (β and b). The
estimating equations for β(θ) and b(θ), for a given θ, are of the form:
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N∑

i=1

ni∑

j=1

δij



xij −

xij exp
(
xT

ijβ + zT
ijbi

)

∑
tkl≥tij exp (xT

klβ + zT
klbk)



 = 0, (17)

N∑

i=1




ni∑

j=1

δij



zij −

zij exp
(
xT

ijβ + zT
ijbi

)

∑
tkl≥tij exp (xT

klβ + zT
klbk)



− {D(θ)}−1bi


 = 0, (18)

where the product of a scalar by a vector results in multiplying each elements
of the vector by the scalar.

Ripatti and Palmgren (2000) propose to find β̂(θ) and b̂(θ) by alternating
between solving the equations (17) and (18). Once β̂(θ) and b̂(θ) are computed,
θ is updated by maximizing the approximate profile likelihood derived from
(15):

lM(β, λ0, θ) ≈ −N

2
| ln D(θ)| − 1

2
ln |κ′′(b̂)| − 1

2
b̂T{D(θ)}−1b̂. (19)

Ripatti and Palmgren (2000) propose to use κ′′PPL(b) = (∂2lPPL)/(∂b∂bT ) in-
stead of κ′′(b), given its better empirical performance. An estimating equation
for θ can be obtained after differentiation of (19) and some simplifications. In
the particular case of a diagonal D(θ) the solution of the estimating equation
takes the following simple form:

θ̂g =
b̂T
g b̂g + tr{κ′′PPL(b̂)−1

(g)}
N

. (20)

where tr{κ′′PPL(b̂)−1
(g)} indicates the sum of the elements of the diagonal of

the submatrix of κ′′PPL(b̂)−1 associated with the g component of the random
effects.

3.2.2 Variance Estimation

Estimates of the variance-covariance matrix of the fixed effects can be obtained
using standard Cox regression with the estimated random effects as an offset.
In order to estimate the variance-covariance matrix of θ̂ it is necessary to
differentiate (19) twice with respect to θ and take the expectation with respect
to b. Under the assumed diagonal form of D(θ), the variance for θ̂ is given by
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var(θ̂g)=2 θ̂2
g


N+

1

θ̂2
g

tr
{
κ′′PPL(b̂)−1

(g)κ
′′
PPL(b̂)−1

(g)

}
− 2

θ̂g

tr
{
κ′′PPL(b̂)−1

(g)

}


−1

.(21)

3.3 Bayesian Estimation Approach

Ducrocq and Casella (1996) have proposed a Bayesian approach to estimate
the parameters of the distribution of the random effects. In this approach
the variance components related to the distribution of the random effects
are estimated from their marginal posterior distribution after integrating out
β and b. As this integration can not be performed analytically, the Laplace
approximation is used.

3.3.1 Laplace approximation of the marginal posterior distribution

Applying the Bayes theorem, the joint posterior density for model (3) is pro-
portional to

LB(β, b, θ | y) ∝ L(y | β, b)× π0(b | θ)× π0(β)× π0(θ). (22)

In this expression, the first factor is the partial likelihood (see (9)), while
π0(b | θ) is the joint normal density (see (10)).

Ducrocq and Casella (1996) assume a flat prior for θ and β

π0(θ) ∝ 1 and π0(β) ∝ 1.

Therefore, the log joint posterior density is given by the sum of equations (9)
and (10). It is interesting to note that the term “posterior density” is in fact
used here for convenience, acknowledging that it is obtained using the partial
likelihood and not the full likelihood.

According to the Bayesian principle, estimation of the vector of variance com-
ponents θ of the random effects should be based on its marginal posterior
distribution after integrating out the nuisance parameters β and b:

LP (θ | y) =
∫

LB(β, b, θ | y)dβdb (23)

As this integration cannot be performed analytically, Ducrocq and Casella
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(1996) propose to approximate this marginal posterior density using the Laplace
approximation. More precisely, for any given value θ∗ of θ, they show that

LP (θ∗ | y)≈
∫

exp
{
lB(Ψ̂θ∗ | y, θ∗)− 1

2
(Ψ− Ψ̂θ∗)

T Hθ∗(Ψ− Ψ̂θ∗)
}

βdb, (24)

where Hθ∗ is the negative Hessian matrix of the joint posterior distribution
computed at the maximum Ψ̂θ∗ = (β̂θ∗ , b̂θ∗) of lB(β, b | y, θ = θ∗). Recognizing
under the integral sign of this last equation the kernel of a multivariate normal
density with mean Ψ̂θ∗ and variance Hθ∗ , Ducrocq and Casella derive the
following approximation of the marginal posterior density for any θ∗ of θ:

lP (θ∗ | y) ≈ constant + lB(Ψ̂θ∗ | y, θ∗)− 1

2
ln | Hθ∗ | . (25)

For any fixed value θ∗ of θ, the log joint posterior density is maximized using
a limited memory quasi-Newton method (Liu and Nocedal, 1989) to obtain
point estimates β̂θ∗ and b̂θ∗ of β and b. The negative Hessian matrix Hθ∗ is
then computed at this maximum. Based on Ψ̂θ∗ and Hθ∗ , the approximate log
marginal posterior density at θ∗, obtained from formula (25), is computed.

The method of the simplex (Nelder and Mead, 1965) is then used, in a upper
level of iterations, to select the value of θ which maximizes this approximate
log marginal posterior distribution. The mode of this approximate log marginal
posterior distribution is taken as the point estimate for θ. Note that one could
also use another point estimates, given that we have the whole distribution of
θ.

3.3.2 Variance Estimation

As for the Ripatti and Palmgren (2000) approach, estimates of the variance
of the fixed effects β are easily obtained using standard Cox regression with
the estimated random effects as an offset.

Estimates of the standard error of θ̂, as well as other point estimates of the
distribution of θ̂, can be derived from the knowledge of the full marginal pos-
terior density. To avoid repeated computations of (25), and in particular of
the negative Hessian matrix H for many different values of θ, Ducrocq and
Casella (1996) propose to summarize the general characteristics of the distri-
bution (25) through the computation of its first three moments by numerical
integration based on the Gauss-Hermite quadrature. It is worth mentioning
that, in general, this distribution appears to be substantially skewed. It follows
that computing the standard deviation of the marginal posterior distribution
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of θ and using it as standard error of the parameter can lead to overestimation.
It is important to note that if we are interested to test whether θ > 0, we can
use the whole distribution to compute the confidence interval, without relying
on asymptotic theory, what can be seen as an advantage.

3.4 The EM Algorithm with the Laplace Approximation

Cortiñas and Burzykowski (2004) developed an estimation method based on
the use of the Laplace approximation at the E-step in the EM algorithm.

3.4.1 The E-step

In the E-step the expectation of the logarithm of the likelihood (8), conditional

on the observed data and on the current values β(p), θ(p) and λ
(p)
0 of parameters

β, θ and λ0, respectively, is computed. The expectation, denoted by Q(β, θ, λ0),
can be written as:

Q(β, θ, λ0) = Q1(β, λ0) + Q2(θ), (26)

where

Q1(β, λ0) =
N∑

i=1

ni∑

j=1

[
δij

{
ln λ0(tij) + xT

ijβ + zT
ijE(bi)

}

−Λ0(tij) exp
{
xT

ijβ + ln E(ezT
ijbi)

}]
(27)

and

Q2(θ) = −1

2

d∑

g=1

{
N ln(2πθg) +

N∑

i=1

E(b2
ig)

θg

}
, (28)

with E(.) denoting the expected values. To simplify the notation, the depen-
dence of the expected values in (27) and (28) on the observed data and β(p),

θ(p) and λ
(p)
0 has been suppressed. Note that Q1(β, λ0) is just the conditional

log-likelihood (4), where the random effects bi are replaced by their expecta-
tions. It is important to remark, that the expectations in equation (27) and
(28) will not be available in a closed-form. The conditional expectations that
need to be computed involve integrals of the form
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E{g(bi)} =

∫
g(bi)e

lCi

(
β(p),λ

(p)
0 ,bi

)
+ln f(bi,θ

(p))
dbi

∫
elCi (β(p),λ

(p)
0 ,bi)+ln f(bi,θ(p))dbi

. (29)

Cortiñas and Burzykowski (2004) propose to use the Laplace formula to
compute these expectations. Using the formula results in the approximations

E{g(bi)} ≈ g(b̃i) , (30)

where b̃i is an isolated global minimum of

k(bi) = − 1

ni

{
lCi

(
β(p), λ

(p)
0 , bi

)
+ ln f(bi, θ

(p))
}

. (31)

The set of initial values for β and λ0 are obtained using the Cox regression
without random effects. The initial values for θ can be specified by taking
D(θ) equal to, e.g., the identity matrix.

3.4.2 The M-step

In the M-step new estimates β(p+1) and θ(p+1) are found by maximizing the
functions Q1 and Q2, respectively. To estimate β the profile likelihood ap-
proach is used. Assuming no ties, in order to keep notation simple, the value
of the baseline hazard which maximizes Q1 is

λ(p+1)
m =

1
∑

tkl≥tm exp{xT
klβ

(p) + ezT
kl

bk} , (32)

where λm = λ0(tm) and tm (m = 1, . . . , r) are the distinct uncensored failure
times. Substituting (32) into Q1 gives the following profile-likelihood for β:

Q′
1(β) =

N∑

i=1

ni∑

j=1

δij


xT

ijβ − ln
∑

tkl≥tij

exp
{
xT

klβ + ln E(ezT
klbk)

}

 . (33)

The form of (33) resembles that of the partial log-likelihood for the Cox pro-

portional hazards model with offsets ln E(ezT
ijbi). New value β(p+1) of β is ob-

tained by maximizing Q′
1 using standard software for the Cox model, as in the

method proposed by Ripatti and Palmgren (2000).
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Given that the density of the random effects bi belongs to the exponential
family, the estimation of D(θ) is generally straightforward. Hence, maximizing
Q2 leads to the estimator

D̂(θ) =
1

N

N∑

i=1

E
(
bib

T
i

)
. (34)

3.4.3 Variance Estimation

The variance-covariance matrix of the solution (β̂, λ̂0, θ̂) obtained from the
EM algorithm, can be estimated using the inverse of the observed information
matrix computed from the formula proposed by Louis (1982):

I(β, λ0, θ) =
[
E

{
−lA

′′
(β, λ0, θ)

}
− E

{
lA
′
(β, λ0, θ)l

A′(β, λ0, θ)
T
}]

, (35)

where lA
′

and lA
′′

are the first and the second derivatives with respect to
(β, λ0, θ) of the logarithm of the “augmented” likelihood (8).

In order to compute standard error for the fixed parameters and the variance
component of the random effects, it would be necessary to invert I(β, λ0, θ).
The dimension of the matrix I(β, λ0, θ) can be very large, since it depends on
λ0 and hence on the number of distinct uncensored failure times. Cortiñas and
Burzykowski (2004) proposed to estimate the standard error of the parameter
of interest by inverting only the relevant blocks of the matrix, corresponding
to β and θ.

4 Simulation Study

A simulation study was carried out to compare the performance of the meth-
ods of McGilchrist and Aisbett (1991), Ducrocq and Casella (1996), Ripatti
and Palmgren (2000) and Cortiñas and Burzykowski (2004). The data were
generated using the following proportional hazards model:

λ(tij|β, bi0, bi1) = λ0(tij)e
bi0+xT

ij(β+bi1) , (36)

with


 bi0

bi1


 ∼ N2






 0

0


 ,


 σ2

0 0

σ2
1






 . (37)
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Model (36) corresponds to the setting of a multi-center clinical trial, in which
heterogeneity appears both in the center-specific baseline hazards, as well as
associated to the covariate. Parameters of the model were chosen to mimic data
available in a real bladder cancer clinical trial database (Royston, Parmar and
Sylvester, 2004). In this simulation study we considered the same distribution
of patients over centers as in the real dataset, namely 2323 patients accrued
by 37 centers. Distribution of patients over centers was as follows: 21, 23, 23,
25, 26, 30, 30, 32, 34, 34, 34, 35, 35, 35, 37, 39, 41, 42, 42, 43, 52, 52, 53, 56,
61, 63, 66, 72, 85, 86, 91, 104, 116, 120, 155, 183, 247.

Two simulation settings were considered. The first simulation setting assumed
moderately censored data (around 40%), while the second one assumed highly
censored data (around 60%). In both settings we simulated data using different
combinations of values of σ2

0 and σ2
1, namely 0.04/0.08, 0.08/0.04, 0.08/0.08

and 0.4/0.8. A constant baseline hazard of 0.077 was used. In order to have
a better idea of the interpretation of the values of σ2

0, σ2
1 and λ0, one might

consider the spread of the median time-to-event from center to center. In our
simulation bi0 and bi1 are normally distributed, thus the resulting distribution
function for the median time to event is log-normal with parameters ln(ln 2)−
ln λ0 − βxij and σ2

0 + σ2
1x

2
ij. For patients with xij = 0, the distribution does

not depend neither on β, nor on σ2
1. For such patients, Table 1 presents, for

each particular value of σ2
0, the interval containing the median time-to-event

of 90% of the centers.

Table 1
Interpretation of σ2

0.

σ2
0 Median time-to-event

for patients with xij = 0

0.04 (6.5 yrs - 12.5 yrs)

0.08 (5.7 yrs - 14.4 yrs)

0.4 (3.2 yrs - 25.5 yrs)

In the next sections we describe details of both settings.

4.1 Moderate Censoring Setting

In this setting we consider a covariate xij, which divides the population in two
groups: 30% of the patients have xij = 0 and 70% have xij = 1. The covariate
can be seen as corresponding to, e.g., a prognostic index. The parameter β was
set equal to 0.7, which corresponds to the estimated value for the real dataset.
Given β and λ0, we can compute the median time-to-event for a model without
the random effects, which equal 9 in the group defined by xij = 0 and 4.5 in
the group defined by xij = 1. Table 2 presents, for each particular value of σ2

0
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and σ2
1, the intervals containing the hazard ratio of the effect of xij for 90%

of the centers. Also, a corresponding interval for the median time-to-event in
the group of patients with xij = 1 is given.

For each parameter setting, 250 datasets were generated in the following way.
First, N = 37 random effects for the overall center effect and N = 37 ran-
dom effects for the center-specific covariate effect were generated according
to (37). We considered an accrual period (AP ) of 1065 days (about 3 years)
and a further follow up period (FP ) of 2440 days (about 6.7 yrs). The actual
observation for a patient was the minimum of the time to event and the time
at risk. The former was generated using an exponential random variable with
parameter λ(tij|βi, bi0, bi1) given by (36). The time at risk for a patient who
entered in the study as k-th subject at time kAP

2323
was defined as

AP (2323− k)

2323
+ FP.

Table 2
Interpretation of σ2

1.

σ2
0 σ2

1 Hazard ratio Median time-to-event

for patients with xij = 1

0.04 0.08 (1.26 - 3.21) (2.6 yrs - 7.9 yrs)

0.08 0.04 (1.45 - 2.80) (2.6 yrs - 7.9 yrs)

0.08 0.08 (1.26 - 3.21) (2.4 yrs - 8.7 yrs)

0.4 0.8 (0.46 - 8.77 ) (0.8 yrs - 27.1 yrs)

These particular choices of the parameters resulted in approximately 60% of
the individuals experiencing the event of interest.

4.2 Heavy Censoring Setting

In this setting, it was assumed that xij represented the treatment assignment.
Hence, an equal split of patients in the two treatment groups (xij = 0 and xij =
1) was used. Assuming that the clinical trial takes place in good prognosis
bladder cancer patients, and that the experimental treatment leads to 20%
increase in the median disease free interval, i.e., from 9 to 10.8 years, we
used a baseline hazard of 0.077 as in the “moderate censoring” setting, with
β equal to −0.182. Given the values of β, λ0, σ2

0 and σ2
1, we can compute

intervals containing the hazard ratio of the effect of the covariate and median
time-to-event for 90 % of the centers (Table 3).

For each parameter setting, 250 datasets were generated. In this setting we
considered an accrual period of 621 days (about 1.7 yrs) and a further follow
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Table 3
Interpretation of σ2

1.

σ2
0 σ2

1 Hazard ratio Median time-to-event

for patients with xij = 1

0.04 0.08 (0.52 - 1.33) (6.1 yrs - 19.1 yrs)

0.08 0.04 (0.60 - 1.16) (6.1 yrs - 19.1 yrs)

0.08 0.08 (0.52 - 1.33) (5.6 yrs - 20.8 yrs)

0.4 0.8 (0.19 - 3.63) (1.8 yrs - 65.5 yrs)

up period of 2192 days (about 6 years). The generating mechanism for the
data was similar to the one used in “moderate censoring” setting. As a result
of the choices of the parameters, approximately 40% of the individuals in the
datasets experienced the event of interest.

McGilchrist and Aisbett’s approach was implemented using SAS-IML v8.2.
The iterative procedure was stopped if the maximum of the relative difference
between the fixed effects and variance estimates for two consecutive itera-
tions was smaller than 10−3. The method proposed by Ducrocq and Casella
(1996) was implemented with The Survival Kit (Ducrocq and Sölkner , 1994;
Ducrocq and Sölkner, 1998)( www.boku.ac.at/nuwi/software/softskit.htm), a
package of Fortran programs developed in the field of animal genetics to esti-
mate survival models with random effects. The joint estimation of two variance
components was not implemented in the original version. Therefore, we used
a modified version proposed by Legrand et al. (2004). In this case, the con-
vergence criterion required that the standardized norm of the vector of first
derivatives of lB(b, b|y, θ = θ∗) at its maximum had to be less than 10−8.
The EM algorithm proposed by Cortiñas and Burzykowski (2004) was imple-
mented using SAS-IML v8.2. The EM algorithm stopped when the maximum
of the absolute changes for the fixed effects, the variance estimates and the
loglikelihood was smaller than 10−5. The method proposed by Ripatti and
Palmgren (2000) was applied using the S+ functions developed by Therneau
(2003). In this case the convergence criterion was the relative change in log
likelihood smaller than 10−4.

5 Results of the Simulations

5.1 Moderate Censoring Setting

Table 4 presents the results of the simulation for the moderate censoring set-
ting. In this setting, none of the methods used in the simulations experienced
convergence difficulties. The parameter β was in general estimated well by all
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the methods, with a relative absolute bias less then 4% in any of the con-
sidered cases. The bias increased with increasing σ2

0 and σ2
1. The bias of the

estimates obtained by the Ripatti and Palmgren (2000) approach, in the case
of σ2

0 = 0.04 and σ2
1 = 0.08, was higher than for the other methods. On the

other hand, the approach of Ducrocq and Casella (1996) produced the largest
bias when σ2

0 = 0.4 and σ2
1 = 0.8. The variability of estimates of β, measured

by the empirical standard error, was similar for all the methods compared.
In general, the Ripatti and Palmgren approach produced fixed-effects esti-
mates with the largest empirical standard error. It is important to note, that
the model-based estimates produced by Ducrocq and Casella (1996) approach
were closer to the empirical standard error than for the other methods.

Table 4
Moderate censoring setting. The mean estimates for 250 simulated datasets for the
4 different methods. In parentheses: the mean model-based and empirical (first and
second number) standard error.

Method β̂ σ̂2
0 σ̂2

1

σ2
0 = 0.04 and σ2

1 = 0.08

McGilchrist 0.705(0.074;0.073) 0.040(0.169;0.023) 0.078(0.396;0.034)

Ripatti 0.715(0.119;0.094) 0.038(0.023;0.024) 0.079(0.026;0.039)

EM-Laplace 0.702(0.055;0.079) 0.044(0.021;0.023) 0.083(0.030;0.031)

Ducrocq 0.703(0.081;0.078) 0.042(0.033;0.025) 0.079(0.047;0.039)

σ2
0 = 0.08 and σ2

1 = 0.04

McGilchrist 0.701(0.067;0.068) 0.079(0.444;0.027) 0.043(0.161;0.028)

Ripatti 0.702(0.083;0.095) 0.076(0.025;0.030) 0.039(0.021;0.030)

EM-Laplace 0.693(0.055;0.071) 0.075(0.022;0.028) 0.055(0.024;0.026)

Ducrocq 0.713(0.073;0.079) 0.085(0.041;0.039) 0.039(0.039;0.031)

σ2
0 = 0.08 and σ2

1 = 0.08

McGilchrist 0.703(0.074;0.079) 0.084(0.459;0.032) 0.075(0.343;0.038)

Ripatti 0.702(0.082;0.085) 0.077(0.025;0.036) 0.077(0.026;0.042)

EM-Laplace 0.696(0.055;0.085) 0.076(0.028;0.031) 0.080(0.029;0.032)

Ducrocq 0.706(0.081;0.082) 0.084(0.046;0.039) 0.082(0.053;0.042)

σ2
0 = 0.4 and σ2

1 = 0.8

McGilchrist 0.689(0.160;0.150) 0.405(2.760;0.121) 0.797(5.808;0.213)

Ripatti 0.691(0.122;0.165) 0.383(0.101;0.121) 0.770(0.195;0.213)

EM-Laplace 0.698(0.156;0.166) 0.375(0.083;0.092) 0.765(0.189;0.219)

Ducrocq 0.672(0.161;0.167) 0.402(0.162;0.140) 0.752(0.218;0.194)

The estimates σ2
0 and σ2

1 for all the methods were on average comparable. The
version of the EM algorithm proposed by Cortiñas and Burzykowski (2004)
yielded estimates with, in general, the smallest empirical variability, while
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Ducrocq and Casella’s approach gave estimates with the largest variability.
The model-based standard errors for the approach of McGilchrist and Aisbett
severely overestimated the true variability. The Ducrocq and Casella approach
tended to overestimate the empirical variability, while the Ripatti and Palm-
gren method and the version of the EM algorithm proposed by Cortiñas and
Burzykowski (2004) tended to underestimate it. The model-based standard
errors produced by the version of the EM algorithm proposed by Cortiñas and
Burzykowski (2004) were in most of the cases closer to the empirical standard
error than for the other methods. Table 5 shows the mean squared error for
each parameter in each of the settings studied. In the setting with small vari-
ances for the random effects, the mean squared errors (MSE) are comparable.
For the case of σ2

0 = 0.4 and σ2
1 = 0.8, larger values of the mean squared errors

were found, but no clear pattern could be seen that would indicate that one
method is preferable to all others in all circumstances.

Table 5
Mean Squared Error for the parameters for the 4 different methods (×10−3).

Moderate censoring setting Heavy censoring setting

Method β̂ σ̂2
0 σ̂2

1 β̂ σ̂2
0 σ̂2

1

σ2
0 = 0.04 and σ2

1 = 0.08

McGilchrist 5.35 0.53 1.16 6.97 0.53 2.81

Ripatti 9.06 0.58 1.52 17.16 0.50 2.12

EM-Laplace 6.25 0.55 0.97 9.03 0.49 0.90

Ducrocq 6.09 0.63 1.52 6.95 0.58 2.30

σ2
0 = 0.08 and σ2

1 = 0.04

McGilchrist 4.63 0.73 0.79 7.06 1.16 1.45

Ripatti 9.03 0.92 0.90 26.28 0.84 1.30

EM-Laplace 5.09 0.81 0.90 5.97 0.63 0.76

Ducrocq 6.41 1.55 0.96 6.21 1.23 1.45

σ2
0 = 0.08 and σ2

1 = 0.08

McGilchrist 6.25 1.04 1.47 7.57 1.23 2.11

Ripatti 7.23 1.31 1.77 7.97 1.03 2.61

EM-Laplace 7.24 0.98 1.02 8.48 0.97 0.97

Ducrocq 6.76 1.54 1.77 7.06 1.17 2.75

σ2
0 = 0.4 and σ2

1 = 0.8

McGilchrist 22.62 14.67 45.38 32.83 13.98 64.44

Ripatti 27.31 14.93 46.27 26.28 13.99 64.73

EM-Laplace 27.56 9.09 49.19 25.07 9.06 41.16

Ducrocq 28.67 19.60 39.94 24.82 14.68 17.73
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5.2 Heavy Censoring Setting

Table 6 shows the results of the simulation for the heavy censoring setting.
In this setting, Ripatti and Palmgren’s approach and the EM algorithm with
the Laplace approximation experienced convergence problems (up to 14 and
17 % respectively). The mean estimated values reported here were based only
on the cases when convergence was reached.

Table 6
Heavy censoring setting. The mean estimates for 250 simulated datasets for the

4 different methods. In parentheses: the mean model-based and empirical (first and
second number) standard error.

Method β̂ σ̂2
0 σ̂2

1 Convergence(%)

σ2
0 = 0.04 and σ2

1 = 0.08

McGilchrist -0.173(0.085;0.083) 0.039(0.149;0.023) 0.081(0.309;0.053) 100

Ripatti -0.166(0.092;0.130) 0.044(0.021;0.022) 0.080(0.036;0.046) 86.4

EM-Laplace -0.168(0.067;0.094) 0.043(0.015;0.022) 0.079(0.026;0.030) 83.2

Ducrocq -0.167(0.084;0.082) 0.042(0.031;0.024) 0.080(0.031;0.048) 100

σ2
0 = 0.08 and σ2

1 = 0.04

McGilchrist -0.181(0.077;0.084) 0.080(0.411;0.034) 0.043(0.124;0.038) 100

Ripatti -0.176(0.100;0.162) 0.079(0.024;0.029) 0.039(0.034;0.036) 94.4

EM-Laplace -0.176(0.067;0.077) 0.078(0.022;0.026) 0.056(0.015;0.020) 88.6

Ducrocq -0.171(0.077;0.078) 0.082(0.042;0.035) 0.042(0.056;0.038) 100

σ2
0 = 0.08 and σ2

1 = 0.08

McGilchrist -0.156(0.083;0.083) 0.081(0.405;0.035) 0.071(0.243;0.045) 100

Ripatti -0.167(0.086;0.088) 0.081(0.024;0.032) 0.082(0.037;0.051) 97.2

EM-Laplace -0.168(0.066;0.091) 0.082(0.028;0.031) 0.082(0.029;0.031) 94.8

Ducrocq -0.169(0.086;0.834) 0.083(0.044;0.034) 0.087(0.072;0.052) 100

σ2
0 = 0.4 and σ2

1 = 0.8

McGilchrist -0.139(0.161;0.176) 0.383(2.615;0.117) 0.730(4.809;0.244) 100

Ripatti -0.156(0.143;0.160) 0.392(0.078;0.118) 0.765(0.180;0.252) 100

EM-Laplace -0.155(0.129;0.156) 0.385(0.085;0.094) 0.766(0.165;0.200) 100

Ducrocq -0.160(0.165;0.156) 0.406(0.151;0.121) 0.767(0.227;0.129) 100

Fixed effects β were in general well estimated for σ2
0 = 0.04 and σ2

1 = 0.08
and for σ2

0 = 0.08 and σ2
1 = 0.04. For these cases, the relative bias was smaller

than 9 %. The picture was somewhat different when the variances increased.
The relative bias for the fixed effects reached 24% (McGilchrist and Aisbett’s
approach), but in general it was smaller than 15%. Similar to the previous
“moderate censoring” setting, the estimates for the Ripatti and Palmgren
approach showed, in general, the largest empirical variability, while those for
the Ducrocq and Casella method produced, in general, estimates with the
smallest variability. Note also, that the model-based standard error for the
approach proposed by the Ducrocq and Casella (1996) was the closest to the
empirical value.

The estimates of variances of the random effects, similarly to the previous
setting, were comparable for all the methods. The McGilchrist and Aisbett
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method produced heavily biased model-based standard errors. The Ripatti
and Palmgren approach and the version of the EM algorithm proposed by
Cortiñas and Burzykowski (2004) underestimated the empirical variability,
while the method of Ducrocq and Casella overestimated it. The version of the
EM algorithm proposed by Cortiñas and Burzykowski (2004), in most of the
cases, yielded model-based standard errors that were closer to the empirical
standard error than for the other methods.

In terms of mean squared errors, similar conclusion to the one obtained in the
“moderate censoring” setting can be drawn. Note, that when one of the vari-
ance of the random effects was considered equal to 0.04, the method proposed
by Ripatti and Palmgren (2000) produced higher values of MSE for the fixed
effect than the rest of the estimation methods. In general, no clear pattern
can be observed which allows to select the best estimation procedure.

6 Concluding Remarks

Proportional hazards models with multivariate random effects offer several ad-
vantages over univariate shared frailty models (Xue and Brookmeyer, 1996),
especially when survival times from the same cluster are negatively associated.
The main stumbling block in the use of the former models are estimation meth-
ods. In this paper the performance of four estimation methods was compared.

The results clearly show problems with the computation of the standard error
of the estimated variance components for McGilchrist and Aisbett’s approach.
In terms of the point estimates, the four methods were in general comparable.
However, in the heavy censoring setting, when the variance of the random ef-
fects was large (0.4 and 0.8), McGilchrist and Aisbett’s approach showed larger
bias. It is also important to mention that in that setting Ripatti and Palm-
gren’s approach, as well as the method proposed by Cortiñas and Burzykowski
(2004), experienced convergence problems. The non-convergence rate for the
method proposed by Cortiñas and Burzykowski (2004) was somewhat higher.
Ducrocq and Casella’s approach produced conservative standard errors of the
estimated variance component, while the proposed version of the EM algo-
rithm by Cortiñas and Burzykowski (2004) and the Ripatti and Palmgren
method tended to underestimate the true standard error. It can also be noted
that in general the distribution of θ appear to be substantially skewed. For this
reason, it is worth noting that Ducrocq and Casella’s approach can provide
the whole distribution of the parameter θ, which can be usefull for testing
purposes.

Taking into account the results obtained in the simulations study, we can con-
clude that the McGilchrist and Aisbett approach suffers from serious problems
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in the estimation of the standard errors of the variance components, and for
this reason it should rather not be used. The other three methods produce
comparable point estimates. The method proposed by Ducrocq and Casella
(1996) yields conservative estimates of the standard errors of the variance com-
ponents and does not suffer from convergence problems, what may be seen as
an advantage. On the other hand the estimates obtained by the modified
version of the EM algorithm proposed by Cortiñas and Burzykowski (2004)
seem to express the smallest empirical variability. Due to these differences,
more investigation is needed before a definitive choice between the methods of
Ducrocq and Casella (1996), Ripatti and Palmgren (2000) and Cortiñas and
Burzykowski (2004) can be made.

Acknowledgment

The authors gratefully acknowledge support from FWO-Vlaanderen Research
Project “Sensitivity Analysis for Incomplete and Coarse Data” and Belgian
IUAP/PAI network “Statistical Techniques and Modeling for Complex Sub-
stantive Questions with Complex Data”.

References

Breslow, N.E. and Clayton, D.G., 1993. Approximate inference in generalized
linear models. Journal of the American Statistical Association 88, 9–25.

Clayton, D.G.,1978. A model for association in bivariate life tables and its
application in epidemiological studies of familial tendency in chronic disease
incidence. Biometrika 65, 141–151.
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