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Summary

Proportional hazard models with multivariate random effects (frailties) acting multiplicatively

on the baseline hazard have recently become a topic of an intensive research. One of the main

practical problems related to the models is the estimation of parameters. To this aim, several

approaches based on the EM algorithm have been proposed. The major difference between

these approaches is the method of the computation of conditional expectations required at the

E-step. In this paper an alternative implementation of the EM algorithm is proposed, in which

the expected values are computed with the use of the Laplace approximation. The method is

computationally less demanding than the approaches developed previously. Its performance is

assessed based on a simulation study and compared to a non-EM based estimation approach

proposed by Ripatti and Palmgren (2000).

Key words: Multivariate failure-time data, frailty model, EM algorithm, Laplace approximation.

∗ Corresponding author: e-mail: jose.cortinas@luc.ac.be, phone: +0032 11 268 215, fax: +0032 11 268 199.

Copyright line will be provided by the publisher



4 J. Cortiñas Abrahantes and T. Burzykowski: A Version of the EM Algorithm

1 Introduction

Proportional hazard models with random effects acting multiplicatively on the baseline hazard,

often called frailty models, have been focus of the research aimed at methods of analyzing mul-

tivariate or clustered failure-time data for a long time. Initially, the research concentrated on

univariate shared frailty models, with a univariate random effect shared by all the observations

from a particular cluster. These models have several limitations, e.g., they generally impose a pos-

itive association between the failure-times coming from the same cluster (Xue and Brookmeyer,

1996). For this reason, multivariate random-effects models have recently started to attract some

attention. One of the main practical problems related to the latter is the estimation of the parame-

ters. Several approaches have been proposed to deal with the problem. McGilchrist and Aisbett

(1991) and McGilchrist (1993, 1994), extending the ‘best linear unbiased prediction’ argument

for normal linear mixed-effects model, used the penalized partial likelihood approach to estimate

the fixed effects and the restricted maximum likelihood to estimate the random effects. Xue and

Brookmeyer (1996) formulated a bivariate log-normal random-effects model fitted using the EM

algorithm, with numerical integration used at the E-step. Xue (1998) developed an alternative

fitting method for the same model using estimating equations derived from a Poisson regression

formulation, while Xue and Ding (1999) used a Gibbs sampling approach. Ripatti and Palmgren

(2000) considered a more general form of the proportional hazard model with random effects and

proposed estimation based on a penalized partial likelihood developed by applying the Laplace

approximation to the marginal likelihood function. Vaida and Xu (2000), on the other hand,

suggested a Monte Carlo EM (MCEM) algorithm, with Monte Carlo Markov Chain (MCMC)

sampling used at the E-step. Ripatti, Larsen, and Palmgren (2002), following the ideas by Vaida

and Xu (2000) introduced a MCEM algorithm, where the conditional expectations at the E-step

were computed by drawing from a posterior distribution of the random effects using the rejection

sampling. They also provided a stopping rule based on absolute convergence of the algorithm.
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The purpose of this paper is to investigate an alternative implementation of the EM algorithm

for the proportional hazard models with random effects. It is based on the use of the Laplace

approximation at the E-step. The main advantage of the proposed method is that it is numerically

simpler than, e.g., the use of MCMC methods or numerical integration.

The paper is organized as follows. Section 2 briefly recalls the proportional hazard model with

random effects. In Section 3 the main features of the EM algorithm are summarized. In Section 4

the use of the Laplace approximation at the E-step is described. In Section 5 we briefly describe

the approach proposed by Ripatti and Palmgren (2000). Section 6 presents results of a simulation

study in which the performance of the proposed method is evaluated and compared with the

approach proposed by Ripatti and Palmgren (2000). Both methods are also applied to a case

study and the results are discussed in Section 7. The discussion, presented in Section 8, concludes

the paper.

2 The Proportional Hazard Model with Random Effects

We will consider clustered failure-time data with N clusters. The failure-time variable corre-

sponding to subject j (j = 1, . . . , ni) from cluster i (i = 1, . . . , N) will be denoted by Yij . It is

assumed that observations of Yij can be right-censored. Thus, for subject j in cluster i we observe

Tij = min(Cij, Yij), where Cij is a random censoring time independent of Yij . Additionally, a

censoring indicator δij is observed, with δij equal to 1 if Tij = Yij , and 0 if Tij = Cij .

In the paper the following mixed-effects proportional hazard model for Tij will be considered:

λ(tij jβi, bi) = λ0(tij) exp(x
T
ijβi + zTijbi), (1)

where λ0(t) is the baseline hazard function, βi is a vector of cluster-specific fixed-effects corre-

sponding to a vector of covariates xij, and bi is a vector of random effects associated with a vector

of covariates zij . The random effects bi are assumed to be randomly distributed with mean 0 and

variance-covariance matrix D = D(θ), which depends on a d-dimensional vector of parameters
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6 J. Cortiñas Abrahantes and T. Burzykowski: A Version of the EM Algorithm

θ = (θ1, θ2, ..., θd). The density function of the bi which, except for θ, is assumed to be known,

will be denoted by f(bi). At this moment we do not need to specify the nature of the distribution

in more detail. To simplify formulas, we will also use the baseline cumulative hazard defined as

Λ0(t) =

∫ t

0

λ0(u)du.

Model (1) can be seen as a linear mixed-effects model on the log-hazard scale. The estimation of the

parameters βi and θ from the observed data on Tij is our main interest. Assuming the conditional

independence of the observations within a cluster given bi, one might write the (conditional)

log-likelihood for the observed data as

lC(β, λ0, b) =
N∑

i=1

lCi (βi, λ0, bi), (2)

where

lCi (βi, λ0, bi) =

ni∑

j=1

[
δij
{
lnλ0(tij) + xTijβi + zTijbi

}
¡ Λ0(tij) exp

(
xTijβi + zTijbi

)]
(3)

is the (conditional) log-likelihood for the observed data in the ith cluster, and β and b denote the

vectors resulting from “stacking” vectors βi and bi for all clusters, respectively. The (marginal)

likelihood of the observed data for all clusters can then be expressed as

LM (β, θ, λ0) =

N∏

i=1

∫
LAi (βi, θ, λ0, bi)dbi, (4)

where

LAi (βi, θ, λ0, bi) = f(bi)e
lCi (βi,λ0,bi). (5)

Function (5) can be regarded as the likelihood of the “augmented” data for cluster i, treating bi

as additional observations. Consequently,

LA(β, θ, λ0, b) =

N∏

i=1

LAi (βi, θ, λ0, bi), (6)

is the likelihood of the “augmented” data for all clusters.
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One might consider using the likelihood function (4) in the inference on β and θ. There are two

major problems with using it for this purpose, however. First, it depends on the baseline hazard

function λ0. Second, the integral in (4) will usually be multi-dimensional, unless a very simple

model is considered, and in general will not be available in a closed form. For these reasons, the

use of the EM algorithm to estimate the parameters of model (1) has been proposed (Klein, 1992;

Xue and Brookmeyer, 1996; Vaida and Xu, 2000). In the following section the basic features of

the EM algorithm are reviewed.

3 The EM Algorithm

The EM algorithm consists of two steps: the E-step and the M-step. Starting from initial values of

parameters, the algorithm iterates between the two steps until convergence is reached (Dempster,

Laird and Rubin 1977). It is important to remark that, under regularity conditions, the algorithm

is guaranteed to converge to a stationary point (Dempster, Laird and Rubin 1977; Wu 1983; Vaida

2004). The E-step and the M-step of the algorithm to estimate the parameters of model (1) will

be reviewed in more detail now.

3.1 The E-step

In the E-step the expectation of the logarithm of the augmented-data likelihood (6), conditional

on the observed data and on the current values β̃, θ̃ and λ̃0 of parameters β, θ and λ0, respectively,

is computed. The expectation will be denoted by Q(β, θ, λ0). It turns out that it can be expressed

as (Klein, 1992; Vaida and Xu, 2000)

Q(β, λ0, θ) = Q1(β, λ0) +Q2(θ), (7)

where

Q1(β, λ0) =

N∑

i=1

ni∑

j=1

[
δij
{
lnλ0(tij) + xTijβi + zTijE(bi)

}
¡ Λ0(tij) exp

{
xTijβi + lnE(ez

T
ijbi)
}]
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8 J. Cortiñas Abrahantes and T. Burzykowski: A Version of the EM Algorithm

(8)

and

Q2(θ) =

N∑

i=1

E[ln f(bi)], (9)

with E(.) denoting conditional expected values given the observed values of the Tij and δij . To

simplify the notation, the dependence of the expected values in (8) and (9) on the observed data

and β̃, θ̃ and λ̃0 has been suppressed.

The set of initial values for β and λ0 can be obtained using the Cox regression without random

effects. The initial values for θ can be specified by taking D(θ) equal to, e.g., the identity matrix.

3.2 The M-step

In the M-step new estimates β̃ and θ̃ are found by maximizing the functions Q1 and Q2, respec-

tively. The estimation of β is complicated by the dependence of Q1 on λ0. Via the profile-likelihood

arguments for λ0 (Johansen, 1993; Vaida and Xu, 2000) one can arrive at the following estimating

function for βi:

Q′1(β) =

N∑

i=1

ni∑

j=1

δij


xTijβi ¡ ln

∑

tkl≥tij

exp
{
xTklβk + lnE(ez

T
klbk)

}

 . (10)

The form of (10) resembles that of the partial log-likelihood for the Cox proportional hazard

model with offsets lnE(ez
T
ijbi). Estimates of parameters βi, can thus be obtained by maximizing

Q′1 using standard software for the Cox model.

If the density f of the random effects bi belongs to an exponential family, then Q2 is the log-

likelihood of a sample of N observations with sufficient statistics replaced by their conditional

expectations. In such a situation, the estimation of θ is generally straightforward and can be

achieved by maximizing Q2. For instance, consider the case where the random effects are multi-

variate normal with mean 0 and an unconstrained variance-covariance matrixD. Then maximizing
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Q2 would lead to the estimator

D̂ =
1

N

N∑

i=1

E
(
bib

T
i

)
, (11)

where, again, the expectation is conditional on the observed data and β̃, θ̃ and λ̃0.

3.3 Variance estimation for the EM

The variance-covariance matrix of the solution (β̂, λ̂0, θ̂) obtained from the EM algorithm, can

be estimated using the inverse of an observed information matrix computed from the formula

proposed by Louis (1982):

I(β, λ0, θ) =
[
E
{
¡lA

′′

(β, λ0, θ)
}
¡ E

{
lA

′

(β, λ0, θ)l
A′(β, λ0, θ)

T
}]

, (12)

where lA
′

and lA
′′

are the first and the second derivatives with respect to (β, λ0, θ) of the logarithm

of the “augmented” likelihood (6). More explicitly, the components of lA
′

are

lA
′

=




I ′β

I ′λ

I ′θ



, I ′β =




I ′β1

I ′β2
...

I ′βN




, I ′λ =




I ′λ1

I ′λ2
...

I ′λr




and I ′θ =




I ′θ1

I ′θ2
...

I ′θd




,

where

I ′βi =
∂ lnLA

∂βi
=

ni∑

j=1

xij
{
δij ¡ Λ0(tij) exp

(
xTijβi + zTijbi

)}
, (13)

I ′λm =
∂ lnLA

∂λm
=

1

λm
¡
∑

tkl≥tm

exp
(
xTklβk + zTklbk

)
, (14)

I ′θk =
∂ lnLA

∂θk
=

∂ ln f(bi)

∂θk
, (15)

with λm = λ0(tm), where tm (m = 1, . . . , r) are the distinct uncensored failure times.

The components of the second derivative lA
′′

are:

lA
′′

=




I ′′ββ I ′′βλ I ′′βθ

I ′′βλ I ′′λλ I ′′λθ

I ′′βθ I ′′λθ I ′′θθ



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where

I ′′ββ =




I ′′β1β1 I ′′β1β2 ... I ′′β1βN

I ′′β1β2 I ′′β2β2 ... I ′′β2βN
...

...
. . .

...

I ′′β1βN I ′′β2βN ... I ′′βNβN




, I ′′λλ =




I ′′λ1λ1 I ′′λ1λ2 ... I ′′λ1λr

I ′′λ1λ2 I ′′λ2λ2 ... I ′′λ2λr
...

...
. . .

...

I ′′λ1λr I ′′λ2λr ... I ′′λrλr




,

I ′′βλ =




I ′′β1λ1 I ′′β1λ2 ... I ′′β1λr

I ′′β2λ1 I ′′β2λ2 ... I ′′β2λr
...

...
. . .

...

I ′′βNλ1 I ′′βNλ2 ... I ′′βNλr




, I ′′θθ =




I ′′θ1θ1 I ′′θ1θ2 ... I ′′θ1θd

I ′′θ1θ2 I ′′θ2θ2 ... I ′′θ2θd
...

...
. . .

...

I ′′θ1θd I ′′θ2θd ... I ′′θdθd ,




with

I ′′βiβi′ =
∂2 lnLA

∂βi∂βi′
=


¡

ni∑

j=1

xijx
T
i′jΛ0(tij) exp

(
xTijβi + zTijbi

)

1(i = i′), (16)

I ′′λmλm′
=

∂2 lnLA

∂λmλm′

=
1

λ2m
1(m = m′), (17)

I ′′βkλm =
∂2l

∂βk∂λm
= ¡

∑

tkl≥tm

xkl exp[x
T
klβk + zTklbk)], (18)

I ′′θkθk′ =
∂2 lnLA

∂θk∂θk′
=

∂2 ln f(bi)

∂θk∂θk′
, (19)

with 1(B) being the indicator function of event B.

The other off diagonal elements (I ′′βθ, I
′′
λθ) of l

A′′ are zero (Vaida and Xu 2000).

4 Issues in the Implementation of the EM Algorithm

The use of the EM algorithm, as described above, is complicated by the need to compute the

conditional expected values in (8) and (9) at the E-step. Usually, they will not be available in

a closed-form. To compute the expected values, Xue and Brookmeyer (1996) proposed to use

numerical integration. This solution is feasible, however, only for low-dimensional random vectors

bi. Vaida and Xu (2000) and Ripatti et al. (2002) proposed to use MCMC methods. This approach
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is numerically intensive and introduces issues related to the assessment of the convergence of the

MCMC algorithm.

An alternative solution, not yet considered in the literature, is to use the Laplace approximation.

This is the option we will discuss in more detail now.

4.1 The Laplace approximation

The approximation of multidimensional integrals can be obtained in many ways (see, e.g., Murray

1984; Bleistein and Handelsman 1986; Wong 1989). One of the most common techniques is the

Laplace method (Evans and Swartz 2000). In the multivariate context the Laplace theorem states

that, under some weak conditions, the following asymptotic equivalence holds:

∫

A

h(t)e−φk(t) du ¼
φ→+∞

h(t̂)e−φk(t̂)

√
(2π)d

jφK(t̂)j
, (20)

where A is an open subset of IRd, φ > 0 is a real-valued parameter, K(t) is the matrix of the

second derivatives of k(t), and t̂ is an isolated global minimum of k(t) over A.

4.2 EM and the Laplace approximation

As it was mentioned in section 3.1, at the E-step, we need conditional expectations of functions

of the random effects. The conditional expectations involve integrals of the form

Efg(bi)g =

∫
g(bi)e

lCi (β̃i,λ̃0,bi)+ln f(bi)dbi∫
el
C
i (β̃i,λ̃0,bi)+ln f(bi)dbi

. (21)

Using the Laplace formula, it can be shown that

Efg(bi)g ¼ g(b̂i) , (22)

where b̂i is an isolated global minimum of

k(bi) = ¡
{
lCi

(
β̃i, λ̃0, bi

)
+ ln f(bi)

}
. (23)

It is the first-order approximation, as it is based on first-order terms of the Taylor series expansion.

The formal asymptotic error order of the approximation is O(n−1i ). It is possible to construct
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12 J. Cortiñas Abrahantes and T. Burzykowski: A Version of the EM Algorithm

higher-order approximations which involve higher-order terms of the Taylor series expansion (Kass,

Tierney, and Kadane, 1990).

By the use of the Laplace approximation, the problem of the computation of the expected

values (21) is translated into the need of finding the isolated global minimum b̂i of the function

given by (23). Various numerical procedures are available for this purpose. In most cases, these

procedures will require less computation time than, e.g., multi-dimensional numerical integration

or MCMC methods.

4.3 Estimation of variance

To estimate the variance-covariance matrix using the information matrix I(β, λ0, θ) defined by

(12), one also needs conditional expectations of functions of bi. Again, the Laplace approximation

can be used to compute these expectations. One additional problem is related to the fact that,

in order to compute standard error for the parameters of model (1), it would be necessary to

invert I(β, λ0, θ). The dimension of the matrix can be very large, since it depends on the number

of distinct uncensored failure times. A possible way to tackle this problem is by inverting only

the submatrices we are interested in. More specifically, let us partition the information matrix

I(β, λ0, θ) as follows:

I(β, λ0, θ) =




Iββ Iβλ Iβθ

Iβλ Iλλ Iλθ

Iβθ Iλθ Iθθ




=




I⋆βλ I⋆βλθ

(I⋆βλθ)
T Iθθ


 ,

where

I⋆βλ =




Iββ Iβλ

Iβλ Iλλ


 and I⋆βλθ =




Iβθ

Iλθ


 .

Now, instead of inverting I(β, λ0, θ), one might consider inverting only submatrices Iββ and Iθθ.

In fact, other authors also considered a similar solution: for instance, Therneau and Grambsch

(2000) considered the ‘sparse’ option in S-Plus software to avoid the computation of the inverse
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of the full information matrix. In this paper we will follow this simplified strategy and invert

only submatrices Iββ and Iθθ. Its adequacy for the computation of standard error of parameter

estimates will be evaluated in the simulations presented in Section 6. In the next section we

will briefly describe Ripatti and Palmgren’s approach (2000), with which we will compare the

estimation method that we are proposing in this article.

5 The Approach of Ripatti and Palmgren (2000)

Using the derivation of a penalized likelihood solution obtained by Breslow and Clayton (1993)

for the generalized linear mixed model assuming Gaussian random effects, Ripatti and Palmgren

(2000) presented a parallel approximation for model (1). To this aim, they approximated the

marginal likelihood (4) using the Laplace approximation. Assuming that the random effects

are normally distributed with variance-covariance matrix D(θ), the marginal likelihood can be

expressed as

LM (β, θ, λ0) = cjD(θ)j−
N
2

∫
e−κ(b)db, (24)

where

κ(b) = lC(β, λ0, b)¡
1

2
bTD(θ)−1b, (25)

with lC(β, λ0, b) given by (2). Using the Laplace theorem, Ripatti and Palmgren (2000) showed

that the logarithm of (24) can be approximated by

lM (β, θ, λ0) ¼ ¡
N

2
j lnD(θ)j ¡

1

2
ln jκ′′(b̃)j ¡ κ(b̃), (26)

where κ′ and κ′′ denote, respectively, the first and the second order partial derivatives of κ with

respect to b, and b̃ = b̃(β, θ) is the solution to κ′(b̃) = 0. They further argued that, for fixed

θ, the values β̂(θ) and b̂(θ), which maximize the penalized log-likelihood (25), also maximize the
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14 J. Cortiñas Abrahantes and T. Burzykowski: A Version of the EM Algorithm

penalized partial log-likelihood

N∑

i=1

ni∑

j=1

δij


(xTijβ + zTijbi)¡ ln

∑

tkl≥tij

exp
{
xTklβ + zTklbk)

}

¡ 1

2
bTD(θ)−1b. (27)

Based on the penalized partial log-likelihood (27), the estimating equations for β(θ) and b(θ),

given θ, can be derived. Once β̂(θ) and b̂(θ) are computed, θ can be updated by maximizing the

approximate profile likelihood derived from (26):

lPPL(β̂(θ), b̂(θ), θ) ¼ ¡
N

2
j lnD(θ)j ¡

1

2
ln jκ′′(b̂)j ¡

1

2
b̂TD(θ)−1b̂. (28)

Based on empirical evidence, Ripatti and Palmgren (2000) proposed to use in (28) κ′′PPL(b̂) =

(∂2lPPL)/(∂b∂bT ) instead of κ′′(b̂).

To obtain the standard error of the estimated fixed effects, one can use standard software for

the Cox model with the estimated random effects as an offset. To calculate the standard error

of the estimates of variance-covariance parameters θ, Ripatti and Palmgren (2000) suggest the

computation of the expected value, with respect to b, of the second derivative of (28) with respect

to θ. The necesssary formulas are given in Ripatti and Palmgren (2000).

6 Simulation Study

The performance of the EM algorithm with the Laplace approximation at the E-step was evaluated

in a set of simulations. The setting of the simulation does not strictly fall under the setup discussed

earlier, it is an extension in which we allow different baseline hazards for each of the failure-time.

The data were generated using the following proportional hazard model:

λij1(tij1jβi1, bi1) = λ1(tij1)e
bi1+x

T
ijβ1 , (29)

λij2(tij2jβi2, bi2) = λ2(tij2)e
bi2+x

T
ijβ2 , (30)

with
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


bi1

bi2


 » N2









0

0


 ,




σ21 σ12

σ12 σ22








. (31)

The model corresponds to the setting of data for N clusters (indexed by i), containing ni obser-

vations (indexed by j) for each of two (possibly censored) failure-times. The two failure-times are

of potentially different nature, what is reflected in model (29)—(30) by the use of different baseline

hazards (λ1 and λ2). The random effects b1 and b2 are correlated. Note that, conditionally on the

random effects bi, no extra association between the two times is assumed. This setting may be

seen as corresponding to, e.g., a multi-center clinical trial with centers as clusters and two differ-

ent, independent failure-times recorded for each patient. In the model the (fixed) effect of a single

binary covariate xij was considered. This can be regarded as, e.g., a time- and center-specific

effect of treatment.

Model (29)—(30) is similar to one of the models considered for simulations by Ripatti and

Palmgren (2000). They considered N = 50 clusters with ni = 2 observations for each of the two

failure-times.

In our simulation study, as compared to the one conducted by Ripatti and Palmgren (2000),

a broader range of configurations of the parameters was considered. The aim was to investigate

the performance of the proposed version of the EM algorithm for varying numbers of clusters and

observations per cluster, percentage of censored observations, and magnitude of the variance and

covariance parameters associated with the distribution of the random effects (31). Moreover, a

comparison with the performance of the alternative, non-EM based estimation method of Ripatti

and Palmgren (2000), was of interest.

More specifically, the number of clusters ranged between 10 and 100 (N = 10, 20, 50, 100).

The number of bivariate observations (subjects) within the cluster varied from 20 to 100 (ni =

20, 50, 100). (We will slightly abuse the notation now and use ni to denote the number of pairs

Copyright line will be provided by the publisher
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of observed failure-times rather than the total number of observations per cluster.) The baseline

hazards were assumed constant, with λ1(t) = 0.5 and λ2(t) = 1. The effects of covariate xij were

assumed to be equal, βi1 = βi2 ´ β, with β = 1. The variances associated with the random

effects bi1 and bi2 were also assumed to be equal, σ21 = σ22 ´ σ2, with σ2 = 0.2 and σ2 = 1. Two

values of the covariance parameter σ12 were considered for each value of σ2: σ12 = 0.1 and 0.18

for σ2 = 0.2, and σ12 = 0.5 and 0.9 for σ2 = 1. This is equivalent to assuming, for each value

of σ2, two different values (0.5 and 0.9) of the correlation coefficient ρ for b1 and b2. None or

20% censoring was considered. The censoring was induced by using a pair of independent random

variables, generated from two different uniform distributions, so that 20% of observations for each

of the two failure-times were censored. For each setting of the parameters, 250 simulated datasets

were generated.

The EM algorithm was implemented using SAS-IML v8.2 (the code can be obtained from

the first author upon request). Both the first- and second-order Laplace approximations were

considered. However, in simulations the results for the second-order approximation were essentially

the same as for the first-order. Thus, in what follows, the use of the first-order approximation is

assumed.

The method proposed by Ripatti and Palmgren (2000) was applied using the S-Plus functions

developed by Therneau (2003). The functions do not produce standard errors of the estimated

parameters; they were obtained separately using the formulas provided by Ripatti and Palmgren

(2000).

For both methods, the common value β of the fixed-effects parameters β1 and β2 was estimated

using data from both failure-times. On the other hand, although it was assumed that σ21 = σ22 ,

the two parameters were estimated separately. This latter choice was motivated by our interest

in the assessment of the ability of both methods to distinguish between different components of

variability.
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The preliminary set of simulations indicated considerable bias in the estimation of parameters

σ21 , σ
2
2 and ρ, especially for σ

2 = 0.2. For univariate shared frailty models Therneau and Grambsch

(2000, p. 254) argue that the estimates of random effects should be centered so that the “penalty”

term Q2 in (7) is minimized. In the case of normally-distributed random effects this means their

estimates should have zero mean. In fact, this is the solution used, e.g., in the implementation

of the univariate shared frailty model in S-Plus software (Therneau, Grambsch, and Pankratz,

2000). For the more general model (1) the argument of Therneau and Grambsch holds only for

random intercepts. Nevertheless, we have followed the idea and modified the EM algorithm by

centering the estimates of the random effects for all covariates at zero after each E-step.

Tables 1 and 2 present the results of simulations for the four combinations of the values of

parameters ρ and σ2. Only results for 20% censoring are presented, as the results under no

censoring are qualitatively similar, but with a slightly smaller bias and variability of the estimated

quantities.

One can observe that, in general, the fixed-effect β is estimated well by both methods, with

a relative absolute bias less then 8% in any of the considered cases. The bias decreases with

the increasing cluster size ni, but is not substantially influenced by the number of clusters N .

Increasing σ2 from 0.2 to 1 or ρ from 0.5 to 0.9 does not seem to change the magnitude of bias.

The estimates obtained by the Ripatti and Palmgren (2000) approach are on average closer to

the true value of the parameter (β = 1). The variability of estimates of β, measured by the

empirical standard error, is similar for both methods. In general, the model-based estimates for

the proposed version of the EM algorithm adequately estimate this variability, though with a slight

underestimation (especially for ni = 10). The model-based estimates for the Ripatti and Palmgren

method give plausible values for ni = 50. For smaller cluster sizes, however, they overestimate the

empirical variability. The overestimation is substantial especially for ni = 10. Overall, the mean
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Table 1: The mean estimates for 250 simulated datasets for the proposed EM algorithm (first row
for each N) and the method of Ripatti and Palmgren (second row for each N), when σ21 = σ22 = 0.2
and different values of σ12, with 20% censoring. In parentheses: the mean estimated (first number)
and empirical (second number) standard errors.

N β σ2
1

σ2
2

σ12 ρ

σ12 = 0.1

ni = 10

10 1.069 (0.248;0.303) 0.269 (0.153;0.122) 0.263 (0.146;0.122) 0.122 (0.109;0.115) 0.458

1.007 (0.252;0.277) 0.258 (0.074;0.164) 0.235 (0.115;0.156) 0.134 (0.098;0.168) 0.546

50 1.069 (0.105;0.118) 0.210 (0.072;0.053) 0.211 (0.069;0.044) 0.101 (0.053;0.055) 0.481

0.990 (0.111;0.103) 0.200 (0.039;0.071) 0.192 (0.040;0.064) 0.097 (0.050;0.051) 0.497

100 1.074 (0.077;0.084) 0.206 (0.051;0.039) 0.208 (0.050;0.032) 0.100 (0.038;0.041) 0.486

0.992 (0.079;0.073) 0.196 (0.020;0.052) 0.194 (0.020;0.047) 0.097 (0.025;0.037) 0.498

ni = 50

10 1.015 (0.104;0.107) 0.180 (0.091;0.097) 0.182 (0.089;0.091) 0.087 (0.069;0.077) 0.482

1.004 (0.108;0.114) 0.181 (0.065;0.105) 0.180 (0.066;0.098) 0.094 (0.037;0.082) 0.518

50 1.010 (0.046;0.044) 0.195 (0.044;0.045) 0.195 (0.044;0.039) 0.097 (0.034;0.035) 0.495

1.002 (0.048;0.046) 0.197 (0.040;0.048) 0.195 (0.036;0.042) 0.099 (0.026;0.035) 0.504

100 1.012 (0.033;0.032) 0.199 (0.032;0.031) 0.198 (0.032;0.027) 0.099 (0.025;0.025) 0.499

0.999 (0.034;0.033) 0.199 (0.030;0.033) 0.200 (0.023;0.029) 0.100 (0.021;0.025) 0.501

σ12 = 0.18

ni = 10

10 1.080 (0.240;0.263) 0.322 (0.108;0.172) 0.301 (0.111;0.156) 0.263 (0.093;0.140) 0.845

1.020 (0.252;0.269) 0.318 (0.094;0.180) 0.290 (0.114;0.173) 0.263 (0.110;0.177) 0.867

50 1.071 (0.105;0.118) 0.262 (0.053;0.060) 0.255 (0.052;0.054) 0.226 (0.045;0.055) 0.877

1.000 (0.113;0.104) 0.256 (0.060;0.112) 0.241 (0.067;0.103) 0.221 (0.084;0.110) 0.891

100 1.076 (0.074;0.084) 0.229 (0.037;0.038) 0.222 (0.037;0.033) 0.199 (0.032;0.035) 0.885

0.997 (0.081;0.075) 0.224 (0.051;0.083) 0.218 (0.048;0.077) 0.198 (0.050;0.081) 0.895

ni = 50

10 1.015 (0.104;0.108) 0.191 (0.091;0.104) 0.191 (0.091;0.098) 0.170 (0.081;0.096) 0.889

1.007 (0.108;0.113) 0.194 (0.070;0.091) 0.195 (0.072;0.085) 0.176 (0.067;0.082) 0.903

50 1.010 (0.046;0.044) 0.196 (0.044;0.048) 0.195 (0.044;0.043) 0.175 (0.040;0.045) 0.896

1.002 (0.048;0.045) 0.200 (0.055;0.060) 0.197 (0.048;0.053) 0.179 (0.044;0.054) 0.902

100 1.012 (0.033;0.032) 0.200 (0.032;0.033) 0.199 (0.032;0.029) 0.179 (0.029;0.031) 0.899

0.999 (0.034;0.032) 0.199 (0.030;0.035) 0.199 (0.029;0.031) 0.180 (0.027;0.030) 0.903

squared error is generally smaller (data not shown) for the estimates obtained by the Ripatti and

Palmgren approach.

The relative bias for σ21 is presented graphically in Figure 1; the estimates for σ22 show a similar

behaviour. One can conclude that for both estimation approaches there is a substantial bias when

the number of clusters is small (N = 10). The absolute bias decreases with increasing N and ni,

but it remains above 10% even for N = 100 if the cluster size is small (ni = 10) and there is low

variability in cluster-specific random effects (σ2 = 0.2). If the variability is large (σ2 = 1), the
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Table 2: The mean estimates for 250 simulated datasets for the proposed EM algorithm (first row
for each N) and the method of Ripatti and Palmgren (second row for each N), when σ21 = σ22 = 1.0
and different values of σ12, with 20% censoring. In parentheses: the mean estimated (first number)
and empirical (second number) standard errors.

N β σ2
1

σ2
2

σ12 ρ

σ12 = 0.5

ni = 10

10 1.078 (0.238;0.276) 0.900 (0.535;0.687) 0.895 (0.523;0.617) 0.414 (0.394;0.387) 0.461

0.994 (0.262;0.284) 0.925 (0.406;0.496) 0.886 (0.396;0.479) 0.444 (0.252;0.364) 0.491

50 1.068 (0.104;0.122) 0.974 (0.264;0.435) 0.974 (0.251;0.285) 0.472 (0.198;0.192) 0.485

0.995 (0.116;0.109) 0.982 (0.182;0.232) 0.971 (0.184;0.224) 0.490 (0.115;0.176) 0.502

100 1.075 (0.073;0.086) 0.982 (0.185;0.283) 0.984 (0.179;0.207) 0.481 (0.141;0.146) 0.489

0.995 (0.082;0.077) 0.983 (0.139;0.180) 0.979 (0.125;0.163) 0.493 (0.102;0.134) 0.503

ni = 50

10 1.011 (0.104;0.108) 0.893 (0.423;0.487) 0.901 (0.424;0.454) 0.439 (0.329;0.352) 0.489

1.007 (0.109;0.114) 0.899 (0.362;0.480) 0.911 (0.350;0.443) 0.466 (0.284;0.343) 0.496

50 1.009 (0.046;0.045) 0.976 (0.208;0.284) 0.979 (0.205;0.202) 0.486 (0.162;0.171) 0.498

1.003 (0.049;0.049) 0.979 (0.204;0.224) 0.976 (0.171;0.195) 0.491 (0.138;0.165) 0.499

100 1.011 (0.032;0.033) 0.991 (0.147;0.160) 1.003 (0.150;0.145) 0.497 (0.117;0.121) 0.498

0.999 (0.034;0.033) 0.990 (0.127;0.148) 1.004 (0.122;0.138) 0.504 (0.104;0.118) 0.504

σ12 = 0.9

ni = 10

10 1.081 (0.239;0.278) 0.881 (0.424;0.505) 0.876 (0.438;0.499) 0.780 (0.392;0.412) 0.887

0.995 (0.257;0.275) 0.886 (0.296;0.411) 0.860 (0.282;0.400) 0.779 (0.246;0.360) 0.893

50 1.069 (0.104;0.122) 0.977 (0.225;0.270) 0.969 (0.224;0.243) 0.869 (0.208;0.202) 0.893

0.992 (0.117;0.107) 0.979 (0.166;0.225) 0.971 (0.163;0.226) 0.878 (0.124;0.199) 0.900

100 1.076 (0.073;0.086) 0.980 (0.160;0.185) 0.971 (0.158;0.162) 0.873 (0.147;0.141) 0.895

0.993 (0.083;0.076) 0.985 (0.139;0.175) 0.976 (0.138;0.170) 0.884 (0.114;0.156) 0.901

ni = 50

10 1.013 (0.104;0.109) 0.893 (0.424;0.505) 0.902 (0.432;0.476) 0.798 (0.399;0.428) 0.889

1.005 (0.109;0.111) 0.901 (0.365;0.477) 0.904 (0.377;0.448) 0.815 (0.297;0.436) 0.903

50 1.010 (0.046;0.045) 0.980 (0.205;0.229) 0.974 (0.204;0.216) 0.876 (0.192;0.205) 0.896

0.999 (0.048;0.048) 0.980 (0.217;0.232) 0.976 (0.197;0.213) 0.875 (0.211;0.223) 0.895

100 1.012 (0.032;0.032) 0.993 (0.148;0.174) 0.997 (0.149;0.151) 0.894 (0.140;0.150) 0.898

0.998 (0.034;0.033) 0.994 (0.149;0.157) 0.999 (0.140;0.145) 0.898 (0.139;0.146) 0.901

absolute bias is low (around or below 5%) for N ¸ 20, irrespectively of the cluster size ni. It is

worth noting that both estimation methods produce underestimates for σ2 = 1, irrespectively of

N and ni. In general, the estimates for both methods give on average similar results, with a close

agreement for ρ = 0.9. The empirical variability of estimates of σ21 and σ22 is slightly smaller for

the proposed version of the EM algorithm, as compared to the method of Ripatti and Palmgren,

for σ2 = 0.2. For σ2 = 1, the opposite trend seems to be present. In general, the model-based

standard errors underestimate the variability for both methods. The estimates for the proposed
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version of the EM algorithm are in most cases closer to the empirical standard error than the

values obtained for the Ripatti and Palmgren method.
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Fig. 1: The relative bias for σ21 for 20% censoring. Left column: ρ = 0.5; right column: ρ = 0.9.

Top row: σ21 = 0.2; bottom row: σ21 = 1. The legend in the bottom right panel refers to all plots.

Both estimation methods tend to underestimate the covariance parameter σ12 for σ2 = 1.

For σ2 = 0.2, there is no obvious pattern. The absolute bias decreases with increasing N and

ni. In general, it is smaller for the Ripatti and Palmgren method. The empirical variability

of the estimates is similar for both methods. The model-based standard errors underestimate

the variability for both methods. The estimates for the proposed version of the EM algorithm

Copyright line will be provided by the publisher



bimj header will be provided by the publisher 21

are generally closer to the empirical standard error than the values obtained for the Ripatti and

Palmgren method.

Overall, for all variance-covariance parameters, the mean squared error (data not shown) of the

estimates obtained by the proposed version of the EM algorithm is smaller than for the Ripatti

and Palmgren approach when σ2 = 0.2, while the opposite trend could be seen for σ2 = 1.

A natural measure to assess the association between the two random effects is the correlation

coefficient. Note that, since it was not used as a parameter in model (29)—(30), it needs to be

computed from the estimated values of σ2, σ1 and σ12. Figure 2 presents graphically the relative

bias for ρ. The absolute relative bias remains around or below 5% for ρ = 0.9; for ρ = 0.5,

it does so for ni ¸ 20. The bias generally decreases with increasing N and ni, and is smaller

when σ2 increases. One can observe that there are substantial differences between the estimates

produced by both methods, especially when there is low variability in cluster-specific random

effects (σ2 = 0.2). In general, the estimates obtained using the method of Ripatti and Palmgren

are closer to the true value of the correlation coefficient. One can also conclude that the proposed

version of the EM algorithm tends to underestimate the true value of the coefficient. Since the

correlation coefficient was not used in the parametric form of model (29)—(30), its model-based

standard error was not directly available. Though it could be computed from the estimated errors

for σ2, σ1 and σ12 by using the delta-method, we did not pursue a more detailed analysis of this

aspect of the estimation of ρ.

7 Case Study: Analysis of Survival Data in a Breast Cancer Clinical Trial

In this section we will use a proportional hazard model with multivariate random effects to inves-

tigate the between-center variation (heterogeneity) in both the baseline risk and the effectiveness

of therapy in a multicenter clinical trial. The variation is of interest because it decreases the power

to detect clinically important treatment differences. On the other hand, more heterogeneous trials
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Fig. 2: The relative bias for ρ for 20% censoring. Left column: ρ = 0.5; right column: ρ = 0.9.

Top row: σ21 = 0.2; bottom row: σ21 = 1. The legend in the bottom right panel refers to all plots.

lead to more general conclusions as they are based on a wider patient population. Moreover, the

differences between centers can be studied to determine whether differences in clinical practice at

the center level have an influence on the outcome (Yamaguchi and Ohashi, 2000; Duchateau et

al., 2002). Investigation of the heterogeneity is sometimes called “treatment outcome research”

(Duchateau et al., 2002).

As an example we will use data on survival time of patients from an European Organization for

the Research and Treatment of Cancer (EORTC) early breast cancer clinical trial comparing peri-

operative chemotherapy with surgery alone (Clahsen et al., 1996). The trial includes 15 centers,
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with the following number of patients per center: 6, 19, 25, 39, 48, 53, 54, 60, 78, 184, 185, 206,

311, 622, 902. Duchateau et al. (2002) used this trial to study the between-center variability in

the baseline hazard. To this aim, they applied a shared frailty model with a gamma-distributed

frailty to model progression free survival. As a result, they estimated baseline hazard (assumed

constant) and the hazard ratio for the surgery-alone treatment to equal 0.07 and 1.16, respectively.

The variance of the frailty distribution was estimated to be equal to 0.092.

We will re-analyze the data used by Duchateau et al. (2002), allowing for the variation in both

the baseline hazard and the treatment effect. To this aim, we will use the following model:

λij(tij jβ, bi0, bi1) = λ0(tij)e
bi0+xij(β+bi1) , (32)

where



bi0

bi1


 » N2









0

0


 ,




σ20 σ01

σ21








. (33)

A similar model was used by Yamaguchi and Ohashi (2002) in another case study, but with

the covariance between the two random effects constrained to 0. They fitted the model using

an extension of the penalized partial likelihood approach developed by McGilchrist and Aisbett

(1991) and McGilchrist (1993).

The parameter estimates for model (32), obtained by the method of Ripatti and Palmgren

(2000) and by the version of the EM algorithm proposed in this paper, are presented in Table 3.

The result for both methods are quite comparable. Worth noting are somewhat larger standard

errors for the variance-covariance parameters for the Ripatti and Palmgren approach. This is

consistent with the results of the simulation study presented in the previous section.

Since Duchateau et al. (2002) used a different model to analyze the data, it is difficult to directly

compare their results to those shown in Table 3. Nevertheless, some similarities can be noted. For

instance, the estimated value of β presented in the table gives the hazard ratio of 1.17, which is
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Table 3: Results for the analysis of the survival data in the breast cancer trial (standard error in
parentheses).

Method β σ20 σ21 σ01

EM-Laplace 0.160 (0.071) 0.093 (0.034) 0.035 (0.011) 0.022 (0.014)

Ripatti 0.162 (0.072) 0.091 (0.041) 0.036 (0.014) 0.021 (0.017)

very similar to the value of 1.16 obtained by Duchateau et al. (2002). Moreover, the estimated

cumulative baseline hazard for model (32) showed a linear trend (data not shown), suggesting a

constant baseline hazard equal to 0.067 for the Ripatti and Palmgren method and 0.066 for the EM

algorithm. These values are comparable to the value of 0.07 obtained by Duchateau et al. (2002).

Finally, the estimated variance of the gamma frailty (0.092) given by Duchateau et al. (2002)

implies that, in their analysis, the distribution of the logarithm of the frailty can by approximated

by a normal distribution with variance ψ′(1/0.09) = 0.094, where ψ′() is the trigamma function

(Johnson and Kotz, 1970, p. 181). Thus, the shared gamma-frailty model used by Duchateau et

al. (2002) might be approximately equivalent to model (32) without the random treatment effects

bi1 and with normally-distributed random intercepts bi0 with variance 0.094. This value is only

slightly higher than the estimates of σ20 given in Table 3.

On the other hand, model (32) provides additional information about the heterogeneity of

treatment effects. More specifically, the estimated value of σ21 implies that in 95% of cases the

center-specific hazard ratio for treatment should remain in the interval exp(0.16 § 1.96 £ 0.189),

i.e., (0.81, 1.70). This range of the variability is thus rather wide. Additionally, the estimates of

σ01 shown in Table 3 suggest a low correlation (0.37 for the Ripatti and Palmgren method, 0.38

for the EM algorithm) between bi0 and bi1.

It is worth noting here that, in the context of “treatment outcome research”, the explicit use of

random effects in model (32) is of importance, as it allows to quantify the magnitude of between-

center heterogeneity in baseline hazards and treatment effects. If one’s interest, however, lies only
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in, e.g., testing for center effects, alternative methods, not requiring a random effects formulation,

can be considered (Gray, 1995).

8 Concluding Remarks

Proportional hazard models with multivariate random effects offer several advantages over uni-

variate shared frailty models (Xue and Brookmeyer, 1996), especially when survival times from

the same cluster are negatively associated. The main stumbling block in the use of the former

models are estimation methods.

In this paper we have proposed an estimation method based on the EM algorithm. Its main

advantage is a lower computational complexity, as compared to the previously developed imple-

mentations of the algorithm (Xue and Brookmeyer, 1996; Vaida and Xu, 2000; Ripatti et al.,

2002). In the current paper normally-distributed multivariate random effects were considered,

but the method might in principle be extended to other types of multivariate distributions. A

drawback of the method is the asymptotic nature of the Laplace approximation: to get estimates,

one needs a cluster size that cannot be too small. In fact, in our simulation study we did not

include the settings with clusters with less than 10 subjects, since for these settings convergence

problems were too frequent.

An important issue in the assessment of any estimation method are the statistical properties of

the obtained estimates. The consistency of the estimates produced by the EM algorithm has been

proven only for the case of the shared frailty model with a univariate, gamma-distributed frailty

(Murphy, 1995; Parner, 1998). No formal results are available for other distributions. An empirical

study of Ferreira and Garcia (2002) of the EM-algorithm-based estimation method proposed by

Nielsen et al. (1992) suggests that the estimates of the variance parameter may be non-consistent

when the gamma assumption fails.
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Even less is known about the multivariate frailty models. For this reasons we conducted a

simulation study, in which we compared our proposal with the non-EM based approach developed

by Ripatti and Palmgren (2000). Comparison with other versions of the EM algorithm (Xue

and Brookmeyer, 1996; Vaida and Xu, 2000) was not possible due to the numerical complexity

and problems with the implementation of these methods. Xue and Brookmeyer (1996) in their

paper stated that “although it is computationally feasible for analysis of specific data sets, it is

not efficient enough to being considered for computer simulation studies,” implying that their

approach is fairly computational intensive. Vaida and Xu (2000) reported an MCEM inference

approach, where they used Gibbs sampling to draw from the posterior distribution of the random

effects where convergence of the algorithm is assessed by visual inspection of the estimates. This

is also a limitation if simulations are conducted together with the fact that for large dimensions

of the random effects relative to the sample sizes can encountered convergence problems.

In the simulation study both approaches produced on average similar estimates of the variances

of random effects. More difference was seen in the estimation of the fixed effects and the covari-

ance/correlation, where the estimates for the method of Ripatti and Palmgren (2000) showed

smaller bias. For both methods the bias in the parameter estimates seemed to disappear with

the increasing cluster size and (except for the fixed effects) the number of clusters. The empirical

variability of the parameter estimates was in general similar for both methods. For the Ripatti

and Palmgren method the model-based estimates tended to overestimate the empirical standard

error for the fixed-effects parameters (especially when the cluster size was small) and to under-

estimate the standard error for the variance-covariance parameters. For the proposed version of

the EM algorithm the estimates generally underestimated the error, but they were closer to the

true value than the estimates for the method of Ripatti and Palmgren. The underestimation was

due to the fact, that to reduce numerical complexity, the estimates were computed by inverting

only the appropriate sub-matrices of the observed Fisher information matrix. Overall, the mean
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squared error of the estimated fixed-effects parameters obtained by the proposed version of the

EM algorithm was larger than for the Ripatti and Palmgren approach. For the variance-covariance

parameters, the relationship depended on the variability of the random effects: when the variabil-

ity was small (large), the mean squared error for the proposed version of the EM algorithm was

smaller (larger) than for the method of Ripatti and Palmgren. Finally, it is worth mentioning that

the computation time needed for the latter method to converge was, in general, shorter. This is

not surprising, in view of the linear rate of convergence for the EM algorithm.

The aforementioned simulation results indicate that both the proposed version of the EM

algorithm, as well as the method of Ripatti and Palmgren (2000), have some advantages to offer.

A more definite evaluation of their merits requires further research.
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