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Abstract

Measures of association for bivariate interval censored data have not yet been
studied extensively. Betensky and Finkelstein[3] proposed to calculate Kendall’s
coefficient of concordance using a multiple imputation technique. However, this
method is quite computer intensive.
Our approach is based on two steps. First, we fit a bivariate smooth estimate of
the density of log-event times on a fixed grid. The smoothing technique is based on
a mixture of Gaussian densities with weights determined by a penalized likelihood
approach. In a second step we plug the expression of the smoothed density into the
population’s version of Kendall’s tau, which becomes a weighted sum of constants
calculated from the grid.
The performance of our method is illustrated by a simulation study and is applied
to tooth emergence data of 7 permanent teeth measured on 4468 children from the
Signal-Tandmobiel R©study.
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1 Introduction

Measures of association are well studied and often applied to data that are completely
observed. Some measures have been extended to right censored data (e.g. [16], [8], [7]).
However for interval censored data, association measures have not yet been studied ex-
tensively.
In absence of censoring, Kendall’s tau (τ) is based on scores assigned to each pair of
bivariate observations, say (X1, Y1), (X2, Y2) that measure the concordance between the
two observations. More specifically, (X1, Y1) and (X2, Y2) are said to be concordant if
X1 > X2 and Y1 > Y2 or if X1 < X2 and Y1 < Y2 and they are discordant if X1 > X2

and Y1 < Y2 or if X1 < X2 and Y1 > Y2. Concordant pairs are assigned a score of 1,
discordant pairs are assigned a score of −1, and pairs in which there is equality among
either variable are assigned a score of 0. Kendall’s tau is calculated as the average of these
scores over all pairs of observations and in this way it estimates the difference between
the probability of concordance and the probability of discordance. In the presence of
censoring, things are more complicated. Oakes[16] proposed to estimate Kendall’s tau for
bivariate right censored data by assigning zero to pairs of observations that cannot be
compared. Following Oakes’s approach, Betensky of Finkelstein[3] suggested to calculate
Kendall’s tau in the presence of interval censoring using a multiple imputation strategy.
However, this method is quite computer intensive for large data sets.
Our method is based on 2 steps. First we approximate the bivariate density of the log
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of the event times by a smoothing technique. The smoothing technique is an extension
of the approach used by Ghidey et al.[10] for smoothing the random effects distribution
in a linear mixed model and by Komárek et al.[13] for smoothing the distribution of the
error term in an accelerated failure time model. More specifically the smooth density
is a mixture of Gaussian densities fixed on a bivariate grid with weights determined by
a penalized likelihood approach. In the second step, the estimated smoothed bivariate
cumulative distribution function F̂ can be plugged into the expression τ = 4

∫
FdF − 1,

which is the population’s version of Kendall’s tau.
The next section describes the smoothing procedure and its mathematical properties. The
calculation and properties of Kendall’s tau are described in Section 3. The results of the
simulations are presented in Section 4. The application to tooth emergence data of the
Signal Tandmobiel R©study is described in Section 5. In Section 6 our approach is critically
examined.

2 Smooth estimate of the bivariate density

2.1 Smoothing Method

A detailed description of the smoothing method can be found in Bogaerts and Lesaffre[4].
Briefly, let (T1, T2) represent a positive valued bivariate random vector with density f .
Let T1 and T2 be interval censored in the rectangle (t1l, t1r]× (t2l, t2r] by an independent
censoring process. We also include here the special cases, i.e. left (tl = 0) and right
censoring (tr = ∞). The smoothing procedure is an extension of the approach of Ghidey
et al.[10] and Komárek et al.[13]. The bivariate density of log(T1) and log(T2) is modelled
as a weighted sum of bivariate normal distributions with zero correlation over a (fixed)
fine grid of size k1×k2 with means equal to the gridpoints of the grid and variances equal
but fixed. Thus, we assume that(

log(T1)
log(T2)

)
∼

k1∑
i=1

k2∑
j=1

cijN (µij,

[
σ2

1 0
0 σ2

2

]
) (1)

where cij > 0,∀i, j and

k1∑
i=1

k2∑
j=1

cij = 1. The aim is to estimate the weights cij(i =

1, . . . , k1, j = 1, . . . , k2). Note that this involves a constrained maximum likelihood pro-
cedure in the k1 × k2 weight parameters. Unconstrained maximum likelihood estimation
is obtained by introducing parameters aij as

cij =
eaij∑

i,j

eaij

,

with, say a11 = 0 to ensure identifiability.
Following the work of Eilers and Marx [9] a penalty term is used to smooth our approxi-
mation to the true density f . The penalty equals to

p =
λ1

2

∑
i,j

(∇k
i aij)

2 +
λ2

2

∑
i,j

(∇k
j aij)

2 (2)



where λ1 (> 0) and λ2 (> 0) are “smoothing” parameters and∇k is the kth order difference
operator.
Given λ1, λ2, let ln denote the loglikelihood for a sample of size n and p the penalty
defined in (2). Maximizing the penalized loglikelihood lP,n = ln − p with respect to
a = (a11, . . . , ak1k2)

T , yields estimates âij(i = 1, . . . , k1, j = 1, . . . , k2).
The parameters λ1 and λ2 are assumed to be given, they determine the smoothness of
the density, i.e. the larger the smoother the density will be. The optimum λ1 and λ2

correspond to a minimum Akaike’s Information Criterium (AIC) ([1]) defined as AIC =
−2×log-likelihood+2×”effective degrees of freedom”. The ”effective degrees of freedom”
can be determined as follows[11]:

df = trace
[
H−1

LP
HL

]
where HL = − ∂2ln

∂a∂aT and HLP
= − ∂2lP,n

∂a∂aT . The optimum λ1 and λ2 can be found by a grid
search or a parabolic interpolation search.

2.2 Statistical Properties

2.2.1 Consistency

When parameters a0 exist such that the truth can be written like (1) with a grid and
variances equal to the one to analyze the data, it can be shown that the parameters are
consistently estimated[10]. So, ân → a0. However, in general the true distribution can
not be written as a weighted sum of normal distributions with means at a pre-specified
grid. Using White’s theory[20], one can show that all the parameter estimates asymptot-
ically converge to a function that minimizes the Kullback-Leibler distance. From limited
simulations (results are not reported) we observed that the Kullback-Leibler distance goes
to zero for a fine enough grid and a large sample size.

2.2.2 Asymptotical Normality

Under the same conditions as in 2.2.1 it can also be shown that the estimated parameters
are asymptotically normally distributed. Namely,

√
n(ân − a0) → N (0, Σ) where Σ can

be consistently estimated by

nH−1
LP

(ân)H−1
L (ân)H−1

LP
(ân),

where HL = − ∂2ln
∂a∂aT and HLP

= − ∂2lP,n

∂a∂aT .

3 Kendall’s tau

The association between two survival times can be expressed by Kendall’s tau[12], which
is equal to

τ = 4 ·
∫

FdF − 1, (3)

where F is the bivariate cumulative distribution function of f . Our approach consists in
replacing F by the cumulative distribution of the bivariate smoothed function in expres-
sion (3). This leads to the following expression for the estimate of τ (see Appendix):

τ̂ = 4 ·
k1∑
i=1

k2∑
j=1

k1∑
k=1

k2∑
l=1

ĉij ĉklΦ(
µ1,i − µ1,k√

2σ1

)Φ(
µ2,j − µ2,l√

2σ2

)− 1



where ĉij and ĉkl are the estimated coefficients and Φ denotes the univariate cumulative
standard normal distribution. Clearly, given the coefficients ĉij, the calculation of τ̂ is
readily done.
Based on the variance-covariance matrix of â (see Section 2.2.2) and using the delta
method, one can easily derive the variance and also a (95%) confidence interval for τ̂ .
Further, for τ̂1 and τ̂2 estimated for two independent groups of subjects a two-sample Z-
test can be derived to test H0 : τ1 = τ2 (see Appendix for details). A SAS macro (version
8.2) has been written to estimate τ̂ for interval censored data and can be downloaded
from http://www.med.kuleuven.ac.be/biostat/research/software.htm.

4 Simulation Study

For the simulation study, independent failure times were simulated from a bivariate log-
normal distribution (scenario 1, τ = 0). In addition, failure times were simulated from
5 different scenario’s (scenario 2 to 6) with a given τ different from zero: 1) a bivari-
ate log-normal distribution (τ = 0.41), 2) an equal mixture of two bivariate log-normal
distributions with the same variance (τ = 0.63), 3) an equal mixture of two bivariate log-
normal distributions with the different variances (τ = 0.49), 4) an unequal mixture of two
bivariate log-normal distributions with the same variance and with two modes for both
marginals (τ = 0.54) and 5) an unequal mixture of two bivariate log-normal distributions
with the same variance but with only one mode for one marginal and two modes in the
other marginal (τ = 0.26).
Two different independent censoring schemes were applied to the (uncensored) data: 1)
about 10% left, 70% interval and 20% right censoring and 2) about 10% left, 50% interval
and 40% right censoring. This was done by generating 6 visit times and a drop out process
(both independently of the failure times).
The sample sizes were 100 and 500. Two gridsizes were examined i.e. 10×10 and 20×20,
but the 10 × 10 grid was not always satisfactory and is therefore not further considered
here. For each setting 1000 simulations were performed. Both smoothing parameters were
assumed to be equal to each other. A grid search with 10 values ranging from 0.001 to
500 was performed in order to choose the smoothing parameters. Third order differences
were used in the penalty. The variances were set to the square of 2/3 of the gridsize (see
[4]).
For each choice of the smoothing parameters, Kendall’s tau and its corresponding variance
were calculated using the method. As a benchmark, Kendall’s tau was also estimated for
the uncensored failure times using the standard expression.
For scenario 1 we investigated the type I error for testing H0 : τ = 0. Our results showed
that the probability of the type I error ranged from 5.5% to 7.2% and approached the
nominal level when the sample size increases.
Table 1 displays the mean difference with corresponding standard error between Kendall’s
tau calculated using our method and the true Kendall’s tau from the distribution from
which data was simulated. Table 2 displays the mean difference with corresponding stan-
dard error between Kendall’s tau calculated on the censored (using our method) and
uncensored observations (using the standard formula). For both tables, very small mean
differences were observed and the mean difference decreased with increasing sample size
for all simulation settings.



Censoring Censoring
70% interval 50% interval

10% left 10% left
20% right 40% right

N=100 N=500 N=100 N=500
scenario τ mean s.e. mean s.e. mean s.e. mean s.e.

1 0 -0.004 0.0027 0.000 0.0012 -0.005 0.0027 -0.001 0.0012
2 0.41 0.004 0.0023 0.004 0.0010 -0.003 0.0022 0.003 0.0009
3 0.63 0.002 0.0014 0.006 0.0006 -0.005 0.0014 -0.001 0.0006
4 0.49 0.015 0.0027 0.013 0.0013 -0.023 0.0019 -0.012 0.0009
5 0.54 -0.012 0.0017 -0.005 0.0007 -0.016 0.0018 -0.006 0.0008
6 0.26 0.002 0.0023 0.002 0.0010 0.003 0.0028 0.001 0.0013

Table 1: Simulation study: Mean difference with standard error (s.e.) between Kendall’s
tau calculated using our method with a 20× 20 grid and the true Kendall’s tau from the
distribution from which data was simulated.

Censoring Censoring
70% interval 50% interval

10% left 10% left
20% right 40% right

N=100 N=500 N=100 N=500
scenario τ mean s.e. mean s.e. mean s.e. mean s.e.

1 0 0.001 0.0018 0.001 0.0008 -0.000 0.0017 0.000 0.0007
2 0.41 0.004 0.0017 0.001 0.0007 -0.003 0.0014 0.001 0.0006
3 0.63 0.001 0.0011 0.005 0.0005 -0.006 0.0010 -0.002 0.0004
4 0.49 0.014 0.0022 0.012 0.0011 -0.025 0.0012 -0.013 0.0006
5 0.54 -0.016 0.0010 -0.008 0.0004 -0.020 0.0012 -0.009 0.0005
6 0.26 -0.002 0.0011 -0.001 0.0005 0.001 0.0019 0.006 0.0010

Table 2: Simulation study: Mean difference with standard error (s.e.) between Kendall’s
tau calculated from the censored and the uncensored observations for the simulation study
using a 20× 20 grid.



Boys Girls
Tooth Median % censoring Median % censoring

number Tooth name (years) left interval right (years) left interval right
11 Central incisor 7.08 49 45 6 6.85 62 34 4
12 Lateral incisor 8.25 9 77 14 7.84 21 68 11
13 Canine 11.53 0 39 61 10.91 0 56 44
14 First premolar 10.73 1 56 43 10.31 0 68 32
15 Second premolar 11.62 1 37 62 11.26 0 47 53
16 First molar 6.31 83 15 2 6.14 89 10 1
17 Second molar 12.27 0 19 81 11.95 0 29 71

Table 3: Signal-Tandmobiel R©study: Median emergence times and censoring distribution
for the teeth of the right side of the upper jaw for boys and girls.

5 Application to Signal Tandmobiel R©Study

The emergence age of a tooth is the chronological age of a child at which that tooth ap-
pears in the mouth. Not only the timing, but also the association pattern of (permanent)
tooth emergence is of interest to dentists.
The Signal-Tandmobiel R©study is a prospective longitudinal survey, which collected den-
tal and oral health behaviour data from a representative sample (N=4468) of Flemish
children born in 1989. An elaborate description of the Signal-Tandmobiel R©project can be
found in Vanobbergen et al.[18]. The children were examined annually on pre-scheduled
visits (from the age of 7 to the age of 12) by 16 trained dentist-examiners in a mobile
dental clinic on the school premises. Tooth emergence was recorded at each examination
by direct inspection. Each permanent tooth was scored according to its clinical eruption
stage (adapted from Carvalho et al.[6]). However, for the present analysis, the status
of tooth eruption was dichotomized: not emerged versus emerged. As the children were
examined annually, the emergence times are interval-censored. Since a tooth can emerge
before the first or after the last visit also left and right censored emergence times are en-
countered. Based on data obtained from the Signal-Tandmobiel R©study emergence times
of 28 permanent teeth were determined for Flemish children from 7 to 12 years of age[14].
In Europe, the teeth are numbered with a two digit number as follows: the first digit
represents the quadrant numbered from 1 to 4 (the upper right quadrant is “1”, upper
left “2”, lower left “ 3” and lower right “4”), the second digit refers to the place within
the quadrant starting from the midline towards the back of the mouth. The last molar
(tooth 18, a wisdom tooth) emerges (if it emerges) at the age of 17 years or later. Since its
emergence time could not be recorded in our study we discarded that tooth here. Table 3
displays the median emergence times and the censoring distribution for teeth 11 to 17 for
for the 2315 boys and 2153 girls of the Signal-Tandmobiel R©study, separately. The median
emergence times were estimated by fitting a log-logistic model to the data.

As an illustration we measured the association between the emergence times by means of
Kendall’s tau for each pair of the first quadrant. A 20× 20 grid and a third order differ-
ence penalty was applied. The results are presented in Table 4. The highest association
for both boys and girls was observed between the two incisors (teeth 11 and 12) and the
two premolars (teeth 14 and 15). The lowest association was 0.28, between the second
premolar and first molar for boys. From Figure 1 the following trend can be observed
for boys: the closer the median emergence times, the higher the correlation. A similar



11 12 13 14 15 16 17
11 1 0.53 0.45 0.38 0.42 0.43 0.42

(0.50-0.56) (0.40-0.50) (0.34-0.41) (0.38-0.46) (0.36-0.50) (0.35-0.48)
12 0.52 1 0.46 0.32 0.35 0.33 0.35

(0.48-0.55) (0.43-0.50) (0.29-0.35) (0.31-0.39) (0.25-0.41) (0.30-0.41)
13 0.43 0.46 1 0.49 0.49 0.39 0.35

(0.39-0.47) (0.43-0.49) (0.45-0.52) (0.41-0.57) (0.31-0.47) (0.27-0.44)
14 0.36 0.35 0.48 1 0.57 0.33 0.38

(0.32-0.40) (0.32-0.39) (0.45-0.51) (0.53-0.60) (0.24-0.41) (0.29-0.47)
15 0.35 0.34 0.42 0.56 1 0.28 0.35

(0.31-0.40) (0.31-0.38) (0.38-0.47) (0.52-0.60) (0.23-0.33) (0.26-0.43)
16 0.40 0.36 0.42 0.33 0.34 1 0.35

(0.24-0.57) (0.25-0.48) (0.32-0.52) (0.15-0.51) (0.25-0.42) (0.19-0.50)
17 0.36 0.32 0.39 0.38 0.44 0.48 1

(0.30-0.41) (0.27-0.38) (0.32-0.45) (0.33-0.43) (0.38-0.50) (0.39-0.57)

Table 4: Signal-Tandmobiel R©study: Kendall’s tau with a 95% Confidence Interval be-
tween brackets for the teeth of the right side of the upper jaw. Results for boys and girls
are presented in the upper and lower part, respectively.

pattern is found for the girls. This relates to the two emergence phases that are observed
in Table 3. Namely, there is an early emergence phase for the first molar and the two
incisors around 7 years and a later emergence phase for the canine, the two pre-molars
and the second molar around 11 and 12 year. Although the emergence times of girls are
significantly earlier than those of boys[14], no significant difference in association could
be shown between boys and girls using a two-sample Z-test. The width of the confidence
interval is apparently related with the proportion of left, right or interval censored data.
Namely, the larger the proportion of left or right censored data, the wider the confidence
interval is. This can be explained by the fact that an interval censored observation con-
tains more information about the event time than a left or right censored observation.

Parner et al.[17] fitted a bivariate normal distribution to tooth emergence data of Danish
children born in 1978. More than 12000 children were analyzed for both boys and girls.
The children were examined annually from 3 to 18 years old. They reported Pearson
correlations for all pairs of teeth. For a bivariate normal distribution there exists a
relation between Kendall’s tau and Pearson’s correlation (ρ), namely τ = 2sin−1(ρ)/π.
When transforming the Pearson correlations reported by Parner et al.[17] to Kendall’s
tau’s, we found for most teeth similar results. Though in our study the correlations
were somewhat lower. However, with the exception for 4 and 6 associations for girls and
boys respectively, the estimates of Parner et al.[17] felt always within our 95% confidence
intervals. Several reasons can explain this discrepancy: the use of another population
or a possibly bad fitting bivariate normal distribution. As reported by Leroy et al.[14],
emergence standards should be derived from the population in which they are to be
applied, as factors related to emergence may vary considerably.
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Figure 1: Signal-Tandmobiel R©study: Kendall’s tau with a 95% Confidence Interval versus
the time between median emergence times of two teeth of the right side of the upper jaw
for boys.

6 Discussion

It is important to note that our smoothing method is not a classical mixture problem.
Indeed, only the mixing weights are estimated because the means and variances of the
bivariate standard normal densities are fixed.
The penalty was defined in the parameters aij. On first sight, it seems more natural
to define the penalty in the parameters cij. However, the computation in cij implied a
significantly higher computation time with more numerical instability. The same was true
when the penalty was expressed in terms of cij but the computations were done in aij.
If λ1 →∞ and λ2 →∞, the penalty becomes more important. If the order of the penalty
is k, then k2 − 1 well chosen conditions specify the limit distribution of the parameters c
uniquely as the grid grows finer and wider. For k = 1, the penalty implies that all aij are
equal to each other and that the limit distribution will resemble an uniform distribution.
For k = 2, the penalty implies that the aij’s lie on a straight line for a specific i or j.
Three well chosen conditions will fix the limit distribution. For k = 3, the penalty implies
that the aij’s lie on a quadratic curve for a specific i or j. For 8 well chosen conditions
the limit distribution will be member of the Bhattacharryya’s distribution, the family of
all bivariate densities with normal conditionals [2]. This family includes (among others)
the bivariate normal distributions. For our simulations and the application a third order
difference operator was used. In a limited simulation study, a second order difference
showed also to provide adequate results.
In all our settings, a 20 × 20 grid provided good results. In practice, one can fit several
increasing grid sizes to the data. If the results remain similar, this would indicate that a
good fit is obtained. Given the grid, calculating Kendall’s tau using our macro is done in
a fairly automated way. On a Pentium IV 2GHz, calculation of Kendall’s tau for a data
set of size 100 and 500 in our simulations took on average 2 and 3 minutes respectively.
The method of Betensky of Finkelstein[3] starts with modelling the bivariate survivor func-
tion, this may be done in a parametric or non-parametric way. The parametric approach
has the obvious drawback that choosing the correct distribution is hard especially with in-
terval censored observations. For the non-parametric fit, there are two drawbacks. First,



the non-parametric maximum likelihood estimate (NPMLE) is not necessarily unique for
interval censored data. Betensky of Finkelstein[3] do not describe how this affects their
estimator. Secondly, although some recent progress in the computation of the NPMLE
(e.g. [5], [15]) has been made, the estimation of the NPMLE is still quite computation-
ally intensive for large data sets. This implies for the analysis of emergence times of
the Signal-Tandmobiel R©study that the calculation of the NPMLE for a pair of teeth is
impossible with the current computing power due to an excessive large number of regions
of possible support. The procedure of Betensky of Finkelstein[3] can therefore even not
be performed with the NPMLE as starting point. Also we are not aware of a program
that is currently available to fit the method of Betensky of Finkelstein[3].
Further, for right censored data, Wang and Wells[19] reported that the estimator of
Oakes[16] is not consistent when the true value of τ is not equal to zero. The bias
even increases as the degree of dependence increases. As the estimator of Betensky of
Finkelstein[3] is based on Oakes’s approach, it is likely that their estimator is also bi-
ased when the true value of τ is not equal to zero. In their simulations, Betensky of
Finkelstein[3] only examine a situation where the true τ equals 0.224. For this setting,
the mean bias was limited to 0.01. Situations with a true higher association were not
examined. In our simulations, we obtained good results for all examined true τ ’s, i.e. up
to 0.65.
Often the problem of interval censored data is overcome by approximating the event
time by the midpoint of the interval. When applying this technique to the Signal-
Tandmobiel R©data quite large differences (up to 0.27) in the estimate of Kendall’s tau
were observed. Similar results were found by Parner et al.[17] who reported a bias in
Pearson’s correlation from 0.09 to 0.57. Therefore when trying to estimate an association
measure on bivariate interval censored data, an adequate technique should be used.
In conclusion, we provide a relative easy method for estimating a measure of association
for bivariate interval censored data. It performs well for both examined censoring schemes
(up to 40% right censoring) and a fine and wide enough grid must be taken. A grid of
size 20× 20 was sufficient for all our simulations.
Finally, one can also derive an estimate for Spearman’s correlation using our technique,
namely

ρ̂ = 12 ·
∑

i

∑
j

∑
k

∑
l

∑
p

∑
q

ĉij ĉklĉpqΦ(
µ1,i − µ1,p√

2σ1

)Φ(
µ2,j − µ2,q√

2σ2

)− 3.

Details are given in the Appendix.
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Appendix

Calculation of Kendall’s Tau in terms of the coefficients c

The population measure of Kendall’s tau for a cumulative distribution function F is
defined as τ = 4 ·

∫ ∫
F (x, y)dF (x, y)− 1. Denote by Φ2(µij , Σ) the cumulative bivariate

normal distribution with mean µij = (µ1,i, µ2,j) and variance-covariance matrix Σ =(
σ2

1 0
0 σ2

2

)
and let φ2(µij , Σ) denote the corresponding density. When we replace F

by the cumulative distribution of our smooth estimate in the expression of τ , so F̂ =∑
i

∑
j ĉijΦ2(µij , Σ), then we obtain

τ̂ = 4 ·
∫ ∫ ∑

i

∑
j

ĉijΦ2(µij , Σ) ·
∑

k

∑
l

ĉklφ2(µkl, Σ)dxdy − 1

= 4 ·
∑

i

∑
j

∑
k

∑
l

ĉij ĉkl

∫ ∫
Φ2(µij , Σ) · φ2(µkl, Σ)dxdy − 1

These integrals can be simplified using the fact that in the variance-covariance matrix Σ
zero correlation is assumed. Thus∫ ∫

Φ2(µij , Σ) · φ2(µkl, Σ)dxdy =∫ ∞

−∞

∫ x

−∞

1√
2π · σ1

exp

[
−1

2

(
z − µ1,i

σ1

)2
]

dz · 1√
2π · σ1

exp

[
−1

2

(
x− µ1,k

σ1

)2
]

dx×

∫ ∞

−∞

∫ y

−∞

1√
2π · σ2

exp

[
−1

2

(
z − µ2,j

σ2

)2
]

dz · 1√
2π · σ2

exp

[
−1

2

(
y − µ2,l

σ2

)2
]

dy

Using transformations these integrals can be converted to integrals of bivariate standard
normal densities with zero correlation, i.e.∫ ∞

−∞

∫ tσ1+µ1,i−µ1,k
σ1

−∞

1√
2π

exp

[
−1

2
z2

]
dz · 1√

2π
exp

[
−1

2
t2

]
dt×∫ ∞

−∞

∫ tσ2+µ2,j−µ2,l
σ2

−∞

1√
2π

exp

[
−1

2
z2

]
dz · 1√

2π
exp

[
−1

2
t2

]
dt

By taking advantage of the symmetry of the bivariate standard normal distribution, we
can rewrite this product of bivariate integrals as a product of univariate cumulative stan-
dard normal distributions.
Hence, finally

τ̂ = 4 ·
∑

i

∑
j

∑
k

∑
l

ĉij ĉklΦ(
µ1,i − µ1,k√

2σ1

)Φ(
µ2,j − µ2,l√

2σ2

)− 1.

Comparing Kendall’s tau between two independent groups

Assume we have two independent groups. Let τ1 and τ2 denote the true Kendall’s tau’s
in both groups. For a large enough number of observations in both groups (n1 and n2),



we have that τ̂i ∼ N (τi, σ
2
i /ni) for i=1,2. Therefore we can test H0 : τ1 = τ2 by a simple

two-sample Z-test. Namely Z = (τ̂1 − τ̂2)/
√

σ2
1/n1 + σ2

2/n2.

Calculation of Spearman’s correlation in terms of the coefficients
c

The population measure of Spearman’s correlation is defined as
ρ = 12 ·

∫ ∫
F1(x)F2(y)dF (x, y)− 3 where F (x, y) is the bivariate cumulative distribution

function and F1(x) and F2(y) are the corresponding univariate marginal distributions.
Using the same arguments as for the derivation of Kendall’s tau, one can derive that ρ
can be estimated by

ρ̂ = 12 ·
∑

i

∑
j

∑
k

∑
l

∑
p

∑
q

ĉij ĉklĉpqΦ(
µ1,i − µ1,p√

2σ1

)Φ(
µ2,j − µ2,q√

2σ2

)− 3.
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