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Summary. A fully Bayesian approach for an accelerated failure time model is proposed.

The model allows for structured correlated data by inclusion of a random effect part

that might depend on a general vector of covariates as in linear mixed models. The

error distribution is modelled as a normal mixture with an unknown number of compo-

nents. Also the means and variances are not specified to accommodate most continuous

distributions. A Markov chain Monte Carlo algorithm is described and the approach is

illustrated on two survival applications: (1) data giving times between recurrent events

for patients with chronic granulotomous disease; and (2) times to emergence of perma-

nent teeth. In the practical examples, we illustrate how a predictive error distribution,

and predictive survival or hazard curves for future observations can be obtained.
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Chain Monte Carlo; Survival Data.

1. Introduction

Correlated survival times are encountered in many medical problems, e.g. when there

are recurrent events on an individual or when the observations are clustered (multicenter

studies, multivariate survival times). When the effect of covariates on the survival time

is of interest, several approaches for right-censored correlated survival times have been

proposed (see, e.g., Hougaard, 2000) which are extensions of the Cox’s proportional

hazard model (Cox, 1972). Here we present a Bayesian accelerated failure time (AFT)

regression model allowing for possible correlation between the event times while making

only moderate distributional assumptions on the error term. Moreover, the approach

allows not only for right- or left-censored data but also for interval-censored data.

In an AFT model the covariates are assumed to speed up or slow down the expected

time to failure, see e.g. Kalbfleisch and Prentice (2002, Section 2.3.3). An extension of

the AFT model to incorporate correlated survival data could consist in including random

effects in the regression expression as in a classical linear mixed model (Laird and Ware,

1982), i.e.

log(Ti,l) = Yi,l = βTxi,l + bT
i zi,l + εi,l, i = 1, . . . , N, l = 1, . . . , ni, (1)

where Ti,l is the event time of the lth observation of the ith cluster or the time of

the lth recurrent event on the ith patient, Yi,l its logarithmic (or any other monotone)

transformation, β = (β1, . . . , βp)
T is the unknown regression coefficient vector, xi,l the

covariate vector for fixed effects, bi = (bi,1, . . . , bi,q)
T is the random effect vector causing

the possible correlation for the components of Y i = (Yi,1, . . . , Yi,ni
)T , zi,l is the covariate

vector for random effects and εi,l are independent and identically distributed random

variables. Along the lines of Gelman et al. (2004, Chapter 15) we use the terms ‘fixed’
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and ‘random’ effects throughout the paper even in a Bayesian context where all unknown

parameters are treated as random quantities.

For recurrent events, usually zi,l = 1 for all i and l and bi = bi,1 expresses an individual-

specific deviation from an overall mean log-event time which is not explained by fixed

effects covariates. For clustered data, the vector zi,l may define further sub-clusters

(as in the example of Section 6) allowing for closer dependence of observations within

sub-clusters given by common values of appropriate components of the vector bi while

keeping the dependence also across the sub-clusters through the correlation between the

components of bi.

Unlike for a classical linear mixed model where a normal distribution for the error

term εi,l is often a reasonable assumption there is no gold standard for the error distri-

bution when dealing with survival data so that semi-parametric procedures are usually

preferred. For uncorrelated survival data, a classical semi-parametric approach for fit-

ting AFT model is given by the Buckley and James (1979) method. Another classical

approach makes use of linear rank statistics (Louis, 1981; Tsiatis, 1990; Jin et al., 2003).

Recently, Komárek, Lesaffre and Hilton (2004) suggested an AFT model with a flexible

error distribution estimated by a penalized maximum likelihood method.

Early approaches to the semi-parametric AFT model with correlated survival times

Ti,1, . . . , Ti,ni
used a GEE approach (Liang and Zeger, 1986) with the model

log(Ti,l) = Yi,j = βTxi,l + εi,l, i = 1, . . . , N, l = 1, . . . , ni, (2)

see, e.g., Lin and Wei (1992) and Lee, Wei and Ying (1993). In the first step they es-

timate the regression coefficient β using a linear rank statistics approach and ignoring

the correlation. In the second step, they correct the standard errors using a GEE ap-

proach. However, ignoring the dependence generally does not take full advantage of the
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information in the data and is likely not to be efficient.

Methods that deal with the correlation among survival times in the estimation part

appeared more recently in the literature (Hornsteiner and Hamerle, 1996; Pan and

Kooperberg, 1999; Pan and Connett, 2001). They specify the AFT model as either (1)

or (2) and the estimation procedure generally iterates between (a) estimating the marginal

distribution of Yi,l − βTxi,l using either the Kaplan-Meier estimate or the bivariate

log-spline density estimate of Kooperberg (1998); (b) single imputation (Buckley and

James method) or multiple imputation (Rubin, 1987) of censored event times; (c) esti-

mation of regression coefficients β using methods for uncensored data (GEE of Liang and

Zeger, 1986 or maximum-likelihood). Since the same distribution of all Yi,l − βTxi,l =

(bT
i zi,l) + εi,l is required, only a univariate random effect bi with zi,l ≡ 1 in the model

specification (1) is allowed. A related approach was taken by Pan and Louis (2000) who

use a Monte Carlo EM algorithm (Tanner, 1996) in step (c). Again only a univariate

random effect with zi,l ≡ 1 is considered however the authors note that their approach

can be extended to accommodate more general zi,l.

With regard to Bayesian approaches to AFT modelling, semi-parametric approaches

were suggested by Christensen and Johnson (1988), Kuo and Mallick (1997) and Walker

and Mallick (1999), they used a Dirichlet process, a mixture of Dirichlet processes and

a Pólya tree, respectively for the error random variables εi,l. Only Walker and Mallick

(1999) relax the assumption of the independence of εi,l, i = 1, . . . , N, l = 1, . . . , ni and al-

low for clustered data. Recently, Kottas and Gelfand (2001), Hanson and Johnson (2002;

2004) contributed further to semi-parametric Bayesian AFT modelling. The former pa-

per uses a mixture of unimodal parametric densities or step-functions with a Dirichlet

process prior placed on the mixing distribution for the error distribution, the later two

papers further improves the proposal of Walker and Mallick (1999) by assuming a mixture
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of fully specified Pólya tree priors.

Clearly, there is a need for a method that allows the inclusion of a general covariate

vector zi,l to allow for more structured modelling of the correlation among the survival

times. To this end we have developed a full Bayesian model. We believe that the Bayesian

approach is particularly appealing here since it accommodates not only right- or left- but

also interval censoring without significant problems.

In this paper we suggest to model the distribution of the error term εi,l using a mixture

of normals to express in a parsimonious and flexible way most continuous distributions.

We will use the reversible jump MCMC approach (Green, 1995; Richardson and Green,

1997) to estimate the number of normal components as well as the normal distributions

themselves. However we will take a suitable parametric distribution for the random

effect term bi. The fact that we put more emphasis on a correct specification of the

distribution of the error term εi,l than on a specification of the distribution of random

effects bi is driven by the following reasoning.

For an AFT model, the regression parameters β express the effect of covariates (xi,l)

both conditionally (given bi) and marginally (after integrating bi out). Both interpreta-

tions do not change when different distributional assumptions are made on bi. Further,

with a correctly specified distribution of εi,l the conditional model is always correctly

specified. However, when the distribution of εi,l is incorrect neither conditional nor

marginal models are specified correctly. Further, Keiding, Andersen and Klein (1997)

show that for univariate (single-spell) Weibull AFT model the regression parameters are

robust against the misspecification of the frailty distribution. This finding, also for non-

Weibull models is further supported by the empirical results of Lambert et al. (2004).

Programs in C++ have been written with an interface to the R language (R Devel-

opment Core Team, 2004) as a contributed package bayesSurv and can be downloaded

5



together with a comprehensive description of how to perform analyzes presented in Sec-

tions 5 and 6 from the Comprehensive R Archive Network (CRAN) on http://www.R-project.org.

In the program, sampled values of model parameters are stored in files and can be sub-

sequently checked for the convergence using R packages coda or boa.

The paper is further organized in the following way. Section 2 describes the Bayesian

model in detail, the third section continues with description of prior and posterior distri-

butions of our model. The way to draw the inference of the model is outlined in Section 4.

Sections 5 and 6 are devoted to two real data illustrations. The paper is finalized by

a discussion.

2. A Bayesian AFT model

Assume that the true log-event time of the (i, l)th observation yi,l satisfies yL
i,l ≤ yi,l ≤ yU

i,l

whereby the observed log-event time is given by the pair (yL
i,l, y

U
i,l), −∞ ≤ yL

i,l ≤ yU
i,l ≤ ∞.

For an uncensored observation: yL
i,l = yU

i,l, for a right censored observation: yU
i,l = ∞ and

for a left censored observation: yL
i,l = −∞.

2.1 Error Structure

The density f(e) of the error term εi,l in model (1) is specified as

f(e) =

k
∑

j=1

wj ϕ(e | µj, σ
2
j ), (3)

with ϕ(· | µj, σ
2
j ) ≡ density of N(µj, σ

2
j ). Note that the number of mixture components,

k, is unknown as well as mixture weights w = (w1, . . . , wk)
T , means µ = (µ1, . . . , µk)

T ,

and variances σ2 = (σ2
1, . . . , σ

2
k)

T . Further, we may assume that εi,l i = 1, . . . , N,

l = 1, . . . , ni come from a heterogeneous population consisting of groups j = 1, 2, . . . , k

of sizes proportional to wj. Let ri,l denote the (unknown) label of the group from which

6



each random error variable εi,l is drawn, i.e.

p(ri,l = j | k,w) = wj, j = 1, . . . , k. (4)

Given the value of ri,l, the random error variable εi,l is drawn from N(µri,l
, σ2

ri,l
).

2.2 The Bayesian Hierarchical Model

Our Bayesian AFT model (1) has an hierarchical structure. We assume a directed

acyclic graph (DAG) structure for our model which is graphically represented in Fig-

ure 1 with the usual convention of graphical models that square boxes represent fixed or

observed quantities and circles the unknowns. As is indicated in the DAG, the unknown

parameters can be split into two parts connected only through the node of true log-event

times. The regression part of the model has a hierarchical model structure (see e.g.,

Gelman et al., 2004, Chapter 5). Unlike the classical hierarchical model, the error part is

somewhat more complicated and given by the structure outlined in Paragraph 2.1. In the

following section we will specify in detail the distributional aspects of the components in

Figure 1.

[Figure 1 about here.]

3. Prior and posterior distributions of the model

3.1 Log-event times

First of all, the conditional distribution of each (unknown) log-event time, nodes that

connect the regression and error parts of the DAG is

yi,l | ri,l,µ,σ
2,β, bi,xi,l, zi,l ∼ N(µri,l

+ βTxi,l + bT
i zi,l, σ

2
ri,l

) (5)

independently for i = 1, . . . , N, l = 1, . . . , ni.
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3.2 Regression part

Let X be an
∑N

i=1 ni × p matrix with vectors xT
1,1, . . . ,x

T
N,nN

as rows. Similarly, let Z

be an
∑N

i=1 ni × q matrix with vectors zT
1,1, . . . , z

T
N,nN

as rows. Further, we will assume

that the matrix (X,Z) is of full column rank (p+ q). In other words, covariates included

in xi,l are not included in zi,l and vice versa. This gives rise to hierarchical centering

which generally results in a better behavior of the MCMC algorithm (see Gelfand et al.,

1995). Finally, since a general density (3) does not have zero mean we do not allow a

column of ones in the matrix X.

The prior distribution for each regression coefficient βj, is assumed to be N(νβ,j, ψβ,j),

j = 1, . . . , p and the βj are assumed to be a priori independent. The vectors νβ =

(νβ,1, . . . , νβ,p)
T and ψβ = (ψβ,1, . . . , ψβ,p)

T are fixed hyperparameters.

The (prior) distribution for the random effect vector bi is assumed to be (multivariate)

normal, i.e.

bi | γ,D ∼ Nq(γ,D), independently for i = 1, . . . , N, (6)

where γ = (γ1, . . . , γq)
T . The prior distribution for each γj, is N(νγ,j, ψγ,j), independently

for j = 1, . . . , q. The vectors νγ = (νγ,1, . . . , νγ,q)
T and ψγ = (ψγ,1, . . . , ψγ,q)

T are fixed.

Special care is needed when the random intercept is included in the model (i.e. when

Z contains a column of ones, let say its first column). Hierarchical centering cannot be

applied in this case since the overall intercept is given by the mean of the mixture (3).

For that reason, γ1 is fixed to zero (or equivalently, νγ,1 = 0, ψγ,1 = 0).

Prior distribution for the covariance matrix D of random effects is assumed to be

an inverse-Wishart with τ ‘degrees of freedom’ (τ > q − 1) and a scale matrix S (pa-

rameterized such that the mean is (τ − q − 1)−1S). In a special case of a univariate

random effect (q = 1), we use d instead of D and s instead of S in the notation. Fur-
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ther, in the situation of q = 1, we considered alternatively (see Section 5) also the

use of a spread uniform prior for standard deviation of the random effect, i.e. a priori

√
d ∼ Uniform(0,

√
s) which is often considered to be a better choice (Gelman et al.,

2004, pp. 136, 390; Gelman, 2004). The node τ becomes redundant then.

3.3 Error part

Prior distributions of the parameters for the error distribution (3) of the AFT model (1)

are inspired by the work of Richardson and Green (1997) (with some change in notation).

We give a brief summary.

For the number of mixture components, k, we experimented with a Poisson distribu-

tion with mean equal to a hyperparameter λ truncated at some prespecified (relatively

large) value kmax and a uniform distribution on {1, . . . , kmax} (the node λ in the DAG

in Figure 1 becomes redundant then).

The prior for mixture weights w is taken to be a symmetric k-dimensional Dirichlet

with prior ‘sample size’ equal to a hyperparameter δ, i.e.

w |k, δ ∼ D(δ, δ, . . . , δ). (7)

Further, the mixture means µj and variances σ2
j are a priori all drawn independently

with normal and inverse-gamma priors

µj | k, ξ, κ ∼ N(ξ, κ) and σ2
j | k, ζ, η ∼ IG(ζ, η). (8)

As in Richardson and Green (1997) we let η have a gamma distribution G(g, h) with

fixed hyperparameters g and h, see the following section for more details.

Since the error model is invariant to permutations of labels j = 1, . . . , k, the joint prior

distribution of a vector µ is restricted to the set {µ : µ1 < · · · < µk} for identifiability

reasons (see Stephens, 2000 for other approaches to reach identifiability). The joint
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prior distribution of the mixture means and variances is thus k! times the product of

the individual normal and inverse-gamma densities, restricted to above mentioned set of

increasing means.

3.4 Censoring

To finalize the list of conditional distributions in the DAG, Figure 1 we have to specify

p(yL
i,l, y

U
i,l | yi,l, censoring). Firstly, the censoring mechanism in this paper is assumed to

be noninformative about the failure distribution. A box called ‘censoring’ in the DAG

represents a realization of the random variable(s) causing the censoring. Note that

there is no need to specify a measurement model for the censoring mechanism since

the inference relies on the posterior distribution of parameters given data and the data

consist of the realized censoring variables as well.

After omitting subscripts i, l for clarity, the form of p(yL, yU | y, censoring) is then

rather obvious for most censoring mechanisms. In the case of right censoring driven

by a censoring random variable C, p(yL, yU | y, c) is a Dirac density with P
[

(yL, yU) =

(y, y)
∣

∣y, c
]

= I[y ≤ c], P
[

(yL, yU) = (c,∞)
∣

∣ y, c
]

= I[y > c]. For interval censor-

ing resulting from a realization of random variables C1, . . . , Cm representing the times

when a failure status was checked (e.g. visits to a clinic or laboratory examination),

p(yL, yU | y, c1, . . . , cm) is again a Dirac density with P
[

(yL, yU) = (cj, cj+1)
∣

∣ y, c1, . . . , cm
]

=

I[cj < y ≤ cj+1], j = 0, . . . , m with c0 = −∞, cm+1 = ∞.

3.5 Weak Prior Information

In this paper, we have opted for specifying weak prior information on the parameters

of interest. When a priori information is available, our prior assumptions could be

appropriately modified.

For the regression part of the model, we use non-informative, however proper dis-
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tributions, that is, the prior variances of regression parameters β (ψβ) and γ (ψγ) are

chosen such that the posterior variance of the regression parameters is at least 100 times

lower (which must be checked from the results). Prior hyperparameters for the covari-

ance matrix D giving a weak prior information correspond to choices of τ = q − 1 + d

and S = diag(d, . . . , d) with d being a small positive number.

In the error part of the model, it is not possible to be fully non-informative, i.e. to use

priors p(µ,σ2 | k) ∝ 1 ×∏k

j=1 σ
−2
j and to obtain proper posterior distributions (Diebolt

and Robert, 1994; Roeder and Wasserman, 1997). Richardson and Green (1997) offer, in

the context of i.i.d. observations, for say e1, . . . , en, the following alternative: A rather

flat prior N(ξ, κ) for µj is achieved by letting ξ equal to ē = n−1
∑n

j=1 ej and setting κ

equal to a multiple of R2, where R = max(ei) − min(ei). They further point out that

it might be restrictive to suppose that knowledge of the range or variability of the data

implies much about the size of each single σ2
j and therefore introduced an additional

hierarchical level by allowing η to follow a gamma distribution with parameters g and

h. They further recommend taking ζ > 1 > g to express the belief that the σ2
j are

similar, without being informative about their absolute size and setting the parameter h

to a small multiple of 1/R2. Here, the residuals yi,l − βTxi,l − bT
i zi,l play the role of the

observations ei. A rough estimate of their location and scale can be obtained through

a maximum-likelihood fit of the AFT model, even without random effects. (the scale of

residuals can only increase), with explicitly included intercept and scale parameters in

the model. This can be done using standard software packages as R, Splus, SAS. The

estimated intercept from this model can then be used instead of ē and a multiple of the

estimated scale parameter instead of R.
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3.6 Posterior distribution

For our Bayesian AFT model, the joint posterior distribution, with omitted hyper-

parameters for a clarity, is given by

p
(

{yi,l}i,l, w, µ, σ
2, {ri,l}i,l, k, η, β, γ, {bi}i, D

∣

∣

∣

{(yL
i,l, y

U
i,l)}i,l, censoring, {xi,l}i,l, {zi,l}i,l

)

∝

∝
N
∏

i=1

ni
∏

l=1

{

p(yL
i,l, y

U
i,l | yi,l, censoring) × p(yi,l | µ, σ2, ri,l, β, bi, xi,l, zi,l)

}

×

×
N
∏

i=1

ni
∏

l=1

p(ri,l | k, w) × p(µ | k) × p(σ2 | k, η) × p(η) × p(w | k) × p(k)×

× p(β) ×
N
∏

i=1

p(bi | γ, D) × p(γ) × p(D), (9)

where all conditional distributions follow directly from Section 2.

4. Markov chain Monte Carlo

A convenient way to get posterior quantities of interest is by means of MCMC methods,

see, e.g. Besag et al. (1995). In our problem, the regression part of the model is

updated using the Gibbs sampler (Geman and Geman, 1984). The same approach is

used to update the true log-event times yi,l and the parameters from the error part of

the model whose dimension does not depend on k (η, ri,l, i = 1, . . . , N, l = 1, . . . , ni). The

parameters w,µ,σ2 and k itself are updated by a reversible jump MCMC algorithm of

Green (1995).

Details of the implementation of both the reversible jump MCMC algorithm for pa-

rameters of the varying dimension and the Gibbs steps for the remaining parameters

of the error part of the model are given in Richardson and Green (1997). Their guide-

lines, now based on residuals ei,l = yi,l − βTxi,l − bT
i zi,l can be immediately applied

with some obvious changes in notation. For the actual implementation of the reversible

jump MCMC algorithm we additionally employed the auxiliary variable (AV) method
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of Brooks et al. (2003, Section 9) for the dimension changing steps (split-combine and

birth-death moves).

The full conditional distributions of the parameters from the regression part of the

model and of true log-event times needed to implement the Gibbs sampler follow. The

notation | . . . indicates that conditioning is done on all remaining parameters.

4.1 True log-event times yi,l

The full conditional distribution of each yi,l is a truncated normal, i.e.

yi,l | · · · ∼ N(µri,l
+ βTxi,l + bT

i zi,l, σ
2
ri,l

) truncated on (yL
i,l, y

U
i,l]. (10)

4.2 Fixed effects β

Let β(S) be an arbitrary subvector of vector β, and xi,l(S) the corresponding sub-

vectors of covariate vectors xi,l, and further xi,l(−S) their complementary subvectors.

Similarly, let further νβ(S) and ψβ(S) be appropriate subvectors of hyperparameters νβ

and ψβ, respectively. Finally, let Ψβ(S) = diag(ψβ(S)). Then

β(S) | · · · ∼ N
(

E[β(S) | · · · ], var[β(S) | · · · ]
)

, (11)

with var[β(S) | · · · ] =
(

Ψ−1
β(S) +

N
∑

i=1

ni
∑

l=1

σ−2
ri,l
xi,l(S)x

T
i,l(S)

)

−1

,

E[β(S) | · · · ] = var[β(S) | · · · ] ×
{

Ψ−1
β(S)νβ(S) +

N
∑

i=1

ni
∑

l=1

σ−2
ri,l
xi,l(S)e

(F )
i,l(S)

}

,

where e
(F )
i,l(S) = yi,l − µri,l

− βT
(−S)xi,l(−S) − bT

i zi,l.

4.3 Means of random effects γ

Let γ = (γT
(S),γ

T
(−S))

T . More general case with unsorted components of the γ vector

is obtained obviously with some costs on ease of notation. Analogically as above, let

bi(S), bi(−S), νγ(S), ψγ(S) the corresponding subvectors or complementary subvectors of
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indicated quantities and Ψγ(S) = diag(ψγ(S)). Further, let the inversion of the matrix D

be decomposed in the following way.

D
−1 =

(

V(S) V(S,−S)

VT
(S,−S) V(−S)

)

. (12)

Then

γ(S) | · · · ∼ N
(

E[γ(S) | · · · ], var[γ(S) | · · · ]
)

, (13)

with

var[γ(S) | · · · ] =
(

Ψ−1
γ(S) +N V(S)

)

−1

,

E[γ(S) | · · · ] = var[γ(S) | · · · ] ×
{

Ψ−1
γ(S)νγ(S) + V(S)

N
∑

i=1

bi(S) + V(S,−S)

N
∑

i=1

(

bi(−S) − γ(−S)

)

}

.

4.4 Random effects bi

For the random effects vectors bi :

bi | · · · ∼ N
(

E[bi | · · · ], var[bi | · · · ]
)

, i = 1, . . . , N, (14)

with var[bi | · · · ] =
(

D
−1 +

N
∑

i=1

ni
∑

l=1

σ−2
ri,l
zi,lz

T
i,l

)

−1

,

E[bi | · · · ] = var[bi | · · · ] ×
{

D
−1γ +

N
∑

i=1

ni
∑

l=1

σ−2
ri,l
zi,l(yi,l − µri,l

− βTxi,l)
}

.

4.5 Covariance matrix of random effects D

Finally, D | · · · is an inverse-Wishart distribution with degrees of freedom equal to

τ +N and a scale matrix equal to S +
∑N

i=1(bi − γ)(bi − γ)T .

5. CGD data: recurrent events analysis

The first real data example uses the data set from a multicenter placebo-controlled ran-

domized trial of gamma inferon in patients with chronic granulotomous disease (CGD).

The data set can be found in Appendix D.2 of Fleming and Harrington (1991). There
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were 128 patients randomized to either gamma inferon (n = 63) or placebo (n = 65). For

each patient the times from study entry to initial and any recurrent serious infections

are available. There is a minimum of one and a maximum of eight (recurrent) infection

times per patient, with a total of 203 records.

The problem of recurrent events in this data set was discussed by several authors.

Among others, Therneau and Hamilton (1997) used the CGD data to illustrate several

approaches for recurrent event analysis based on the Cox’s proportional hazards (PH)

model (Cox, 1972). Vaida and Xu (2000) used this dataset to illustrate the PH model

with random effects. They specify the hazard function for the (i, l)th event as ~i,l(t) =

~0(t) exp(βTxi,l + bizi,l) and use a normal distribution for bi.

In this section, we present AFT model (1) with response the time from entry or

previous infection to the next infection in days. Each patient represents a cluster, i.e.

i = 1, . . . , 203, l = 1, . . . , ni, ni ≤ 8. Dependencies between the times of recurrent events

of one patient are introduced by a univariate random effect bi with zi,l = 1 for all i and

l. As fixed effects covariates, we used the same covariates as Vaida and Xu (2000), see

Table 1 for their list.

[Table 1 about here.]

The initial maximum-likelihood AFT model with a normal error distribution and

without random effects gave an estimate of the intercept equal to 3.66 and a scale equal

to 1.69. Along the suggestions made in Section 3.5 we used the following values of

hyperparameters: ξ = 3.66, κ = 25 ≈ (3 · 1.69)2, ζ = 2, g = 0.2, h = 0.1, δ = 1. For the

number of mixture components, k, a truncated Poisson prior with λ = 5 reflecting our

prior belief that the error distribution is skewed and kmax = 30 was used. Prior means

of all regression parameters were equal to 0 and their prior variances to 1000.
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For the variance d of the random effect we tried either an inverse-gamma(0.001, 0.001)

prior (τ = 0.002, s = 0.002 in the terms of the inverse-Wishart distribution used in the

DAG, Figure 1) or a uniform Unif(0,
√
s) prior on

√
d (Gelman et al., 2004, pp. 136, 390)

with s equal to 1002, 502 and 102. Different priors for this parameter had only negligible

effect on the posterior distributions of all remaining parameters. However, the posterior

distribution of d was strongly driven by the inverse-gamma prior (showing two modes,

one of them located close to zero). This was not the case when the uniform prior was

used. Additionally, all uniform priors led to essentially identical posterior distributions.

All results presented below are then based on Unif(0, 100) prior on
√
d.

Posterior summary statistics of the model can be found in Table 1. It is seen that

the treatment significantly increases the time to the infection. Further, the posterior

mean of exp
{

β(trtmt)
}

is equal to 4.01 with 95% CI = (1.60, 9.18) which means that

on average, the treatment increases the time to the next event 4.01 times.

Further, the first panel of Figure 2 shows posterior means and 95% posterior credibil-

ity intervals of random effects bi for all patients, sorted according to number of infections

they underwent. It is clearly seen that the random effects of patients with higher num-

bers of total infections on average decrease (consequently the same is true for the time

to the next event).

[Figure 2 about here.]

5.1 Predictive error densities

Averaging the error density (3) across the MCMC run, conditionally on fixed values

of k, gives a Bayesian predictive error density estimate of the mixture with k components,

i.e. an estimate of E
{

f(· |k,w,µ,σ2 )
∣

∣ k, data
}

. Averaging further across values of k

gives an estimate of E
{

f(· |k,w,µ,σ2 )
∣

∣ data
}

, the overall Bayesian predictive density
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estimate of the error distribution. In our sample, the number of mixture components k

ranged from 1 to 18 while mixtures with k ∈ {4, 5, 6, 7} occupied each more than 10%

of the sample, with the highest frequency for k = 6 (13.0%). Mixtures with k ≥ 11

took each less than 3% of the sample. Apparently, the model did not suffer from the

technical restriction given by kmax = 30. Predictive error density estimates are shown in

the second panel of Figure 2. Note that only k ∈ {1, 2} (14.8% of the sample) gives an

appreciably different estimate from the unconditional estimate and conditional estimates

for 3 ≤ k ≤ 10 (79.3% of the sample).

5.2 Predictive survivor curves

Further, we present estimates of predictive survivor curves for a specific value of

covariates, say xnew and znew. Denoting all unknown quantities in the model by θ and

omitting xnew and znew in the notation, the predictive survivor function is given by

S(t | data) =

∫

S(t | θ, data) p(θ | data) dθ

for any t > 0. Further

S(t | θ, data) = S(t | θ) =

k
∑

j=1

wj

[

1 − Φ
{

log(t) − βTxnew − bTznew

∣

∣ µj, σ
2
j

}

]

,

where Φ(· | µj, σ
2
j ) is a cumulative distribution function of N(µj, σ

2
j ). The MCMC esti-

mate of the predictive survivor function is then given by

Ŝ(t | data) = M−1
M
∑

m=1

k(m)
∑

j=1

w
(m)
j

[

1 − Φ
{

log(t) − β(m)Txnew − b(m)Tznew

∣

∣ µ
(m)
j , σ

(m)2
j

}

]

,

where M denotes number of MCMC iterations. All quantities are available, except b(m).

This must be additionally sampled from Nq(γ
(m), d(m)). Predictive survivor curves for

males and females taking treatment or placebo while controlling for remaining covariates

are shown in the left part of Figure 3.

[Figure 3 about here.]
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5.3 Predictive hazard functions

Also predictive hazard functions can be computed. For any t > 0

~(t | θ, data) = ~(t | θ) =
p(t | θ)

S(t | θ) ,

where p(t | θ) = t−1
∑k

j=1wjϕ
{

log(t)−βTxnew−bTznew | µj, σ
2
j

}

. The MCMC estimate

of the predictive hazard function is then given by

~̂(t | data) = M−1

M
∑

m=1

t−1
∑k(m)

j=1 w
(m)
j ϕ

{

log(t) − β(m)Txnew − b(m)Tznew

∣

∣ µ
(m)
j , σ

(m)2
j

}

∑k(m)

j=1 w
(m)
j

[

1 − Φ
{

log(t) − β(m)Txnew − b(m)Tznew

∣

∣ µ
(m)
j , σ

(m)2
j

}

] .

Predictive hazard curves for same combination of covariates as before are shown in the

right part of Figure 3.

6. Signal Tandmobielr: interval-censored clustered data

In the second example, we show an analysis of a subset of the Signal Tandmobielr

dataset (Vanobbergen et al., 2000) involving clustered interval-censored observations.

This dental longitudinal study performed in Flanders in 1996–2001 collected oral health

data at tooth and tooth-surface level from schoolchildren born in 1989. The children

were examined annually by one of 16 dentists. Annual examinations give then rise to

interval censoring. In this paper, we analyzed a random sample of 500 boys and 500

girls.

Lesaffre, Komárek and Declerck (2004) analyzed the effect of gender and caries on

the primary predecessor (described by a binarised dmf score) on the emergence time of

the permanent premolars given in years (teeth 14, 15, 24, 25, 34, 35, 44, 45 in European

dental notation). For each tooth separately they used the penalized AFT model of

Komárek et al. (2004). With the current Bayesian approach, all eight teeth can be

analyzed jointly while accounting for possible correlation among teeth of a single child.

The cluster is constituted by a child now (i = 1, . . . , 1 000, l = 1, . . . , 8). Based on
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a preliminary modelling we will assume so called horizontal symmetry, i.e. the same

emergence distribution is assumed for left and right tooth at the same position of the

jaw (e.g. for teeth 14 and 24). For a better fit, we shifted the time origin of the AFT

model to 5 years of age, i.e. by replacing Ti,l by Ti,l − 5 in the model (1).

The random effect vector bi = (bi,1, . . . , bi,4)
′ with zi,l = (1, man4i,l, max5i,l, man5i,l)

′

where man4i,l, max5i,l, man5i,l, respectively are dummies for the mandibular first pre-

molars (teeth 34, 44), maxillary second premolars (teeth 15, 25) and mandibular second

premolars (teeth 35, 45), respectively is assumed in the model (1). With such model

specification, apart of the random variation given by the error term εi,l, the terms

di,max4 = bi,1, di,man4 = bi,1 + bi,2, di,max5 = bi,1 + bi,3, di,man5 = bi,1 + bi,4 determine

how the log-emergence time of a pair of horizontally symmetric teeth of a single child

differ from the population average. Observe that our model allows an unstructured co-

variance matrix for the emergence times, apart of course from the assumed horizontal

symmetry. As the fixed effects we used gender ≡ girl, dmf and all two-way interaction

terms between girl, dmf and dummies for the pairs of horizontal symmetric teeth.

The same guidelines as in the case of CGD data were used to specify prior hyperpa-

rameters leading to ξ = 1.8, κ = 0.752, ζ = 2, g = 0.2, h = 0.1, δ = 1, λ = 5, kmax = 30.

For the covariance matrix D of random effects we used an inverse Wishart prior with

τ = 4 which is a minimal possible value for prior degrees of freedom. Though, due to

the fact that 1 000 clusters are involved in the data set even a higher value could be used

with a negligible impact on results. Prior scale matrix S was equal to diag(0.002) (cor-

responding to inverse-gamma(τ, 0.001) in the univariate case). All β and γ parameters

were assigned a spread N(0, 100) prior.

In this analysis, the main interest lies in the effect of dmf on emergence. This

can be evaluated from Table 2 that shows posterior summary statistics for the effect
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of dmf > 0 (appropriate linear combinations of β parameters) for the two genders

and the four pairs of horizontally symmetric teeth. It is seen that caries on the primary

predecessor accelerates significantly the emergence of the permanent successor in the case

of maxillary teeth. For the mandibular teeth, a slight effect is observed only for the first

premolar on boys. Further, Figure 4 shows predictive cumulative distribution functions

which are preferred in dentistry to the survival functions in the case of emergence and

are known as emergence curves. Clearly, besides the effect of dmf the emergence process

for girls is ahead of boys.

[Table 2 about here.]

[Figure 4 about here.]

Finally, Table 3 shows posterior summary statistics for variances and correlations of

above defined tooth-specific linear combinations di,max4, di,man4, di,max5, di,man5 of random

effects bi,1, . . . , bi,4. It shows how the child effect is important and how the different teeth

in one mouth are strongly correlated. The posterior means of all variance parameters in

Table 3 are all about 0.2 which is much higher than the posterior mean of the variance

of the error distribution which was equal to 0.01. Posterior means of all correlation

parameters lie between 0.79 and 0.91.

[Table 3 about here.]

7. Discussion

We have proposed a Bayesian accelerated failure time model whose error distribution is

modelled in a flexible way as a finite normal mixture. An advantage of the full Bayesian

approach is the fact that a general random effect vector can be easily included in the

model. Further, interval-censored data do not convey any complexity to both algebra

20



and computation and finally, the MCMC sampling-based implementation of the model

offers straightforward ways to obtain credibility intervals of model parameters as well

as predictive survivor or hazard curves. The advantage of our approach, compared to

semi-parametric (Bayesian) AFT models is the availability of the estimate of the error

distribution which can serve as a basis for fully parametric models that, if appropriately

used, can result in higher efficiency of the inference.
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Table 1

CGD Data. Posterior means, 95% equal-tail credibility intervals and Bayesian p-values

for regression parameters β: trtmt = treatment (yes), inher = pattern of inheritance

(autosomal recessive), age = age in years, cortico = use of corticosteroids (yes),

prophy = use of prophylactic antibiotics (yes), gender = female, hosp1 = hosp.

category US – other, hosp2 = hosp. category Europe – Amsterdam, hosp3 = hosp.

category Europe – other. Posterior summary statistics for intercept = mean of the

error distribution, scale = standard deviation of the error distribution and standard

deviation of the random effect.

trtmt inher age cortic

1.303 −0.885 0.047 −2.533

(0.496, 2.214) (−1.812, 0.035) (0.005, 0.093) (−5.311, −0.106)

p = 0.001 p = 0.059 p = 0.027 p = 0.04

prophy gender hosp1 hosp2

1.111 1.369 0.466 1.589

(0.069, 2.265) (0.03, 2.821) (−0.464, 1.473) (0.143, 3.265)

p = 0.036 p = 0.045 p = 0.333 p = 0.031

hosp3 intercept scale std. dev. of bi,1

1.213 3.852 1.871 0.826

(−0.071, 2.625) (2.213, 5.465) (1.259, 3.321) (0.197, 1.473)

p = 0.063
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Table 2

Signal Tandmobielr data. Posterior means, 95% equal-tail credibility intervals and

Bayesian p-values for the effect of dmf > 0 for the two genders and different teeth.

maxilla 4 maxilla 5

girl boy girl boy

−0.0352 −0.0457 −0.0213 −0.0318

(−0.0522, −0.0185) (−0.0631, −0.0284) (−0.0390, −0.0035) (−0.0500, −0.0135)

p = 0 p = 0 p = 0.019 p = 0.001

mandible 4 mandible 5

girl boy girl boy

−0.0098 −0.0203 0.0014 −0.0090

(−0.0267, 0.0070) (−0.0378, −0.0032) (−0.0162, 0.0193) (−0.0283, 0.0098)

p = 0.255 p = 0.021 p = 0.870 p = 0.353

Table 3

Signal Tandmobielr data. Posterior means, 95% equal-tail credibility intervals for

variances and correlations between tooth-specific linear combinations of random effects.

var(dmax4) var(dman4) var(dmax5) var(dman5)

0.204 0.198 0.205 0.202

(0.192, 0.218) (0.186, 0.211) (0.190, 0.221) (0.187, 0.218)

cor(dmax4, dman4) cor(dmax4, dmax5) cor(dmax4, dman5) cor(dman4, dmax5)

0.886 0.914 0.841 0.792

(0.856, 0.914) (0.887, 0.938) (0.804, 0.874) (0.749, 0.832)

cor(dman4, dman5) cor(dmax5, dman5)

0.895 0.847

(0.864, 0.923) (0.810, 0.880)
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Figure 1. DAG for the Bayesian AFT model.
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Figure 2. CGD Data – Recurrent Events Analysis. (a) posterior means and 95% PCI

for random effects bi; (b) predictive error densities; solid line: unconditionally, dotted

line: k = 1, 2, dotted-dashed line: k = 3, 4, dashed line: k = 5 − 10.
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Figure 3. CGD Data – Recurrent Events Analysis. (a) predictive survivor and (b) haz-

ard curves for males and females taking either treatment or placebo Remaining covariates

were fixed to either mean value (age = 14.6) or to most common value (X-linked pattern

of inheritance, no use of corticosteroids, use of prophylactic antibiotics and a hospital

category US-other).
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Figure 4. Signal Tandmobielr data. Predictive emergence curves, dotted-dashed line

for girls with dmf > 0, dotted line for girls with dmf = 0, dashed line for boys with

dmf > 0 and solid line for boys with dmf = 0.
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