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ABSTRACT: We developed a semi-parametric procedure to estimate parameters of an accelerated failure

time model. To express the density of the error distribution, we use the P-spline (B-splines with penalties)

smoothing technique of Eilers and Marx (1996). To accommodate error densities with infinite support and for

other reasons, we replace the B-splines with their limits as the degree of the B-spline goes to infinity; namely,

with normal densities. The spline coefficients as well as any number of regression parameters are quickly and

accurately estimated via penalized maximum likelihood. The method directly provides predictive survival

distributions for fixed values of covariates while allowing for left-, right-, and interval-censored data. The

approach has been implemented as an R library and is applied here to the problem of predicting AIDS-free

survival in the presence of interval censoring.
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1 Introduction

The aim of this article is to present the penalized Gaussian mixture method for analysing survival

data using an accelerated failure time (AFT) model with the following characteristics: (1) the

baseline survival distribution does not have to be specified; (2) it is directly estimated, thus allowing

for prediction; and (3) not only right-censored but also left- and especially interval-censored data

can be handled.

The accelerated failure time (AFT) model has a respected role in survival analysis today even

though it is used far less broadly than Cox’s proportional hazards (PH) model (Cox, 1972). Whereas

Cox’s model relates the hazard function to covariates, the AFT model postulates a direct relationship

between the time to event and covariates. It specifies that the effect of a vector of fixed covariates x

acts multiplicatively on the time to event T, or additively on Y = log(T ) as

log(T ) = α + β′x + σε, (1)

where α and β are regression parameters, σ is a scale parameter, and ε is the random error with

density f(e).

Classical semi-parametric approaches to the AFT model that emphasize estimation of the re-

gression parameters β include the method of Buckley and James (1979) and linear-rank-test-based

estimators (see Chapter 7 of Kalbfleisch and Prentice (2002) for a comprehensive exposition and

references). A drawback of the Buckley-James method is that it may fail to converge or may os-

cillate among several solutions. A drawback of linear-rank-test-based estimators is that only with

considerable difficulties can they be extended to handle interval-censored data. Rabinowitz, Tsiatis,

and Aragon (1995) and Betensky, Rabinowitz, and Tsiatis (2001) consider linear-rank-test-based

estimation in the AFT model under interval censoring. Their method is computationally tractable

only with a low dimensional covariate vector x. A closely related approach is semi-parametric me-

dian regression with censored data in which the median rather than the mean of the (log)-event

times is expressed as a linear function of covariates (Ying, Jung, and Wei, 1995; Yang, 1999; and

McKeague, Subramanian, and Sun, 2001). However, all of the above-mentioned semi-parametric
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methods become computationally intractable when the dimension of the covariate vector increases

and only handle interval censoring with great difficulty. Furthermore, these methods do not provide

an estimate of the baseline error distribution, which rules out their use for prediction purposes.

In contrast to frequentist approaches, Bayesian methods easily handle all types of censoring

by incorporating true event times as parameters in the model and treating them in the same way

as unknown covariate parameters. Bayesian semi-parametric AFT models are described by Chris-

tensen and Johnson (1988), Johnson and Christensen (1989), Kuo and Mallick (1997), Walker and

Mallick (1999), Kottas and Gelfand (2001), and Hanson and Johnson (2002). Recently, Hanson

and Johnson (2004) presented a Bayesian AFT model with an explicit treatment of interval censor-

ing. However, here we concentrate on classical maximum-likelihood-based estimation, which some

statisticians prefer over Bayesian methods.

Regardless of whether the baseline distribution is either not specified (in the case of the Cox’s

PH model) or is modelled flexibly (in the case of the AFT model, as in this paper), both the AFT

and the PH models make specific assumptions regarding the effects of covariates on the respective

baseline hazard and survival distributions. To weaken reliance on such assumptions, a general

extended hazard regression model, encompassing both PH and AFT models, was suggested by

Etezadi-Amoli and Ciampi (1987) and was studied further by Shyur et al (1999) and Chen and

Jewell (2001). The first two papers use quadratic splines to express the baseline hazard function and

then maximum-likelihood to estimate regression parameters. Prediction can be carried out easily

and interval censoring poses no difficulties. The last paper presents a method which is in the mood

of linear-rank-test-based estimators for AFT models, with all the drawbacks described earlier.

Apart from the fact that we accommodate only the AFT model, our approach could be considered

a competitor to the approaches of Etezadi-Amoli and Ciampi (1987) and Shyur et al (1999). Whereas

they use splines to express the baseline hazard function, we exploit them to flexibly model the density

of the baseline log-event times. Additionally, instead of estimating the positions of the knots of the

splines, we use penalized splines which fix the locations of the knots.

The second section describes the penalized Gaussian mixture method in detail. Section 3 gives
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the inference based on our method. Results of a simulation study that evaluates performance of

the method is given in Section 4. The fifth section continues with an illustration of the use of the

method using a real data example. Section 6 finalizes the paper with further discussion.

2 Penalized Gaussian mixture method

2.1 Density of the error term

The motivation for our method stems from exploiting penalized B-splines (P-splines) to smooth the

error density f(e) (see de Boor, 1978; and Dierckx, 1993 for more details on B-splines; and Eilers

and Marx, 1996 for the concept of P-splines). To model a density, it is advantageous to replace the

B-spline basis by a set of Gaussian densities for the following reasons. Firstly, the error density f(e)

is usually viewed as having an infinite support; however, this is not provided by a B-spline basis,

which is equal to zero below and above the boundary knots. Secondly, a basis formed by Gaussian

densities covers the standard parametric log-normal AFT model as a special case. Further, such an

approach can be viewed as the limiting case of B-spline smoothing, since an appropriately normalized

B-spline basis converges uniformly on R (as its degree tends to infinity) to a Gaussian density (see

Unser et al (1992) for details).

We express the density of the error term in the AFT model (1) as

f(e|c) =

g∑

j=1

cjϕµj ,σ2

0

(e), (2)

where ϕµj ,σ2

0

(e) is the Gaussian density with mean µj and variance σ2
0 , and c = (c1, . . . , cg)

T are

mixture coefficients that have to be estimated. Values of µ1, . . . , µg and σ2
0 are fixed by design,

as explained below. When used in this context, we call the basis functions ϕµj ,σ2

0

basis Gaussian

densities, or briefly BG-densities.

The role of fixed knots in spline smoothing is played by the means µ1 < · · · < µg in our approach.

Choosing the optimal number and positions of knots are generally complex tasks. Too many knots

leads to overfitting the data; too few leads to underfitting and inaccuracy. In our method, we build

on the proposals of O’Sullivan (1986, 1988) and of Eilers and Marx (1996). O’Sullivan suggested
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taking relatively many knots and restricting the flexibility of the fitted curve by putting a penalty on

the second derivative of the spline function. Eilers and Marx extended this approach in the context

of B-splines, using penalty terms based on squared finite higher-order differences between adjacent

mixture coefficients cj . They then maximized the penalized log-likelihood instead of the ordinary

log-likelihood function when estimating parameters. We also adopted Eilers and Marx’s suggestion

to use equidistant knots.

It is important to stress that a mixture of BG-densities is different from a classical Gaussian

mixture. With our BG approach, invariably a relatively large but fixed number of mixture compo-

nents is needed and the smoothness of the resulting error distribution is optimized via a penalty

term on the log-likelihood. Our fine grid of knots prevents inaccuracy in the estimate of the error

density, while our penalization of the log-likelihood inhibits overfitting. In contrast, in the case of

a classical Gaussian mixture the number of mixture components must be estimated, along with the

means and the standard deviations of the Gaussian components. Although our model still requires

estimation of a relatively large number of parameters, maximization of the (penalized) log-likelihood

remains fairly straightforward and does not require an EM-type algorithm or a numerical search for

the optimal number of mixture components.

With respect to the actual values of the knots and of the basis standard deviation σ0 we adopted

the following procedure. Since f(e|c) is a standardized density, taking the range of knots from −6

to 6 is broad enough even for distributions with heavy tails such as the extreme value distribu-

tion. A distance of 0.3 between two consecutive knots is small enough to approximate f(e|c) with

satisfactory precision, as will be illustrated in the next paragraph. Furthermore, with a choice of

σ0 = 2/3 (µj+1 − µj), each BG-density overlaps with its 6 neighbors practically as the cubic basis

B-spline does (with choice of σ0 as above, a BG-density is practically zero outside (µj−2, µj+2)) just

as a normal density is practically zero outside µ ± 3σ0).

As an illustration, we computed the L2-distance between the standard Gaussian density and

its best approximation using a mixture of BG-densities with µ1 = −6, µg = 6, different choices of

δ = µj+1 − µj , and σ0 = 2/3 δ. This distance is equal to 0.00570 for δ = 1 (g = 13), and drops to
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0.00104 for δ = 0.75 (g = 17). When plotted, the mixture of BG-densities is indistinguishable from

the Gaussian density at δ = 0.75. Further, for δ equal to 0.5 (g = 25), 0.4 (g = 31), 0.3 (g = 41), 0.2

(g = 61), and 0.1 (g = 121) we obtain distances of 0.00031, 0.00022, 0.00017, 0.00014, and 0.00012,

respectively. Clearly, the choice of δ = 0.3 yields very precise correspondence between the mixture

of BG-densities and the normal density.

To ensure that f(e|c) is a density function, some constraints must be imposed on the mixture

coefficients c, i.e.,
g∑

j=1

cj = 1, cj > 0 (j = 1, . . . , g).

To avoid constrained maximization, one can use an alternative parametrization based on coeffi-

cients a,

cj(a) =
exp(aj)∑g
l=1 exp(al)

(j = 1, . . . , g),

with one of the aj ’s fixed to a particular value, say ag = 0.

Further, rendering the intercept α and the scale σ identifiable requires that the first two moments

of the density (2) be fixed, i.e.,

E(ε|a) =

g∑

j=1

cj(a)µj = 0, var(ε|a) =

g∑

j=1

cj(a)(µ2
j + σ2

0) = 1. (3)

It is easily seen that the basis standard deviation σ0 must be smaller than one to be able to satisfy

the variance constraint. Finally, the two equality constraints (3) can be avoided if two coefficients,

say, ag−2 and ag−1, are expressed as functions of the remaining coefficients, denoted together as

a vector d = (a1, . . . , ag−3)
′:

ak(d) = log
{
ωg,k +

g−3∑

j=1

ωj,k exp(aj)
}

(k = g − 2, g − 1), (4)

with

ωj,g−2 = − µj − µg−1

µg−2 − µg−1
· 1 − σ2

0 + µg−1µj

1 − σ2
0 + µg−1µg−2

,

ωj,g−1 = −ωj,g−2 ·
µg−2

µg−1
− µj

µg−1
(j = 1, . . . , g − 3, g).

To reflect implementation of these three constraints, the density of the error distribution, a mixture

of BG-densities, subsequently will be denoted as f(e|d) =
∑g

j=1 cj(d)ϕµj ,σ2

0

(e) rather than f(e|c).
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All parameters in the model (transformed mixture coefficients d; regression parameters α, β; and

log-scale log(σ)) are estimated by means of a penalized maximum likelihood method. In the next

section, we construct the penalized log-likelihood function which consists of an ordinary log-likelihood

and a difference penalty for the transformed spline coefficients. The penalized log-likelihood is

subsequently maximized to obtain the estimates. Hence, we call our approach the penalized Gaussian

mixture method (PGM method).

2.2 Penalized maximum-likelihood

2.2.1 Penalized log-likelihood

Let θ be the vector of all unknown parameters to be estimated, i.e., θ = (α, β′, log(σ), a1, . . . , ag−3)
′.

Let `i(θ) = `i(yi|θ) (i = 1, . . . , n) denote the ordinary log-likelihood contribution of the i-th obser-

vation based on model (1) with error density (2), and `(θ) = `(y|θ) =
∑n

i=1 `i(θ). With censored

observations an integral of the error density has to be evaluated to get an individual `i(θ). With our

model, this does not cause any considerable difficulties irrespective of the type of censoring (left-,

right-, interval-). Indeed, all integrals involved in the computation of the likelihood are Gaussian

cumulative distribution functions which can be easily and efficiently evaluated.

To construct the penalized log-likelihood function `P (θ; λ), we subtract a penalty term q
{
a(d); λ

}

based on the transformed mixture coefficients a(d) from `(θ), i.e.,

`P (θ; λ) = `P (y|θ; λ) = `(θ) − q
{
a(d); λ

}
, (5)

where λ is a fixed tuning parameter that controls the smoothness of the fitted error distribution

and inhibits identifiability problems due to overparametrization. For a given (reasonable) λ, Eilers

and Marx (1996) proposed to base the penalty on squared (higher-order) finite differences of the

coefficients of adjacent B-splines, and they used second-order difference in their examples. We

base our penalty on squared finite differences of order m of the transformed coefficients of adjacent
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BG-densities:

q
{
a(d); λ

}
=

λ

2

g∑

j=m+1

{
∆maj(d)

}2
(6)

=
λ

2
a(d)′D′

mDm a(d),

where ∆1aj = aj − aj−1, ∆maj = ∆m−1aj − ∆m−1aj−1, m = 1, . . . , and Dm is a (g − m) × g

difference operator matrix. According to our experience, m = 2 or m = 3 is sufficient obtain a

smooth estimate of the density. However, in our context the choice m = 3 has another interesting

justification, as explained in Section 2.2.2.

In practice, we maximize the penalized log-likelihood first as a function of an extended param-

eter vector (α, β′, log(σ), a1, . . . , ag−3, ag−2, ag−1)
′ under the constraints (3) using the sequential

quadratic programming algorithm of Han (1977) to avoid negative values in the logarithmic ex-

pression (4). Upon convergence, we perform additional Newton-Raphson steps for the penalized

log-likelihood as a function of parameters θ in order to draw inferences as described in Section 3.

The estimation procedure has been implemented as a set of functions in R environment and can be

downloaded from The Comprehensive R Archive Network (CRAN) on http://www.R-project.org

as a contributed package smoothSurv.

2.2.2 Remarks on the penalty function

There are two reasons why we penalize the transformed mixture coefficients a instead of the original

coefficients c and why we prefer the penalty of order m = 3.

First, the penalty based on a distinguishes between areas of the density where there are few

datapoints (e.,g., where the coefficients c are close to zero) and areas where there are many datapoints

(e.g., where the coefficients c are well above zero); the penalty based on c cannot distinguish between

these areas. For example,

for c̆ = (0.001, 0.002, 0.001, 0.996)′, c̃ = (0.201, 0.202, 0.201, 0.396)′

we have ă = (−6.904,−6.211,−6.904, 0)′, ã = (−0.678,−0.673,−0.678, 0)′

and (∆2c̆3)
2 = 0.000004 = (∆2c̃3)

2.

while (∆2ă3)
2 = 1.92 � 0.000099 = (∆2ã3)

2
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Indeed, in the areas with a sufficient amount of data, the estimated shape of the error distribution

is mostly driven by the data themselves, whereas in the data-poor areas the shape of the fitted error

distribution is inter- or extrapolated from the data-rich areas according to the flexibility allowed by

the penalty term.

Second, the penalty of the third order (m = 3) based on transformed mixture coefficients a has

the following interesting property which can serve as a basis for an empirical test of normality (see

Section 2.2.3). Suppose that for fixed K and given set of knots −K, −K +1/K, . . . , −1/K, 0, 1/K,

. . . , K − 1/K, K, we maximize the penalized log-likelihood (5) for λ → ∞. This is equivalent (in

the limit) to minimizing the penalty term (6) under the constraints (3). For fixed K, let fK be

the fitted error density arising from the above-mentioned optimization problem. It can be shown

that limK→∞ fK(e) = ϕ0,1(e), the standard normal density. In practice, the set of knots and the

basis standard deviation recommended in Section 2.1 (i.e., knots from −6 to 6 by 0.3 and σ0 = 0.2)

give already rise to a fitted error density fK practically indistinguishable from the normal density,

ϕ0,1(e), when only the penalty term is minimized. This property does not hold for the order m 6= 3

of the penalty or when the penalty is based on the original mixture coefficients c.

2.2.3 Selecting the smoothing parameter

In the area of density estimation, methods for selecting the smoothing parameter, λ, that rely on

cross–validation are often used. The standard modified maximum-likelihood cross–validation score

that we are attempting to minimize is

CV(λ) = −
n∑

i=1

`i(θ̂
(−i)

),

where θ̂ is the penalized maximum likelihood estimate (MLE) of θ and θ̂
(−i)

the penalized MLE

based on the sample excluding the ith observation. However, computation and optimization of the

cross–validation score are extremely computationally intensive in our case. In a similar context,

O’Sullivan (1988) suggested a one-step Newton-Raphson approximation combined with a first-order

Taylor series approximation. Applying his method in our setting results in an approximate cross-
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validation score given by

CV(λ) = −
{ n∑

i=1

`i(θ̂) − trace
(
Ĥ

−1
Î
)}

, (7)

where Ĥ = −∂2`P (θ̂)/∂θ∂θ
T and Î = −∂2`(θ̂)/∂θ∂θ

T .

We denote trace(Ĥ
−1

Î) by df(λ) and call it the effective degrees of freedom or the effective

dimension of the model since it necessarily plays the same role as the effective dimension of a linear

smoother (see Hastie and Tibshirani, 1990). Depending on a chosen order m of the differences in

the penalty, the degrees of freedom decreases in λ from dim(β) + 2 + (g − 3) for λ = 0 (i.e., the

ordinary log-likelihood) to dim(β) + 2 + (m − 3) for λ → ∞ and m ≥ 3 (i.e., the penalized log-

likelihood). For example, when µj+1 − µj = 0.3, σ0 = 0.2 (g = 41) and m = 3, penalized likelihood

estimation as λ → ∞ depends effectively on g − m = 38 fewer parameters than does ordinary

likelihood estimation. Interestingly, this reduction in parameters is not just of theoretical value; in

practice, values of λ that are virtually equal to ∞ do arise, as illustrated in Section (5); they result

in significant computational savings.

Further, minimizing the expression (7) is essentially the same as maximizing Akaike’s information

criterion AIC(λ) = `(θ̂)−df(λ) (Akaike, 1974). This can be a valuable means of comparing different

models and assessing the importance of covariate contributions (see an example in Section 5).

In our R programs, a grid search using user-defined values λ∗

1, . . . , λ
∗

S (in our applications we

used values λ∗

1 = e2, λ∗

2 = e1, . . . , λ∗

S = e−9) is used to find the optimal AIC. Since the log-likelihood

is of the order O(n), using a factor of nλ∗

s/2 in the penalty term (6) instead of λ/2 allows one to use

approximately the same grid for datasets of different sizes while also maintaining the proportional

importance of the penalty term in the penalized log-likelihood at the same level.

The result of the second paragraph of Section 2.2.2 further implies that with a sufficiently dense

set of knots, we can check the normality of the error term. When the optimal value of the tuning

parameter λ approaches infinity (i.e., takes a high value in practical situations) the error density of

the model can be considered to be normal.
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3 Inference based on the penalized Gaussian mixture method

For λ > 0, the penalized MLE θ̂ is necessarily a biased estimator. For that reason, its standard

errors may not be very informative if that bias is high. However, there are two possibilities for

drawing accurate inferences based on penalized MLE.

3.1 Pseudo-variance

Wahba (1983) described a pseudo-Bayesian technique for generating confidence bands around the

cross-validated smoothing spline. O’Sullivan (1988) used this technique in the penalized ML frame-

work and his approach can be adopted also here. Basically, the penalized log-likelihood `P is

viewed as a “posterior” log-density for the parameter θ and the penalty term as a “prior” negative

log-density of that parameter. Then, the second order Taylor series expansion of the “posterior”

log-density around its mode θ̂ leads to

`P (θ) ≈ `P (θ̂) − 1

2
(θ − θ̂)T Ĥ(θ − θ̂).

Finally the Gaussian approximation gives “posterior” normal distribution for θ with covariance

matrix

v̂arP (θ̂) = Ĥ
−1

. (8)

We call this estimate of the variance of the penalized MLE θ̂ the “pseudo-variance estimate.”

3.2 Asymptotic variance

More formal inference is possible under the following assumptions. First, we assume independent

noninformative censoring (see Kalbfleisch and Prentice, 2002). Further, as the sample size n in-

creases, we require that the knots (both number and positions) and the basis standard deviation be

fixed. Let θT be the true parameter value of θ, assuming initially that it exists. To be able to get

asymptotically unbiased estimates we have to either keep the value of the smoothing parameter λ

constant as n → ∞ or let it increase at a rate lower than n (i.e., λ = λn and limn→∞ λn/n = 0).

Under these conditions, the penalty part of the penalized log-likelihood reduces its importance rela-
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tive to the log-likelihood part as n → ∞ (i.e., as the sample size n increases, the smoothness of the

fitted error distribution is determined to greater extent by the data and to a lesser extent by the

penalty). Then, in combination with standard maximum likelihood arguments, for arbitrary ε > 0

the penalized MLE θ̂ satisfies PθT

(
|θ̂−θT | < ε

)
→ 1. Using the same arguments as in Gray (1992),

one can further show that
√

n
(
θ̂−θT

)
is asymptotically normal with mean 0 and covariance matrix

limn→∞(n W ) where the matrix W can be consistently estimated by

v̂arA(θ̂) = Ĥ
−1

Î Ĥ
−1

, (9)

which we call the “asymptotic variance estimate.” As pointed out by Gray (1992), the asymp-

totic distribution of θ̂ remains the same if the smoothing parameters λn are replaced by estimates

satisfying λ̂n/λn
P→ 1.

3.3 The pseudo-variance versus the asymptotic variance

In various applications, the pseudo-variance estimate (8) has been shown to be useful. When

smoothing a spline curve g(t), Wahba (1983) showed it yielded pointwise confidence intervals ĝ(t)±

z
√

v̂arP {ĝ(t)}, where z is a quantile of the normal distribution, that have good frequentist coverage

properties. Verweij and Van Houwelingen (1994) used it in the context of penalized likelihood es-

timation in Cox regression; they called the square roots of its diagonal elements “pseudo-standard

errors.” Joly et al (1998) exploited this technique to get confidence bands on the hazard function

smoothed using M-splines. In contrast, for the asymptotic variance estimate (9) there is no guaran-

tee that for finite samples its middle matrix Î is positive semidefinite. Based on our experience, this

problem is not rare. Finally, according to our simulations (results not shown), the pseudo-variance

estimate (8) yields confidence intervals β̂±z

√
v̂arP (β̂) for regression parameters with better coverage

properties than the corresponding confidence intervals based on the asymptotic estimate (9).

3.4 Remarks

We have assumed in this section that the true parameter vector θT exists. This does not have

to be true. In particular, true a coefficients may fail to exist when the true error distribution is
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not a mixture of BG-densities determined by the choice of knots and the standard deviation σ0.

However, if the distance between two consecutive knots is small enough, we argue that the mixture

of BG-densities can approximate every continuous distribution sufficiently well that the assumption

on the existence of the true parameter vector θT is not restrictive at all. Generally, by increasing

the sample size, the estimated coefficients a will yield a BG-density which is close to the true error

density.

4 Simulation study

To see how the proposed method performs, we carried out a simulation study. ‘True’ uncensored

data were generated according to the model

log(T ) = 1.6 − 0.8 · z1 + 0.4 · z2 + 1.4 · ε,

where covariate z1 was binary taking a value of 1 with probability 0.4 and covariate z2 was generated

according to the extreme value distribution of a minimum, with location 8.5 and scale 1. The model

attempts to mimic an AFT model used for the dataset presented in the next section with z1 playing

the role of the covariate lesion and z2 being distributed as log2(1+CD4 count). Time to the event T

is expressed in months. The error term ε was generated from a standard normal distribution N(0, 1),

from a standardized extreme value distribution, and from a mixture of two normal distributions

0.4 N(−1.4, 0.82) + 0.6 N(0.93, 0.82). Samples of sizes 50, 100, 300, and 600 were generated. Each

simulation involved 100 replications.

For each uncensored dataset we created four censored datasets that were then used to compute the

estimates: a dataset with (1) approximately 20% right-censored and 80% uncensored observations

(light RC); (2) approximately 20% right and 80% interval-censored observations (light RC + IC); (3)

approximately 60% right and 40% uncensored observations (heavy RC); (4) approximately 60% right

and 40% interval-censored observations (heavy RC + IC). The censoring was created by simulating

consecutive ‘visit times’ for each subject in the dataset. Times of the first ‘visits’ were drawn from

N(7, 1) distribution. Further, times between each consecutive ‘visits’ were simulated from N(6, 0.52).
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This approach reflects the idea that subjects in our Oral Substudy were seen for the first time about

7 months after the onset of the parent study and then approximately every 6 months for several years.

At each visit, subjects were withdrawn (censored) according to a prespecified percentage (between

0.4% and 0.7% for light censoring and between 4.0% and 5.0% for heavy censoring) creating right-

censored observations provided that the uncensored event time T was greater than the visit time

at which the subject was withdrawn. To obtain interval-censored observations, we took the ‘visit’

interval that contained the uncensored event time T .

For comparison, estimates for each dataset were computed using our smoothed procedure and

using two parametric models: an AFT model on the log scale with a correctly specified error distri-

bution (normal, extreme value or mixture of normals, respectively) and a log-normal AFT model For

the smoothing procedure, the third order penalty, equidistant knots with a distance of 0.3 between

consecutive knots, and the basis standard deviation of 0.2 were used.

Figure 1 shows average estimates of the regression parameters based on our smoothed procedure,

on the AFT model with correctly specified error distribution, and on the log-normal AFT model

for selected (least favorable) simulation settings. It is seen that, in most cases, our smoothed

procedure performs better than the incorrectly specified log-normal AFT model and often only but

slightly worse than the correctly specified parametric AFT model. Additionally, when our smoothing

approach is used, the error distribution is reproduced rather satisfactory as can be seen in Figure 2.

This property is quite important especially when the estimated model is to be used for prediction

purposes. Further, it is seen that even for small samples the performance of our smooth procedure

is quite similar to the performance of a parametric AFT model with a correctly specified error

distribution. Complete results of the simulation study can be found on the journal’s web page.

< Figure 1 about here.>

< Figure 2 about here.>
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5 Illustration: the Women’s Interagency HIV Study

To illustrate our method in real data, we present an example from AIDS research. We analyzed

the subsample of the HIV-seropositive women participating in the Women’s Interagency HIV Study

(WIHS). The total study population (over 3000 participants) was enrolled between October 1994

and November 1995 through six clinical consortia at 23 sites throughout the United States. More

information on the setup of the study can be found in Barkan et al (1998). Our subsample consisted

of the 224 AIDS-free women who participated in the dental sub-study and for whom the HIV RNA

viral load, the CD4 T-lymphocyte count, and lesion-marker status (described below) were available

at the baseline visit.

For HIV positive people, it is of interest to describe the distribution of the time to the onset

of an AIDS-related illness based on some measured quantities. Classically used predictors include

the number of copies of the HIV RNA virus and the count of CD4 T-cells per ml of blood. We

examined whether presence of one of the three lesion markers, oral candidiasis, hairy leukoplakia and

angular cheilitis, is useful, possibly together with one or both laboratory predictors, in describing

the distribution of the residual time to onset of AIDS.

As a response, we used the time in months between the baseline visit, defined as the first visit

at which the lesion markers were collected by dental professionals, and the onset of an AIDS-related

illness. Clinical AIDS diagnoses were self-reported in 73.5% of cases, presumptive or definitive in

17.5%, and indeterminate in 9%; the case definition did not depend on CD4 T-lymphocytes. For

66 cases the response was interval-censored, while for 158 cases it was right-censored. The average

length of the interval between two examinations at which AIDS could be detected was 7 months.

The average follow-up time was 41 months and the maximal follow-up time was 84 months.

The three lesion markers were summarized in one binary covariate, lesion, equal to one if at

least one of the above mentioned three lesion markers was present. We also analyzed functions

of the viral load and the CD4 count in the AFT model (i.e., lvload = log10(1 + viral load) and

lcd4 = log2(1 + CD4 count)). All three covariates are moderately to strongly associated with one

another since, as AIDS progresses, viral load increases, CD4 count falls, and oral lesions occur more
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frequently. In our sample, for women with lesion = 0 and 1, respectively, the median lvload was 3.60

and 4.23 (Mann-Whitney p-value, 0.001), and the median lcd4 was 8.85 and 8.52 (Mann-Whitney

p-value, 0.005). There was also a moderate negative correlation of −0.46 between lcd4 and lvload.

These associations have to be taken into account when interpreting the results.

To obtain the results shown below, we used a sequence of 41 equidistant knots from −6 to 6

with a distance of 0.3 between each pair. The basis standard deviation was 0.2 and the third order

difference were used in the penalty. Different models were compared using Akaike’s information

criterion and claims concerning the significance of the parameters were based on Wald’s tests using

the pseudo-variance estimate (8). Summary of the fitted models is shown in Table 1.

< Table 1 about here.>

< Figure 3 about here.>

If used alone (model (1) in Table 1) the effect of lesion on the time to onset of AIDS is statistically

significant (p = 0.018) and the estimated time is exp(−0.87) ≈ 0.42 times shorter for women with

lesion = 1 than women with lesion = 0. According to the AIC values for models (2) and (3) in

Table 1, the transformed CD4 count and viral load are equally good predictors of the time to onset of

AIDS. Addition of the lesion marker (models (4) and (5)) improves the model with lcd4 considerably

but improves the model with lvload only slightly. Finally, some additional improvement is gained

by considering the model with all three predictors (model (7)).

Figure 3 shows predictive survivor and hazard curves and predictive densities for women with

lesion = 0 and lesion = 1 based on the simplest model lesion and on the most complex model

considered lesion+lvload+lcd4. The predictive survivor curves based on the model lesion are further

overlaid with the nonparametric estimate of Turnbull (1976) in each group. The two estimates are

quite close to each other, illustrating the semiparametric nature of our approach. However, our

procedure gives smooth estimates of the survival curves and moreover enables quantification of the

difference in survival between the two groups. Notice further that due to the fact that the hazard is

obtained as a ratio of the density and the survivor function, which relatively slowly varies from one,

only a slight difference is observed between the predictive density and the hazard.
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Further, we point out that the predictive densities for models where lcd4 was not involved are

very close to the log-normal density. This is not surprising since the optimal tuning parameter λ for

these models was equal to 224 · exp(2), essentially a value of infinity in this practical situation and

thus implying that the fitted error distributions are close to the normal distribution, as discussed in

Section 2.2.3. On the other hand, models where lcd4 was used in combination with other covariates

gave much lower optimal tuning parameters λ, implying also non-normal error densities. This is

seen on the right-hand side of Figure 3. The phenomenon could indicate presence of a risk-group

mixture in the data or absence of another important predictor. Indeed, a factor that could play an

important role is antiretroviral therapy, which might have been used by some women in our sample.

However, this factor requires modelling time–dependent covariates, which cannot be done with our

model.

In conclusion, the time to AIDS onset in this study population is notably shorter in women with

oral lesions. Further, this marker improves the prediction of that time based on any of the classical

indicators (CD4 count and viral load). When interpreting these findings, one must bear in mind

that only a limited number of WIHS women opted to participate in the Oral Substudy, the source

of the dental data. Thus they may differ in unknown ways from the overall set. Nonetheless, our

findings are consistent with those of others who have evaluated oral lesions as predictors of AIDS

onset and they illustrate use of our method in the area of AIDS research. Our method restricts us

to analysis of baseline covariates. Although this is a very widely applicable special case, extension

of the method to accommodate time-dependent covariates would allow more complex relationships

between outcomes and covariates.

The model (7) of Table 1 can be fitted in R using the library smoothSurv in the following way.

We assume that the dataset is stored in a data.frame called wihs with columns t.left and t.right

giving the lower and upper limit of the observed interval with t.right equal to NA for right-censored

observations and lesion, lvload, lcd4 giving the covariate values.

> library(smoothSurv)

> fit7 <- smoothSurvReg(Surv(t.left, t.right, type=‘‘interval2’’) ~ lesion+
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lvload+lcd4, knots=seq(-6,6,0.3), sdspline=0.2, difforder=3, data=wihs)

> fit7

Estimated Regression Coefficients:

Value Std.Error Std.Error2 Z Z2 p p2

(Intercept) 2.8257 0.6148 0.59992 4.596 4.710 4.311e-06 2.475e-06

lesion -0.6033 0.2272 0.21899 -2.655 -2.755 7.931e-03 5.872e-03

lvload -0.3025 0.1074 0.10290 -2.816 -2.939 4.867e-03 3.291e-03

lcd4 0.3905 0.0467 0.04618 8.363 8.458 6.096e-17 2.729e-17

Log(scale) 0.3565 0.1036 0.09774 3.442 3.647 5.783e-04 2.653e-04

Scale = 1.428

Lambda: 0.000911882

Log(Lambda): -7

df: 10.02823

AIC (higher is better): -250.0086

Most of the labels in the output are self-explanatory. Columns Std.Error, Z, p refer to the

pseudo-variance estimate (8) while columns Std.Error2, Z2, p2 to the asymptotic variance esti-

mate (9). Information concerning the fitted error distribution is stored in the resulting object fit7

and can be extracted if necessary.

There exist methods to plot the fitted error distribution or compute predictive functions, e.g.,

predictive survivor and hazard curves and survival densities for a new subject with lesion = 0 and

lesion = 1 and median values of lvload (3.875) and lcd4 (8.735) based on the above model are drawn

as follows.

> covar7 <- matrix(c(0, 1, rep(3.875, 2), rep(8.735, 2)), ncol=3)

> survfit(fit7, cov=covar7, plot=TRUE)

> hazard(fit7, cov=covar7, plot=TRUE)

> fdensity(fit7, cov=covar7, plot=TRUE)
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6 Discussion

We have suggested and implemented as an R library a method useful for fitting the linear regression

model for censored observations while avoiding overly restrictive parametric assumptions on the

error distribution. Most classically, the logarithmic transformation of the response leads to the well

known AFT model. However, other transformations of the response leading to its potential range

covering the whole real line are also possible. The density of the error distribution is specified in

a semi-parametric way as a mixture of basis Gaussian densities (Gaussian densities with given means

– knots – and given common standard deviation). Mixture coefficients are then estimated using the

penalized maximum-likelihood method. Such model specifications allow flexibility with respect to

the resulting error distribution yet retain tractability such that data carrying censoring of several

types, especially interval censoring, can be handled naturally.

The penalized Gaussian mixture method also has been used successfully by Ghidey et al (2005)

in the context of the linear mixed model. They exploited a mixture of BG-densities to approximate

a density of the distribution of the random intercept and slope in the linear mixed model while

assuming standard normal distribution for the random error. They did not assume censored ob-

servations; however, they showed an additional potential of this method by using a tensor product

of two univariate mixtures of BG-densities to approximate a bivariate distribution. Generally, it

would be interesting to join their and our models to form an AFT model with random effects in

which the random effects distribution would be approximated by one mixture of BG-densities and

the error distribution by another mixture of BG-densities. A question that remains and would need

additional research is the extent of the computational difficulties that could be encountered with

such a complex model.

In some specific situations, it may be desirable to have a finite support for the density of the error

distribution and keep the finite support also in the estimated model. The mixture of BG-densities

as presented in this paper is then inappropriate, but one could use a mixture of B-splines without

additional complications. However, we think that situations that require a finite support for the

error distribution in survival models are rather rare.
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In the literature, Kooperberg and Stone (1992) and Eilers and Marx (1996) considered spline

estimation of the logarithm of a density based on a set of i.i.d. observations. Kooperberg and Stone

(1992) also allowed for censoring. Although their approach could be extended to the regression

context, it would require that the logarithm of the error density (log f(e)) be expressed as a spline

(s(e)). When computing the likelihood contributions for censored observations one would have to

evaluate an integral of the form
∫

es(e) de, which would generally require numerical methods. This

complication is avoided by our technique since all integrals needed to evaluate the likelihood are

expressed as linear combinations of values of cumulative normal distribution functions, and quantities

related to the normal distribution can be computed using fast, precise numerical methods.
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Model AIC df log(λ/n) lesion logvload logcd4

(1) lesion −262.39 3.2 2 −0.87

(0.37; 0.018)

(2) lvload −256.16 3.4 2 −0.76

(0.19; < 0.001)

(3) lcd4 −256.94 3.4 2 0.44

(0.11; < 0.001)

(4) lesion + lvload −255.63 4.4 2 −0.62 −0.70

(0.36; 0.080) (0.19; < 0.001)

(5) lesion + lcd4 −253.19 8.9 −7 −0.78 0.39

(0.26; 0.003) (0.07; < 0.001)

(6) lvload + lcd4 −253.45 8.4 −6 −0.39 0.38

(0.14; 0.004) (0.06; < 0.001)

(7) lesion + lvload+ −250.01 10.0 −7 −0.60 −0.30 0.39

+lcd4 (0.23; 0.008) (0.11; 0.005) (0.05; < 0.001)

Table 1: WIHS Data. Akaike’s information criterion, degrees of freedom, the optimal log(λ/n),

estimates of the regression parameters (standard error; p-value) for the fitted models.
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Figure 1: Simulation Study. Average estimate of the regression parameters β1 = −0.8 (left column)

and β2 = 0.4 (right column) for simulation patterns involving extreme value and normal mixture

error distributions and interval censoring. Dotted line: true parameter value, solid line: estimate

based on our procedure, dashed line: estimate based on the AFT model with correctly chosen error

distribution, dotted-dashed line: estimate based on the log-normal AFT model.
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Figure 2: Simulation Study. The average of the fitted error density (solid line), 95% pointwise

confidence band (dotted line) and the true error density (dashed line) for selected simulation patterns.

Extreme value as the true distribution in the upper part, normal mixture as the error distribution

in the bottom part.
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Figure 3: WIHS Data. Predicted survivor curves, hazard curves and densities for women with

lesion = 1 (dotted-dashed line) vs. women with lesion = 0 (solid line) based on models lesion

(left part) and lesion + lvload + lcd4 (right part). Predictive curves for the latter model control for

a median value of lvload = 3.875 and a median value of lcd4 = 8.735. Predictive survivor curves for

model lesion are further compared to the nonparametric estimate of Turnbull (1976) in each group.

0 20 40 60 80

0.0
0.2

0.4
0.6

0.8
1.0

0 20 40 60 80

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0 20 40 60 80

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0 20 40 60 80

0.0
0.2

0.4
0.6

0.8
1.0

0 20 40 60 80

0.0
00

0.0
10

0.0
20

0.0
30

0 20 40 60 80

0.0
00

0.0
10

0.0
20

0.0
30

PSfrag replacements
Turnbull

S
u
rv

iv
or

H
az

ar
d

D
en

si
ty

Time (months)

Time (months)

Time (months)

Time (months)

Time (months)

Time (months)

lesion = 0

lesion = 0

lesion = 0

lesion = 0

lesion = 0

lesion = 0

lesion = 1

lesion = 1

lesion = 1

lesion = 1

lesion = 1

lesion = 1

lvload = 3.875

lvload = 3.875

lvload = 3.875

lcd4 = 8.735

lcd4 = 8.735

lcd4 = 8.735

lesion lesion + lvload + lcd4

27


