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Chernoff and Savage (1958) established that, in the context of univariate location models, Gaussian-
score rank-based procedures uniformly dominate—in terms of Pitman asymptotic relative efficiencies—
their pseudo-Gaussian parametric counterparts. This result, which had quite an impact on the success
and subsequent development of rank-based inference, has been extended to many location problems,
including problems involving multivariate and/or dependent observations. In this paper, we show that this
uniform dominance also holds in problems for which the parameter of interest is the shape of an elliptical
distribution. The Pitman non-admissibility of the Gaussian pseudo-maximum likelihood estimator for
shape and that of the pseudo-Gaussian likehood ratio test of sphericity follow.
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1 Introduction

Let Pn(ΘΘΘ,F) := {Pn
ϑϑϑ,f ,ϑϑϑ ∈ ΘΘΘ, f ∈ F} be a sequence of semiparametric models, where ϑϑϑ is

some finite-dimensional parameter and f is some unspecified functional nuisance. The asymp-
totic efficiencies of competing inference procedures—on ϑϑϑ, a subset of ϑϑϑ, or more generally
a function ψ(ϑϑϑ) of the parameter ϑϑϑ—that remain valid under a broad range of distributions
in Pn(ΘΘΘ,F), are usually compared in terms of Pitman asymptotic relative efficiencies (AREs).
Roughly speaking, the Pitman asymptotic relative efficiency AREϑϑϑ,f [T2/T1] of a procedure T2

with respect to a procedure T1 at Pn
ϑϑϑ,f is defined as the limit of the ratio n1/n2 of observations

required for T1 and T2 to achieve the same asymptotic performance at Pn
ϑϑϑ,f . In the particular

case for which T1 and T2 are estimators of (the univariate quantity) ψ(ϑϑϑ) such that
√
n(Ti−ψ(ϑϑϑ))

is asymptotically normal, under Pn
ϑϑϑ,f , with mean zero and variance vi(ϑϑϑ, f), i = 1, 2, the ARE

of T2 with respect to T1, under Pn
ϑϑϑ,f , is given by

AREϑϑϑ,f

[
T2
/
T1

]
= v1(ϑϑϑ, f)

/
v2(ϑϑϑ, f); (1.1)

see, e.g., Lehmann (1999). For a precise definition of the concept of Pitman ARE in the case of
testing procedures, see, e.g., Lehmann (1986), Pratt and Gibbons (1981), or Nikitin (1995).

As the ARE value in (1.1) in general depends on f , no total ordering can be based on
this concept of ARE. However, uniform domination may happen, in which case we adopt the
following definition. Assume that the procedure T1 is valid (by which we mean, for point
estimation, that T1 is consistent for ψ(ϑϑϑ) at the optimal rate, and, for hypothesis testing, that
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it has asymptotically the right nominal level α) for all f ∈ F1 ⊂ F . We say that T1 is Pitman
non-admissible iff there exists some procedure T2, valid over F2 ⊃ F1, such that

AREϑϑϑ,f

[
T2
/
T1

]
≥ 1 for all f ∈ F1, (1.2)

where the inequality is strict for at least one f ∈ F1. If (1.2) holds, we say in the sequel, for
the sake of simplicity, that “T2 beats T1”, instead of “T2 uniformly dominates T1 in the Pitman
sense.” Similarly, “T2 strictly beats T1 but at F0” means that (1.2) holds and that the equality
is achieved iff f ∈ F0. Clearly, as far as semiparametric validity and asymptotic efficiency are
concerned, Pitman non-admissible procedures should be avoided.

Now, assume that the parametric normal model Pn(ΘΘΘ, {φ}), say, is contained in Pn(ΘΘΘ,F).
Then a classical approach to build inference procedures on ψ(ϑϑϑ) is to restrict to the Gaussian
model Pn(ΘΘΘ, {φ}) and invoke some method—such as, e.g., the likelihood ratio test—among the
large panel of methods available for developing parametric statistical procedures that are asymp-
totically optimal—in some sense—within Pn(ΘΘΘ, {φ}). Although they are of a parametric nature,
the resulting procedures remain often valid outside the Gaussian model, under Pn(ΘΘΘ,F1), for
some F1 ⊂ F , say. One then usually speaks of pseudo-Gaussian procedures. However, the latter
in general achieves asymptotic optimality under normal distributions only.

Another—more semiparametric—approach to obtain procedures that remain valid under
a broad range of distributions in Pn(ΘΘΘ,F), consists in relying on some statistical principle,
such as the invariance principle. When invariance is to be achieved with respect to a group of
order-preserving transformations, this leads, typically, to the class of rank-based procedures. The
resulting semiparametric procedures usually enjoy many desirable properties, such as broader
validity (under Pn(ΘΘΘ,F2) ⊃ Pn(ΘΘΘ,F1), say), robustness, distribution-freeness (for hypothesis
testing), etc. However, it is often believed that the price to pay for these nice properties is a
substantial efficiency loss when compared to the performance of pseudo-Gaussian procedures,
at least at—or, in a vicinity of—the normal submodel.

Intuition in this case is misleading, as shown by the celebrated result of Chernoff and Sav-
age (1958), which states that there is no efficiency loss at all, provided that Gaussian scores
are used. More precisely, they show, in the context of the two-sample location problem, that
the Gaussian-score rank test strictly beats the pseudo-Gaussian test—namely, the two-sample t-
test—but at Gaussian distributions. The Pitman non-admissibility of the two-sample t-test
follows. This celebrated result and its extensions (see below), which clearly indicate that ef-
ficiency is another advantage of rank-based methods over pseudo-Gaussian ones, had quite an
impact on the success and subsequent development of rank-based inference.

This Chernoff-Savage result has been extended to many problems, including problems involv-
ing serially dependent and/or multivariate observations. Hallin (1994) show that the Gaussian-
score version of the serial rank tests proposed by Hallin and Puri (1994) also strictly beat the
corresponding pseudo-Gaussian tests, but at Gaussian innovations (those serial rank tests allow
for testing for randomness against serial dependence, for testing the adequacy of an ARMA
model, or for testing linear restrictions on the parameter of an ARMA model). Extensions to
(possibly serial) problems involving multivariate observations were recently obtained by Hallin
and Paindaveine (2002a, b, and 2005a), who show that the Chernoff-Savage result holds in a
broad class of multivariate problems (culminating in the problem of testing linear restrictions on
the parameter of the multivariate general linear model with vector ARMA errors); the Pitman
non-admissibility of the corresponding everyday practice pseudo-Gaussian tests (one-sample and
two-sample Hotelling tests, multivariate F -tests, multivariate Portmanteau and Durbin-Watson
tests, etc.) follows.
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In the review of Chernoff-Savage results above, we have focused on hypothesis testing. How-
ever rank-based methods also allow for dealing with point estimation and it can be shown that
the AREs of the resulting R-estimators, with respect to their pseudo-Gaussian competitors, do
coincide with the AREs obtained in the corresponding testing problems. Consequently, the gen-
eralized Chernoff-Savage results above also cover the estimation problem in each case, which,
e.g., establishes the Pitman non-admissibility of multivariate least-squares and Yule-Walker esti-
mators in the multivariate general linear model and in vector autoregressive models, respectively.

So far, however, Chernoff-Savage results were only established for location parameters (au-
toregressive parameters, even though they are associated with serial models, should be con-
sidered as location parameters, in the same fashion as standard regression parameters). This
paper shows that the uniform Pitman dominance of Gaussian-score rank-based procedures over
their pseudo-Gaussian competitors extends to the case where the parameter of interest is the
shape of an elliptical population. We thereby establish the Pitman non-admissibility, for any
space dimension k ≥ 2, of the Gaussian pseudo-maximum likelihood estimator for the shape of
a k-variate elliptical distribution, as well as that of the pseudo-Gaussian likelihood ratio tests
for a specified shape (which includes the classical likelihood ratio test of sphericity as a special
case). The proofs of these shape Pitman non-admissibility results however are by no means
trivial, since, unlike Chernoff-Savage results for location parameters, Chernoff-Savage results for
shape do not follow from standard variational arguments. We therefore propose a proof partially
inspired by the “direct” method introduced by Gastwirth and Wolff (1968).

The paper is organized as follows. In Section 2, we describe the problem of estimating
the shape of an elliptical distribution and that of testing for a specified shape. We recall the
pseudo-Gaussian estimators and tests; we define the corresponding Gaussian-score rank-based
procedures, and provide their Pitman AREs with respect to the pseudo-Gaussian estimators and
tests. We state our Chernoff-Savage result for shape and its consequences in terms of Pitman
admissibility. The proofs are given in Section 3, where we also explain why standard variational
methods are inappropriate for the problem under consideration. Finally, Section 4 states some
final comments.

2 Shape problems

2.1 Elliptical densities and shape

Let (X1, . . . ,Xn) be a sample of independent and identically distributed k-variate observations
with common elliptical density

x 7→ ck,f

(
detV

)−1/2
f
(√

(x− θθθ)′V−1(x− θθθ)
)
, (2.3)

where the centre of symmetry θθθ is a k-vector, the shape parameter V is a symmetric positive
definite real k× k matrix with (V)11 = 1, the radial density f : R+

0 −→ R+
0 satisfies µk−1,f :=∫∞

0 rk−1f(r) dr <∞, and ck,f is a normalization factor. We denote the corresponding hypothesis
by Pn

θθθ,V,f . Under Pn
θθθ,V,f , the distances di(θθθ,V) := ‖V−1/2(Xi − θθθ)‖ (throughout, V1/2 denotes

the symmetric root of V) are i.i.d., with density and distribution function

r 7→ f̃k(r) := (µk−1,f )−1rk−1f(r) I[r>0] and r 7→ F̃k(r) :=
∫ r

0
f̃k(s) ds,

respectively, and the multivariate signs Ui(θθθ,V) := V−1/2(Xi − θθθ)/di(θθθ,V) are i.i.d. and uni-
formly distributed over the unit sphere. In the sequel, we write di(V) and Ui(V) for di(θ̂θθ,V)
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and Ui(θ̂θθ,V), respectively, where θ̂θθ stands for an asymptotically discrete root-n consistent esti-
mator for θθθ. Finally, we denote by Ri(V) the rank of di(V) among d1(V), . . . , dn(V).

Special cases are the k-variate multinormal distribution, with radial density f(r) = φ(r) :=
exp(−r2/2), the k-variate Student distributions, with radial densities (for ν degrees of freedom)
f(r) = f t

ν(r) := (1+r2/ν)−(k+ν)/2, and the k-variate power-exponential distributions, with radial
densities of the form f(r) = fe

η (r) := exp(−r2η), η > 0. Note that, under the k-variate Gaussian
distribution Pn

θθθ,V,φ, the distances di(θθθ,V) have common density and distribution function

r 7→ φ̃k(r) :=
(
2(k−2)/2Γ(k/2)

)−1
rk−1 φ(r) I[r>0] and r 7→ Φ̃k(r) = Ψk(r2),

respectively, where Γ stands for the Euler gamma function and Ψk denotes the distribution
function of the χ2

k distribution.
The parameter of interest in the sequel is throughout the shape parameter V, which deter-

mines the shape and orientation of the equidensity contours of (2.3). In Sections 2.2 and 2.3
below, we recall the pseudo-Gaussian procedures and quickly define the Gaussian-score rank-
based ones, in the problem of estimating the shape and that of testing the adequacy of a fixed
shape, respectively.

2.2 Estimation of shape

Consider the problem of estimating the shape V under unspecified values of θθθ and f . The
pseudo-Gaussian estimator is the Gaussian ML estimator V̂N := S/(S)11, with S := (n− 1)−1∑n

i=1(Xi − X̄)(Xi − X̄)′. This estimator is asymptotically optimal in the multinormal case,
and remains root-n consistent and asymptotically normal under any elliptical distribution with
finite fourth-order moments. However, it is Pitman non-admissible, since it is, as we will show,
uniformly dominated by the rank-based estimator of shape V̂vdW we now proceed to define.

Define, for all α > 0 and for some root-n consistent preliminary estimator V̂0, the shape
matrix

V̂α :=
(1− α)V̂0 + αW(
(1− α)V̂0 + αW

)
11

,

where W := n−1∑n
i=1 Ψ−1

k (Ri(V̂0)/(n+ 1)) V̂1/2
0 Ui(V̂0)U′

i(V̂0)V̂
1/2
0 . Then the van der Waer-

den—that is, Gaussian-score—R-estimator for shape proposed by Hallin et al. (2004, 2005)
is V̂vdW := V̂α∗ , where

α∗ := arg min
α>0

{
1
2n

n∑
i,j=1

Ψ−1
k

(
Ri(V̂α)
n+ 1

)
Ψ−1

k

(
Rj(V̂α)
n+ 1

)((
U′

i(V̂α)Uj(V̂α)
)2
− 1
k

)}

(this actually consists in choosing, on the curve {V̂α, α > 0}, the shape estimate V̂α∗ that
is closest to the true shape of the underlying distribution; see Section 2.3). Provided it is
based on an estimator V̂0 that is root-n consistent under any elliptical densities without any
moment assumption (such as, e.g., Tyler (1987)’s estimator of shape), V̂vdW is root-n consistent
and asymptotically normal under any elliptical distribution, satisfying some extremely mild
regularity conditions (which do not involve any moment condition). It is therefore valid under
broader conditions than V̂N . Moreover, as the latter, V̂vdW is asymptotically optimal in the
multinormal case.

Now, under Pn
θθθ,V,f , where f is such that the density (2.3) has finite fourth-order moments,√

n vec(V̂vdW − V) and
√
n vec(V̂N − V) are asymptotically multinormal with proportional
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asymptotic covariance matrices (v2(f)M(θθθ,V) and v1(f)M(θθθ,V), respectively, say). Although
the definition of Pitman ARE is somewhat more intricate in the multivariate case, it is clear,
in this particular case, that the Pitman ARE may still be defined as in (1.1), that is, as the
corresponding proportionality factor. Thus—see Hallin et al. (2004, 2005) for the scalars v1(f)
and v2(f)—the ARE of V̂vdW with respect to V̂N under Pn

θθθ,V,f is given by

AREk,f =
1

k(k + 2)3
Ek(f)

(Dk(f))2
[
Jk(φ, f)

]2
, (2.4)

where, denoting by ϕf = −f ′/f the optimal location score function, we let

Dk(f) :=
∫ 1

0

(
F̃−1

k (u)
)2
du, Ek(f) :=

∫ 1

0

(
F̃−1

k (u)
)4
du,

and

Jk(φ, f) :=
∫ 1

0

(
Φ̃−1

k (u)
)2
F̃−1

k (u)ϕf (F̃−1
k (u)) du;

note that these AREs depend on the radial density f only through its density type {fa, a > 0},
where fa(r) := f(ar) for all r > 0.

Some numerical values of these AREs are provided in Table 1. All values in Table 1 are larger
or equal than one and are equal to one in the multinormal case only (where both estimators
are known to compete equally, since they are asymptotically optimal). As shown by Theorem 1
below, which is the main result of this paper, this uniform dominance holds under any elliptical
distribution for which the Gaussian ML estimator for shape is root-n consistent; the latter is
therefore Pitman non-admissible.

Theorem 1 For all radial density f and all integer k ≥ 2, we have AREk,f ≥ 1, where equality
holds iff f is Gaussian (that is, iff f = φa for some a > 0). Consequently, for all integer k ≥ 2,
the pseudo-Gaussian maximum likelihood estimator V̂N for shape is Pitman non-admissible.

underlying density
k t5 t8 t12 N e2 e3 e5
2 2.204 1.215 1.078 1.000 1.129 1.308 1.637
3 2.270 1.233 1.086 1.000 1.108 1.259 1.536
4 2.326 1.249 1.093 1.000 1.093 1.223 1.462
6 2.413 1.275 1.106 1.000 1.072 1.174 1.363
10 2.531 1.312 1.126 1.000 1.050 1.121 1.254
∞ 3.000 1.500 1.250 1.000 1.000 1.000 1.000

Table 1: AREs of the rank-based estimators V̂vdW with respect to the pseudo-Gaussian esti-
mators V̂N , under k-dimensional Student (with 5, 8, and 12 degrees of freedom), normal, and
power-exponential densities (with parameter η = 2, 3, 5), for k = 2, 3, 4, 6, 10, and k →∞.

2.3 Testing for specified shape

The other problem we consider is that of testing that the shape V is equal to some given
value V0 (admissible for a shape parameter). The special case V0 = Ik, where Ik stands
for the k-dimensional identity matrix, yields the problem of testing for sphericity. Hallin and
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Paindaveine (2004) propose a class of rank-based tests for this problem. The van der Waerden
version of their tests, φvdW say, rejects the null (at asymptotic level α) whenever

1
2n

n∑
i,j=1

Ψ−1
k

(
Ri(V0)
n+ 1

)
Ψ−1

k

(
Rj(V0)
n+ 1

)((
U′

i(V0)Uj(V0)
)2
− 1
k

)
> χ2

(k−1)(k+2)/2;1−α,

where χ2
(k−1)(k+2)/2;1−α denotes the α upper-quantile of a chi-square variable with (k−1)(k+2)/2

degrees of freedom. In this case, the pseudo-Gaussian procedure is Muirhead and Water-
naux (1980)’s version of Mauchly (1940)’s Gaussian likelihood ratio test—which, for V0 = Ik,
is probably the most widely used test of sphericity. This test, φN say, which requires finite
fourth-order moments, rejects the null (still at asymptotic level α) whenever

−nk
1 + κ̂k

log
(

(detV−1
0 V̂N )1/k

k−1(trV−1
0 V̂N )

)
> χ2

(k−1)(k+2)/2;1−α,

where κ̂k := [k(n−1∑n
i=1 d

4
i (V0))]/[(k + 2)(n−1∑n

i=1 d
2
i (V0))2] − 1 is a consistent estimator of

the population kurtosis parameter κk(f) := (kEk(f))/((k + 2)D2
k(f))− 1.

The AREs of φvdW with respect to φN coincide with those of V̂vdW with respect to V̂N ; see
Hallin and Paindaveine (2004). Consequently, the values provided in Table 1 do also apply in
this case, and most importantly, so does Theorem 1, which proves the following corollary.

Corollary 1 For all integrer k ≥ 2, the pseudo-Gaussian likelihood ratio test φN for specified
shape is uniformly dominated by φvdW and therefore is Pitman non-admissible.

3 Proof of Theorem 1

In this section, we first provide a convenient reparametrization of the variational problem under
consideration. We then briefly explain why standard variational techniques are inappropriate for
the problem under study, and eventually give a proof of Theorem 1 that is essentially based on
the arithmetic-geometric mean inequality, Jensen’s inequality, and Cauchy-Schwarz inequality.

3.1 A convenient reparametrization

Rewrite the functional f 7→ Jk(φ, f) as

Jk(φ, f) =
∫ ∞

0

(
Φ̃−1

k (F̃k(r))
)2
r ϕf (r) f̃k(r) dr

=
1

µk−1,f

∫ ∞

0

(
Φ̃−1

k (F̃k(r))
)2

(−f ′(r)) rk dr

=
∫ ∞

0

{
2r Φ̃−1

k (F̃k(r))
φ̃k(Φ̃−1

k (F̃k(r)))
f̃k(r) + k

(
Φ̃−1

k (F̃k(r))
)2
}
f̃k(r) dr.

For any strictly positive (over R+
0 ) density f (of class C1), the function R : z 7→ F̃−1

k ◦Φ̃k(z)
and its inverse R−1 : r 7→ Φ̃−1

k ◦F̃k(r) are monotone increasing transformations (of class C2),
mapping R+

0 onto itself, and satisfying limz→0R(z) = limr→0R
−1(r) = 0 and limz→∞R(z) =
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limr→∞R−1(r) = ∞. Similarly, any monotone increasing transformation R (of class C2) of R+
0

such that
lim
z→0

R(z) = 0 and lim
z→∞

R(z) = ∞, (3.5)

characterizes a nonvanishing density f (of class C1) over R+
0 via the relation R = F̃−1

k ◦Φ̃k. The
functional above thus becomes

Jk(φ,R) =
∫ ∞

0

(
2zR(z)
φ̃k(z)

φ̃k(z)
R′(z)

+ kz2
)
φ̃k(z) dz = 2

(∫ ∞

0

zR(z)
R′(z)

φ̃k(z) dz
)

+ k2,

since f̃k(r) = d
dr F̃k(r) = φ̃k(z)/( d

dzR) and f̃k(r) dr = dF̃k(r) = φ̃k(z) dz. In this new parametriza-
tion, the ARE functional takes the form

AREk,R =
1

k(k + 2)3
D0,4

k(
D0,2

k

)2

[
Jk(φ,R)

]2
, (3.6)

where we let
Da,b

k = Da,b
k (R) :=

∫ ∞

0
za(R(z))b φ̃k(z) dz.

The ARE functional (3.6) is to be minimized over the collection Rk of monotone increasing
functions R : R+

0 → R+
0 of class C2 such that (3.5) holds and D0,4

k (R) <∞ (the latter condition
is the analog on R of the fourth-order moment condition Ek(f) <∞).

Note that a density type {fa, a > 0} corresponds to a class of functions {Ra, a > 0}, where
Ra(z) := aR(z) for all z > 0. Also the radial density φ is associated with the function R(z) = z,
z > 0; consequently, Gaussian distributions correspond to the class of functions Ra(z) = az,
a, z > 0.

3.2 Inappropriateness of standard variational arguments

Since the AREs in (3.6) depend on R through its “R-type” {Ra, a > 0} only, the variational
problem under consideration consists in minimizing the functional R 7→ D0,4

k (R) [Jk(φ,R)]2 over
the class of functions R ∈ Rk satisfying D0,2

k (R) = k. Equivalently, letting T (z) = (R(z))2 for
all z > 0, it consists in minimizing the functional

T 7→ Hk(T ) := D0,2
k (T ) [J̃k(φ, T )]2, (3.7)

where
J̃k(φ, T ) = 4

(∫ ∞

0

zT (z)
T ′(z)

φ̃k(z) dz
)

+ k2,

over the class Tk := {T = R2 | R ∈ Rk with D0,2
k (R) = k}. This new parametrization makes the

problem more linear since the functional Hk is now defined over the convex subset Tk included
in a vectorial space. Theorem 1 states that Hk(T ) ≥ k3(k + 2)3 for all T ∈ Tk and that the
equality only holds at z 7→ T0(z) := z2, for all z > 0.

Unfortunately, the classical Euler-Lagrange first order theory does not allow to deal with the
isoperimetric variational problem (3.7), as the functional Hk is a product of integrals (and not a
single integral). However, ad hoc investigation of the first order variation can be achieved, and
standard calculations show that the latter satisfies

H ′
k(0) :=

d

dw
(Hk((1− w)T0 + wT ))|w=0 = 0,
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for all T ∈ Tk, so that the function T0—corresponding to the standard Gaussian distribution—is
a critical point of the shape ARE functional. Nevertheless, unlike the ARE functional associated
with location problems (see Chernoff-Savage 1958, Hallin and Paindaveine 2002a, b), this is not
sufficient to conclude that T0 is a global (not even a local) minimum, since the functional T 7→
Hk(T ) is not convex.

To investigate further the local behavior of Hk at T0, one can of course study the second
variation

H ′′
k (0) :=

d2

dw2
(Hk((1− w)T0 + wT ))|w=0,

which, after tedious calculations, reduces, for T ∈ Tk, to

2k2(k + 2)2
{

2
∫
z2 T (z) φ̃k(z) dz +

∫ (
T ′(z)

)2
φ̃k(z) dz

− 3
k(k + 2)

(∫
z2 T (z) φ̃k(z) dz

)2

+ (k − 2)
∫ (

T (z)
)2 φ̃k(z)

z2
dz

}
.

Although it can be easily checked that H ′′
k (0) > 0 for all functions T of the form z 7→ za,

a ∈ (0,∞)/{2}, to establish the corresponding result for an arbitrary element of Tk/{T0} seems
to be extremely difficult.

Even worse: even if it can be shown that H ′′
k (0) > 0 for all T ∈ Tk/{T0}, this would only

prove that T0 is a (strict) local minimum. According to Ewing (1977, Theorem 1.4), if H ′
k(0) = 0

and H ′′
k (0) > 0 for all T ∈ Tk/{T0}, a necessary and sufficient condition for T0 to be a global

minimum is given by the so-called semilocal convexity of the functional T 7→ Hk(T ) at T0 (where
the latter means that, for all T ∈ Tk/{T0}, there exists a positive number ε(T ) such that

Hk((1− w)T0 + wT ) ≤ (1− w)Hk(T0) + wHk(T ),

for all w ∈ (0, ε(T ))). Just as the positiveness of the second variation, this weak convexity
property seems hard to establish directly. Along with the fact that Hk, as a product of integrals,
is incompatible with standard isoperimetric Euler-Lagrange methodology, this shows that the
classical methods of the calculus of variations are inappropriate for the problem under study.

The next section therefore provides a proof which does not rely on variational methods,
but is partly inspired by the “direct” method introduced by Gastwirth and Wolff (1968)—who
provided a simple proof for the original non-admissibility result of Chernoff-Savage (1958). See
also Paindaveine (2004) for a proof a la Gastwirth and Wolff (1968) of multivariate Chernoff-
Savage results for location parameters.

3.3 A direct proof of Theorem 1

To prove Theorem 1, we come back to the R-parametrization in (3.6).

Proof of Theorem 1. Using the arithmetic-geometric mean inequality, we obtain

Jk(φ,R) ≥ (k + 2)

{(∫ ∞

0

zR(z)
R′(z)

φ̃k(z) dz
)2

kk

} 1
k+2

. (3.8)

Now, applying Jensen’s inequality (with respect to the measure (R(z))2 φ̃k(z) dz and with convex
function x 7→ 1/x) yields∫ ∞

0

zR(z)
R′(z)

φ̃k(z) dz ≥
(
D0,2

k

)2
(∫ ∞

0
z−1 (R(z))3R′(z) φ̃k(z) dz

)−1

. (3.9)

8



Integrating by parts and using that −φ̃′k(z)/φ̃k(z) = z − (k − 1)/z show∫ ∞

0
z−1 (R(z))3R′(z) φ̃k(z) dz = −1

4

∫ ∞

0
(R(z))4

(
z−1 φ̃k(z)

)′
dz

=
1
4

∫ ∞

0

(
1− (k − 2)z−2

)
(R(z))4 φ̃k(z) dz

=
1
4

(
D0,4

k − (k − 2)D−2,4
k

)
.

Substituting successively in (3.9) and (3.8), we obtain

Jk(φ,R) ≥ (k + 2) k
k

k+2

{
4
(
D0,2

k

)2 (
D0,4

k − (k − 2)D−2,4
k

)−1
} 2

k+2

,

which yields (see (3.6))

AREk,R ≥
1

k + 2
k

k−2
k+2

D0,4
k(

D0,2
k

)2

 4
(
D0,2

k

)2

D0,4
k − (k − 2)D−2,4

k


4

k+2

.

Note that this already establishes the result for k = 2. Now, since (D0,2
k )2 ≤ kD−2,4

k by Cauchy-
Schwarz inequality, we obtain

AREk,R ≥


4
k

 k

k + 2
D0,4

k(
D0,2

k

)2


k+2
4

(
D0,2

k

)2

D0,4
k − k−2

k

(
D0,2

k

)2


4

k+2

=

{
(1 + κk)

k+2
4

1 + (k+2
4 )κk

} 4
k+2

, (3.10)

where κk = κk(R) := kD0,4
k /((k + 2)(D0,2

k )2) − 1 is the kurtosis parameter of the distribution
associated with R; note that Cauchy-Schwarz inequality yields κk > −2/(k+ 2). Consequently,
since the function x 7→ gk(x) := (1 + x)(k+2)/4 − (1 + (k+2

4 )x) has a (unique, for k > 2) global
minimum at x = 0, with corresponding value gk(0) = 0, we eventually obtain that AREk,R ≥ 1
for all R ∈ Rk.

It remains to prove that the equality holds at Gaussian radial densities only. Now, to have
the equality in Theorem 1, Jensen’s inequality in (3.9), in particular, needs to be degenerate;
that is, we need to have

z

R(z)R′(z)
= C, ∀z > 0,

for some real constant C. Since R is monotone increasing and R(0) = 0, this implies that R(z) =
az for some a > 0, which means that the corresponding radial density f needs to be Gaussian
(see the discussion at the end of Section 3.1). As it is trivially checked that AREk,R = 1
for R(z) = az, a, z > 0, Theorem 1 is proved.

�
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4 Final comments

Note that, for k ≥ 3, Inequality (3.10) provides a lower bound for AREk,f as a function of the
kurtosis κk(f) of the underlying elliptic distribution. Taking the limit as k → ∞ shows that,
with κ(f) := limk→∞ κk(f), which is nonnegative (since κk(f) > −2/(k + 2) for all f),

lim
k→∞

AREk,f ≥ 1 + κ(f), (4.11)

which is the limiting value (still as k →∞) of the ARE, under radial density f , of Tyler (1987)’s
sign estimator of shape (resp., Ghosh and Sengupta (2001)’s sign test for sphericity) with
respect to the pseudo-Gaussian estimator V̂N (resp., pseudo-Gaussian test of sphericity φN );
by “sign” procedures, we mean procedures that use the observations Xi only through their
directions Ui from the (estimated) centre of the distribution. Actually, it can be shown that the
rank-based estimator V̂vdW and test φvdW defined above converge a.e., for fixed n, as k →∞, to
Tyler (1987)’s estimator and Ghosh and Sengupta (2001)’s sign test, respectively. This justifies
the fact that, actually, the equality holds at all f in (4.11) (in particular, it can be easily checked
that the equality in (4.11) occurs in each cell of the last row of Table 1). As pointed out in Hallin,
Oja, and Paindaveine (2004), this is associated with the fact that, as the dimension k of the
observation space goes to infinity, the information contained in the radii di becomes negligible
when compared with that contained in the directions Ui.

This paper shows that Gaussian-score rank-based procedures for shape strictly beat their
pseudo-Gaussian competitors, but at Gaussian distributions (where they compete equally). As
mentioned in the introduction, this Chernoff-Savage result also holds in purely location prob-
lems (one-sample, two-sample, MANOVA, regression problems, etc.), as well as in serial models
(mainly VARMA models). Table 2 provides, for the same dimensions and underlying distri-
butions as in Table 1, the ARE figures associated with the three kinds of problems, namely,
shape, location, and serial problems. A quick inspection of Table 2 reveals that the shape AREs
seem to be uniformly larger than the location AREs, which themselves appear to be uniformly
larger than the serial ones. While it holds true that the serial AREs are uniformly smaller than
the location ones (with equality under Gaussian distributions only), there exist distributions
for which the corresponding ARE values are larger in location (and even serial) cases than for
shape; an example, in the bivariate case, is given by the radial density f associated with the
R-function (in the sense of Section 3.1)

z 7→ R(z) :=

{
z2 if 0 < z < 1
2z − 1 if z ≥ 1,

(4.12)

for which the shape, location, and serial AREs are given by 1.067, 2.084, and 2.016, respectively.
Note that, strictly speaking, this function R is not of class C2; however it can be arbitrarily well
approximated (uniformly) by a function of class C2.

Eventually, since the Fisher information for shape does coincide with that for scale (see Hallin
and Paindaveine 2004), one could wonder whether the Chernoff-Savage phenomenon extends to
problems where the scale is (a part of) the parameter of interest. This includes, e.g., the problem
of testing that the scales of two univariate distributions do coincide or, in the multivariate setup,
that of testing the equality of the covariance matrices associated with two—or several—elliptic
populations (these problems are mainly motivated by their links with (M)ANOVA problems;
the corresponding null hypotheses are indeed the standard assumptions for many (M)ANOVA
procedures). It can be shown (see Hallin and Paindaveine 2005b for details) that, for these

10



underlying density
k t5 t8 t12 N e2 e3 e5

shp 2.204 1.215 1.078 1.000 1.129 1.308 1.637
2 loc 1.171 1.059 1.025 1.000 1.097 1.218 1.414

ser 1.125 1.047 1.021 1.000 1.086 1.196 1.375
shp 2.270 1.233 1.086 1.000 1.108 1.259 1.536

3 loc 1.194 1.069 1.030 1.000 1.077 1.176 1.339
ser 1.140 1.054 1.024 1.000 1.069 1.158 1.307
shp 2.326 1.249 1.093 1.000 1.093 1.223 1.462

4 loc 1.212 1.077 1.034 1.000 1.064 1.148 1.287
ser 1.153 1.061 1.028 1.000 1.057 1.132 1.260
shp 2.413 1.275 1.106 1.000 1.072 1.174 1.363

6 loc 1.242 1.092 1.042 1.000 1.048 1.111 1.219
ser 1.172 1.071 1.034 1.000 1.042 1.100 1.199
shp 2.531 1.312 1.126 1.000 1.050 1.121 1.254

10 loc 1.283 1.112 1.053 1.000 1.032 1.074 1.149
ser 1.197 1.086 1.042 1.000 1.028 1.067 1.135
shp 3.000 1.500 1.250 1.000 1.000 1.000 1.000

∞ loc 1.509 1.253 1.151 1.000 1.000 1.000 1.000
ser 1.281 1.153 1.095 1.000 1.000 1.000 1.000

Table 2: AREs of Gaussian-score rank-based estimators for shape (sph), location (loc), and
autoregressive (ser) parameters, with respect to their pseudo-Gaussian comptetitors, under k-
dimensional Student (with 5, 8, and 12 degrees of freedom), normal, and power-exponential
densities (with parameter η = 2, 3, 5), for k = 2, 3, 4, 6, 10, and k →∞.

problems, the Gaussian-score rank-based tests do not uniformly dominate, in the Pitman sense,
the corresponding pseudo-Gaussian ones. For instance, when testing the equality of the scales
of two univariate populations, the ARE of the Gaussian-score rank test with respect to the
pseudo-Gaussian test, under the symmetric univariate density f associated with the function R
in (4.12), is 0.947. Location and scale thus play distinct roles with respect to the Chernoff-Savage
phenomenon. This leads us to conjecture that the latter is some kind of miracle that is specific to
location parameters, such as location centres, regression or autoregression parameters, moving-
average coefficients, and, in some sense... Shape, which, roughly speaking, in the orthogonal
decomposition (see Hallin and Paindaveine 2004 for details) of a covariance matrix ΣΣΣ into scale σ
and shape V, can be considered as the “location component” of ΣΣΣ.
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