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Abstract
For about thirty years, time series models with time-dependent coefficients have sometimes been
considered as an alternative to models with constant coefficients or non-linear models. Analysis based
on models with time-dependent models has long suffered from the absence of an asymptotic theory
except in very special cases. The purpose of this paper is to provide such a theory without using a
locally stationary spectral representation and time rescaling. We consider autoregressive-moving
average (ARMA) models with time-dependent coefficients and a heteroscedastic innovation process.
The coefficients and the innovation variance are deterministic functions of time which depend on a
finite number of parameters. These parameters are estimated by maximising the Gaussian likelihood
function. Deriving conditions for consistency and asymptotic normality and obtaining the asymptotic
covariance matrix are done using some assumptions on the functions of time in order to attenuate
non-stationarity, mild assumptions for the distribution of the innovations, and also a kind of mixing
condition. Theorems from the theory of martingales and mixtingales are used. Some simulation results
are given and both theoretical and practical examples are treated.
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1. Introduction
Apart from the recent interest towards non-linear models, most of the literature on time series

is concerned with stationary linear models. Time invariance is however difficult to justify over a long
period of time but provides a welcome simplification. If non-linear models have been the object of
numerous papers in the recent years, it is mainly for theoretical aspects, much less for practical
applications. See e.g. Priestley (1988), Tong (1990), Guégan (1994), for reviews. The power of the
theory on non-linear models relies on results depending on stationarity and ergodicity. On the contrary,
models with time-dependent coefficients have been less studied in the literature and also rarely used
in practice. The main reason is their lack of stationarity and ergodicity which has prevented from using
standard arguments. Among the first authors who have investigated these models, let us mention
Quenouille (1957), Whittle (1965), Abdrabbo and Priestley (1967), Miller (1968, 1969), Subba Rao
(1970), Wegman (1974), and Hallin and Mélard (1977). Among the recent references on the subject,
let us mention Singh and Peiris (1987), Kowalski and Szynal (1991), Azrak and Mélard (1993) where
the extended ARIMA model includes some cases of models with time-dependent coefficients and
marginally heteroscedastic models, Grillenzoni (1990) who has used an approach based on recursive
estimation, and Dahlhaus (1996 a, b, c, 1997) and Bibi and Francq (2003), whose contributions will
be discussed below. For conditionally heteroscedastic covariance stationary models, see Lumsdaine
(1996). For ARMA processes with periodic coefficients, see Basawa and Lund (2001).

The asymptotic properties of estimators for models with time-dependent coefficients are not
studied in a general framework in the statistical literature although Tjøstheim (1984b) has been close
from it with his general theory for linear and nonlinear models. The difficulty to derive conditions for
consistency and asymptotic normality, and to obtain the asymptotic covariance matrix is due to three
reasons: (a) the observations are not independent; (b) they are not identically distributed; (c) they are
not normally distributed.

In this paper, we consider asymptotic properties of quasi-maximum likelihood estimators for a
large class of models, the autoregressive-moving average (ARMA) model with time-dependent
coefficients and heteroscedastic innovation variance. These coefficients and that variance are assumed
to be deterministic functions of time which depend on a finite number of parameters. There are some
assumptions on these functions of time in order to attenuate non-stationarity, mild assumptions for the
distribution of the innovations, and the estimator which is used is the Gaussian maximum likelihood
estimator, maximising the likelihood function as if the process were Gaussian. The advantage of that
approach is that the Gaussian likelihood function can be computed exactly, with very efficient algo-
rithms (e.g. Mélard, 1982, Azrak and Mélard, 1998).

Let us consider a stochastic process , defined on a probability space ,
with values in , whose distribution depends on a vector of unknown parameters to be

estimated, with lying in an open set B of an Euclidian space , . The true value of is denoted

by . Consider a triangular sequence of observations of the process . Let

be theσ-field generated by the , and . Let
be a general penalty function to be minimised, which depends on the observations and . The estimator
is obtained by solving the system of equations

To use the method of maximum likelihood we maximise, with respect to , the function

where is the conditional density of with respect to . For ARMA models, for a

reason explained in Section 3, can be omitted for the filtration, leading to . In what follows, we
briefly describe a synthesis of the literature.

w = (wt, t ∈ N) (Ω,F ,Pβ)
R β = (β1,…,βr)

Rrβ r ∈ N0 β
β0 w (n ) = (w1

(n ),w2
(n ),…,wn

(n )) w

Ft
(n ) (wu

(n ),u ≤ t) F0
(n ) = {∅,Ω} Qn = Qn(β) = Qn(β;w1

(n ),…,wn
(n ))

β

∂Qn(β)
∂βi

= 0 , for i = 1,…, r .

β

ln(β;w1
(n ),…,wn

(n )) = ∑
t = 1

n

log ft(wt
(n );β/Ft − 1

(n ) ) ,

ft(wt
(n );β/Ft − 1

(n ) ) wt
(n ) Ft − 1

(n )

(n ) Ft − 1

2



Very general non-stationary models have been considered. Silvey (1961) has tried to generalise
the statistical properties of maximum likelihood estimators in the non-standard case without specifying
a particular model but under assumptions which are difficult to check. Bar-Shalom (1971) shows, in
the case of a scalar parameter, convergence in probability and asymptotic efficiency by assuming that,
at :

Bhat (1974) extends the results of Bar-Shalom (1971) by showing asymptotic normality of the estimator
under the assumption that, at ,

and that

where is a strictly positive constant. In a more general framework, Crowder (1976) gives
conditions which guarantee weak consistency of the maximum likelihood estimator. One of these
conditions cannot be verified in our case.

Let us now restrict ourselves to more particular models in the class of the ARMA
(autoregressive-moving average) processes with time-dependent coefficients. Subba Rao (1970) is
interested in AR models using estimators based on the evolutionary spectral analysis of Priestley
(1965). Mélard (1977) fits (marginally) heteroscedastic ARMA models called ARMAG models.
Mélard and Kiehm (1981) deal with models with time-dependent coefficients and Gaussian maximum
likelihood estimation. Mélard (1982) gives an algorithm for computing the exact Gaussian likelihood.
These authors have not studied the asymptotic properties of their methods.

Kwoun and Yajima (1986) introduce a first-order AR process with a time-dependent coefficient.
They show consistency and asymptotic normality of the least squares estimator, by assuming that the
coefficients of the moving average representation are uniformly bounded with respect to t. Hamdoune
(1995) extends that approach to autoregressive processes of order p, using also an M-estimateur, and
shows strong consistency and asymptotic normality under certain regularity assumptions. The first-
order moving average process is also considered.

It is important to notice that the other approaches mentioned before are concerned with
homoscedastic innovations. Tyssedal and Tjøstheim (1982), however, consider heteroscedastic
autoregressive models. We provide results partly based on the work of Klimko and Nelson (1978),
and of Tjøstheim (1984a, 1984b, 1986) which consist in using a Taylor expansion of the penalty
function, here the Gaussian likelihood. Tjøstheim (1986) has considered various linear and non-linear
autoregressive models, detailed in Tjøstheim (1984a) and Tjøstheim (1984b), respectively, but with
a constant innovation variance. Estimation is performed by the maximum likelihood method only for
stationaryprocesses, not for processes with time-dependent coefficients for which only the least squares
method is used. We shall start from two theorems of Klimko and Nelson (1978) denoted here by KN1
and KN2. KN1 states existence of an estimator, and shows almost sure (a.s.) consistency, whereas
KN2 proves asymptotic normality and gives the asymptotic covariance matrix. These theorems are
based on a standard technique of Taylor expansion of a general penalty function and on Egorov’s
theorem. We have not used the versions of Tjøstheim (1986) of KN1 because the assumption on the
smallest eigenvalue of a certain matrix is difficult to check when there are more than two parameters.
Moreover, the original assumption of KN1 is still necessary for proving KN2.

The difficulty is to check the assumptions of Klimko and Nelson (1978) by stating realistic
assumptions on the model with the Gaussian likelihood taken as the penalty function. For the general
ARMA case, we give expressions which are generalisations of those given by Kwoun and Yajima
(1986) for the AR(1) process. They seem relatively easy to check at least in special cases. For pure
autoregressive processes, in a companion paper (Azrak and Mélard, 2004), we propose an alternative

β = β0

−E



∂2ft(wt

(n );β/Ft − 1)
∂β2




= E




∂ft(wt

(n );β/Ft − 1)
∂β





2

. (1.1)
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Jt(β) = −E
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

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/Ft − 1




= E







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1
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J(β0)

3



mixing condition which assumes that a certain series in the -mixing coefficients is convergent. Of
course, theorems from the theory of martingales are used, essentially a strong law of large numbers
(Stout, 1970) and a version of Basawa and Prakasa Rao (1980) of the central limit theorem. For the
case where the coefficients depend on time but also on the length of the series, a martingale array is
considered and a weak law of large numbers is used toobtain convergence in probability of the estimator
instead of almost sure convergence. Also, in order to bound the higher-order term of the Taylor
expansion, laws of large numbers for mixtingales are used, either for sequences if the coefficients
depend on t, or for arrays if they also depend on n.

More recently, Dahlhaus (1996 a, b, c, 1997) has obtained asymptotic results for a new class of
locally stationary processes which includes heteroscedastic ARMA processes with time-dependent
coefficients. Either a spectral-based or a maximum likelihood estimation method is used. The
asymptoticsare basedon rescaling time: instead of simply increasing the length n of the series, Dahlhaus
assumes that the observation period is fixed, let us say , but that the interval between the n
observations decreases and tends to zero.

Let us mention another very recent approach by Bibi and Francq (2003). Their assumptions are
different, e. g. they assume only finite fourth-order moments but other conditions more difficult to
check in our case, their estimation method is quasi-least squares, and their scope of applications favors
cyclical ARMA models with non constant periods.

We proceed in two stages. First, we consider the quasi-maximum likelihood estimator of a
process which is not necessarily stationary (see Section 2). Then, we particularise to ARMA models
with time-dependent coefficients (see Section 3). Section 4 is devoted to five examples where the
assumptions of Section 3 can be verified. Some simulation results for examining small sample prop-
erties of estimators and their standard errors are given in Section 5 in the case of some examples of
Section 4. We end with practical examples on standard time series (Section 6), and some conclusions.

2. Maximum likelihood estimation for a general time series model

In this section, we apply the two theorems KN1 and KN2 of Klimko and Nelson (1978) in the
case of a quasi-maximum likelihood. Let us consider , the conditional expectation of given

:

and similarly the conditional variance:

We take as penalty function, , minus the logarithm of the quasi-likelihood function
, computed as if the process were Gaussian:

hence

φ

[0,1]

ŵ t /t − 1(β) wt

Ft − 1

ŵ t /t − 1(β) =Eβ(wt/Ft − 1) , (2.1)

ht /t − 1(β) =Eβ((wt − ŵ t /t − 1(β))
2/Ft − 1) . (2.2)

Qn

Ln(β;w1,…,wn)

Ln(β;w1,…,wn) = (2π)−n /2 ∏t = 1

n

ht /t − 1(β)


−1/2

exp



− ∑

t = 1

n (wt − ŵ t /t − 1(β))2

2ht /t − 1(β)




,

−Qn = ln(β) = logLn(β;w1,…,wn) = −
1
2
∑

t = 1

n

αt(β) −
n
2

log(2π) , (2.3)

where αt(β) = loght /t − 1(β) +
(wt − ŵ t /t − 1(β))2

ht /t − 1(β)
. (2.4)
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Later we shall consider models where the coefficients depend not only on t but also on n so that it will
be necessary to add a superscript (n) to the notations, leading to , , and instead
of, respectively, , , and . To simplify the presentation, we denote

and similarly and . We denote and .

In order to check the assumptions of the theorems KN1 and KN2 of Klimko and Nelson (1978),
we need some additional conditions as follows.

Theorem 1

Let the stochastic process be such that for all and such that and
are almost surely (a.s.) twice continuously differentiable in an open subset which contains

the true value of vector . Suppose there exist two positive constants and such that for all
:

Suppose further that

where the matrix is a strictly definite positive matrix of constants;

where is a point of the straight line joining to every , such that .

Then,
there exists an estimator such that almost surely, and such that for every , there exists
an event E in with and such that for , in E, , ,

and reaches a relative maximum at the point .

If these conditions are satisfied, as well as the following assumption:

as , where denotes transposition, then

where L indicates convergence in law and is defined by:
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Remark 1

This theorem is essentially an existence theorem. It is possible to extend it in the same way as Hamdoune
(1995) has done in the AR(1) case, by considering M-estimation instead of maximum likelihood
estimation. It is more complex here because a term and a factor are introduced in (2.4) for the treatment
of heteroscedasticity.

Theorem 1’

Under the same assumptions as in Theorem 1 except that , , and are replaced by

, , and , respectively, that the assumptions and are valid uniformly with
respect to n, and almost sure convergence is replaced by convergence in probability in assumptions

, and , then, there exists an estimator such that in probability. The asymptotic
normality result is the same as in Theorem 1.

3. Maximum likelihood estimation for ARMA models with time-dependent

coefficients

In this section, we use the assumptions of Theorems 1 and 1’ for ARMA models with
time-dependent coefficients, based on an innovation process made up of independent random variables
with zero mean and a time-dependent variance. We suppose that the autoregressive and moving average
coefficients, as well as the innovation variance, are deterministic functions of time which depend on
a finite number of parameters which need to be estimated.

While checking the assumptions of Theorem 1, we shall need the following result stated by
Hamdoune (1995) which, as noticed by Kwoun and Yajima (1986), follows from a proof in Doob
(1953, pp. 492-493, Theorem X.6.2), where it is given for a second order stationary process.

Lemma 1

Let be a process with second-order moments which are uniformly bounded with respect to
t, and let be such that

Then, converges almost surely to zero when n tends to infinity.

Definition 1

The process is called an autoregressive-moving average process of order (p, q), if and only
if it satisfies the equation

for , where the is an independent white noise process, consisting of independent random

variables, not necessarily identically distributed, with zero mean and variance . The coefficients
and are the coefficients of the model. The initial values , , and , , which are used

in (3.1), are supposed to be equal to zero. In the sequel, we will also use , , ,
and .

ŵ t /t − 1(β) ht /t − 1(β) αt(β)
ŵ t /t − 1

(n ) (β) ht /t − 1
(n ) (β) αt

(n )(β) H1.1 H1.2
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E


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1
n
∑
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n
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



2

= O



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n ν





.

n −1 ∑
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n

wt

(wt, t ∈ N)

wt = ∑
k = 1

p

φtkwt − k + et − ∑
k = 1

q

θtket − k , (3.1)

t ≥ 1 (et, t ∈ N)
σt

2 > 0
φtk θtk wt t < 1 et t < 1

φt0 = 1 θt0 = −1 φtk = 0,k > p
θtk = 0,k > q

6



The contents of the vector of parameters will be discussed soon. We define or like

in Section 2. Of course, and .

Thanks to the assumption about initial values and by using (3.1) recurrently, it is possible to
write the pure moving average and the pure autoregressive representation of the process. For any ,
the pure moving average representation is given by

where the coefficients, the Green functions (Miller, 1968), can be
obtained from the autoregressive and moving average coefficients using the following recurrences
(see Hallin and Mélard, 1977, or Hallin, 1978)

In a Wold-Cramér decomposition (Cramér, 1961) of the process (3.2) would be an infinite series
converging in the mean and the would be a weak white noise process. Alternatively, we can use a
pure autoregressive representation

where the coefficients can be obtained using the following recurrences
(see Hallin and Mélard, 1977, or Hallin, 1978)

Let be the σ-field spanned by . By (3.2), is -measurable, for all t. From (3.3),
is also the σ-field spanned by , for all t. If the process were not started at time t = 1, it

should be necessary to impose a causality and an invertibility condition, for example Hallin and
Ingenbleek (1983), Hallin (1986).

In the sequel, (3.1) is used to represent a time series where is the observation
of the variable analysed at time t, . The time series is considered as a partial realisation of
a stochastic process . The asymptotics are based on a triangular sequence of observations

. However, for reasons that will become clear later, the coefficients in (3.1)
can also depend on n, the length of the series. In that case, we consider a sequence of processes indexed
by n, based on the same innovation sequence . Consequently, the sequence of the σ-fields

is unique and does not depend on n.

The model depends on the parameters contained in each coefficient or ,

or , and the parameters contained in or , where the

scale or is a deterministic strictly positive function of time. These parameters are

et
(n )(β)β et(β)

et(β0) et
(n )(β0) = et

β
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et
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πtk(β)wt − k + et(β) , (3.3)
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estimated from the realisation . In the sequel, we often drop the superscript
(n) on the observations. Rather, when the coefficients depend on n, we add a superscript (n) to them
but also to all the symbols which depend on them.

Let be a r-dimensional vector containing all the parameters to be estimated, except for . We
suppose, for the commodity, that the parameters in for , in for , and in
are functionaly independent. The vector in the parameters is thus composed of three sub-vectors ,

and : is the vector of parameters included in , , with dimension s1 ( for
), is the vector of parameters included in , , with dimension s2 ( for

), and is the vector of parameters included in with dimension , where ,
( , ). Denote the 4-th order cumulant of the innovation (which does exist
and is uniformly bounded by ). It may depend on (and even on n).

We start by giving the explicit expression of or in the framework of the model
defined by equation (3.1). The conditional expectation and the conditional variance
take the following forms

with superscripts (n) if the coefficients depend on n. The expression (2.4) can then be written as

accordingly.

Now we consider, with possibly superscripts (n),

, which is a recurrence equation since . We can obtain a simpler
expression from the pure autoregressive representation (3.3)

and similarly

for . Alternatively, each of these expressions on the right hand side can be written as a
pure moving average

for , where the coefficients , and are obtained by the following

w (n ) = (w1
(n ),w2

(n ),…,wn
(n ))

σ2β
φtk k = 1,…, p θtk k = 1,…,q ht

β φ
θ δ φ φtk k = 1,…, p βi = φi

i = 1,…, s1 θ θtk k = 1,…,q βi + s1
= θi

i = 1,…, s2 δ ht r − s s = s1 + s2

βi = δi − s i = s + 1,…, r κ4t et

H2.5 β

αt
(n )(β)αt = αt(β)

ŵ t /t − 1(β) ht /t − 1(β)

ŵ t /t − 1(β) =Eβ(wt/Ft − 1) = ∑
k = 1

p

φtk(β)wt − k − ∑
k = 1

q

θtk(β)et − k(β) (3.4)

ht /t − 1(β) =Eβ((wt − ŵ t /t − 1(β))
2/Ft − 1) = Eβ(et

2(β)) = σ2ht(β) , (3.5)

αt(β) = log(σ2ht(β)) +
(wt − ŵ t /t − 1(β))2

σ2ht(β)
or αt

(n )(β) = log(σ2ht
(n )(β)) +

(wt − ŵ t /t − 1
(n ) (β))2

σ2ht
(n )(β)

,

∂ŵ t /t − 1(β)
∂βi

= ∑
k = 1

p ∂φtk(β)
∂βi

wt − k − ∑
k = 1

q ∂θtk(β)
∂βi

et − k(β) − ∑
k = 1

q

θtk(β)
∂et − k(β)
∂βi

, (3.6)

i = 1,…, r et(β) = wt − ŵ t /t − 1(β)

∂ŵ t /t − 1(β)
∂βi

= ∑
k = 1

t − 1 ∂πtk(β)
∂βi

wt − k ,

∂2ŵ t /t − 1(β)
∂βi∂βj

= ∑
k = 1

t − 1 ∂2πtk(β)
∂βi∂βj

wt − k ,
∂3ŵ t /t − 1(β)
∂βi∂βj∂βl

= ∑
k = 1

t − 1 ∂3πtk(β)
∂βi∂βj∂βl

wt − k ,

i , j , l = 1,…, r

∂ŵ t /t − 1(β)
∂βi

= ∑
k = 1

t − 1

ψtik(β)et − k(β), (3.7)

∂2ŵ t /t − 1(β)
∂βi∂βj

= ∑
k = 1

t − 1

ψtijk(β)et − k(β), (3.8)

∂3ŵ t /t − 1(β)
∂βi∂βj∂βl

= ∑
k = 1

t − 1

ψtijlk(β)et − k(β), (3.9)

i , j , l = 1,…, r ψtik(β) ψtijk(β) ψtijlk(β)

8



relations

Example

Let us consider the special case of an ARMA(1,1) process defined by

where and . We shall use the pure moving average representation of the process
which has coefficients (to be used in examples 1 to 3 of Section 4)

, where a product for to is set to one. Similarly, the coefficients of the pure
autoregressive form are as follows

so that their derivatives are given by

Hence it can be shown that

where

We first address the case where the coefficients depend on t but not on n.

Theorem 2

Consider an autoregressive-moving average process defined by (3.1) and suppose that the functions
, and are three times continuously differentiable with respect to , in the open set B

containing the true value of , that there exist positive constants ,
, and K such that :

ψtik(β) = ∑
u = 1

k ∂πtu(β)
∂βi

ψt − u ,k − u(β) , ψtijk(β) = ∑
u = 1

k ∂2πtu(β)
∂βi∂βj

ψt − u ,k − u(β) ,

ψtijlk(β) = ∑
u = 1

k ∂3πtu(β)
∂βi∂βj∂βl

ψt − u ,k − u(β) .

wt = φtwt − 1 + et − θtet − 1 , (3.10)
φt = φt(β) θt = θt(β)

ψtk(β) =



∏
l = 0

k − 2

φt − l(β)



{φt − k + 1(β) − θt − k + 1(β)} ,

k = 1,2,…, t − 1 l = 0 −1

πtk(β) =



∏
l = 0

k − 2

θt − l(β)



{φt − k + 1(β) − θt − k + 1(β)} ,

∂πt1(β)
∂β

=
∂φt(β)
∂β

−
∂θt(β)
∂β

∂πt2(β)
∂β

=
∂θt(β)
∂β

{φt − 1(β) − θt − 1(β)} + θt(β)




∂φt − 1(β)
∂β

−
∂θt − 1(β)

∂β




∂πt3(β)
∂β

=
∂θt(β)
∂β

θt − 1(β){φt − 2(β) − θt − 2(β)} + θt(β)
∂θt − 1(β)

∂β
{φt − 2(β) − θt − 2(β)} + θt(β)θt − 1(β)





∂φt − 2(β)
∂β

−
∂θt − 2(β)

∂β




…

ψtik(β) = ∑
l = 1

k  ∏h = 1

k

χt − h ,k , l ,h , i(β)
 , (3.11)

χtklhi(β) =






∂χtklh(β)
∂βi

if h = l ,

χtklh(β) if h ≠ l ,
and χtklh(β) =







φt(β) if l ≤ h < k ,
θt(β) if h < l ≤ k ,

φt(β) − θt(β) if h = k .

φtk(β) θtk(β) ht(β) β
β0 β Φ < 1

N1,N2,N3,N4,N5,K1,K2,K3,m ,M m1 ∀t

9



Suppose furthermore that

, where the matrix is a strictly definite positive matrix;

Then,
• there exists an estimator such that almost surely and in the sense of Theorem 1;

• where there exists a matrix whose elements are
defined by (2.11).

Remark 2

is satisfied if there exists such that and similar conditions for the others.
is also verified in that case. is a sort of mixing condition which will take a more classical form in
the case of a pure autoregression (see Azrak and Mélard, 2004). is probably the most intriguing
assumption. It means that each parameter is asymptotically informative either for the coefficients of
the ARMA model or for the innovation standard deviation. In the stationary case, the assumption
implies that there is no common root in the autoregressive and moving average polynomials. Things
are of course much more complex here as will be shown in Example 5 in Section 4. The assumption
on existence of 8th-order moments of the innovations can be reduced to the existence of moments of
order , where but this requires strengthening .

Remark 3

As is well known, for a non-Gaussian process, neither , nor , is the asymptotic covariance
matrix, see Whittle (1982) (obtained there for independent observations) and Tjøstheim (1986) but
well the so-called sandwich estimator .

H2.1 ∑
k = ν

t − 1

ψtik
2 (β0) < N1Φ

ν− 1 , ∑
k = ν

t − 1

ψtik
4 (β0) < N2Φ

ν− 1 , ∑
k = ν

t − 1

ψtijk
2 (β0) < N3Φ

ν− 1 ,

∑
k = ν

t − 1

ψtijk
4 (β0) < N4Φ

ν− 1 , ∑
k = 1

t − 1

ψtijlk
2 (β0) < N5 , ν = 1,…, t − 1, i , j , l = 1,…, r , t = 1,…,n ;

H2.2









∂ht(β)
∂βi




β = β0




≤ K1 ,








∂2ht(β)
∂βi∂βj




β = β0



≤ K2 ,








∂3ht(β)
∂βi∂βj∂βl




β = β0



≤ K3 i , j , l = 1,…, r ;

H2.3 0 < m ≤ ht(β
0) ≤ m1 ;

H2.4 E(wt
4) ≤ M ;

H2.5 (σ8ht
4(β0))−1

E(et
8) ≤ K .

H2.6 lim
n →∞

1
n
∑

t = 1

n 


σ−2E

β0




∂ŵ t /t − 1(β)

∂βi

ht
−1(β)

∂ŵ t /t − 1(β)
∂βj




+

1
2





∂ht(β)
∂βi




β = β0

ht
−2(β0)





∂ht(β)
∂βj




β = β0




= Vij(β

0) ,

V(β0) = (Vij(β0))1 ≤ i , j ≤ ri , j = 1,…, r

H2.7

1

n 2
∑

d = 1

n − 1

∑
t = 1

n − d

∑
k = 1

t − 1 − d

ψtik(β
0)ψtjk(β

0)ψt + d , i ,k + d(β
0)ψt + d , j ,k + d(β

0)κ4, t − k = O




1
n



,

1

n 2
∑

d = 1

n − 1

∑
t = 1

n − d

∑
k = 1

t − d

ψtik(β
0)ψt + d , i ,k + d(β

0)ht − k(β
0) = O





1
n




.

β̂n → β0β̂n

n 1/2(β̂n − β0) →
L

N(0,V(β0)−1
W(β0)V(β0)−1) W(β0)

ψtik
2 (β0) < ΦkH2.1 Φ < 1 H2.7

H2.7

H2.6

4 + γ γ > 0 H1.1

V(β0)−1
W(β0)−1

V(β0)−1
W(β0)V(β0)−1

10



Remark 4

With the following theorem we shall see that the dependence of the model with respect to n through
the coefficients , and has no substantial effect on the conclusions
except that almost sure convergence is replaced by convergence in probability. For convenience, we
state the lemma which corresponds to Lemma 1 in the case of triangular arrays of random variables.
The proof is immediate since convergence in L2 norm implies convergence in probability.

Lemma 1’

Let be, for each , a process with second-order moments, and let be such
that

Then, converges in probability to zero when n tends to infinity.

Theorem 2’

Consider a sequence of autoregressive-moving average processes based on the same innovation pro-
cess, defined by (3.1) and indexed by (n), , and suppose that the functions , and

are three times continuously differentiable with respect to , in the open set B containing the

true value of , that there exist positive constants , , and
K, such that and uniformly with respect to n:

Suppose furthermore that

, where the matrix is a strictly definite positive matrix;

φtk = φtk
(n )(β) θtk = θtk

(n )(β) ht = ht
(n )(β)

(wt
(n ), t = 1,…,n ) n ∈ N ν > 0

E




1
n
∑

t = 1

n

wt
(n )


2

= O




1

n ν





.

n −1 ∑
t = 1

n

wt
(n )

φtk
(n )(β) θtk

(n )(β)n ∈ N

ht
(n )(β) β

β0 β Φ < 1 N1,N2,N3,N4,N5,K1,K2,K3,m ,M m1

∀t

H2’.1 ∑
k = ν

t − 1

ψtik
(n )2(β0) < N1Φ

ν− 1 , ∑
k = ν

t − 1

ψtik
(n )4(β0) < N2Φ

ν− 1 , ∑
k = ν

t − 1

ψtijk
(n )2(β0) < N3Φ

ν− 1 ,

∑
k = ν

t − 1

ψtijk
(n )4(β0) < N4Φ

ν− 1 , ∑
k = 1

t − 1

ψtijlk
(n )2(β0) < N5 , ν = 1,…, t − 1, i , j , l = 1,…, r , t = 1,…,n ;

H2’.2








∂ht
(n )(β)
∂βi




β = β0



≤ K1 ,








∂2ht
(n )(β)

∂βi∂βj




β = β0



≤ K2 ,








∂3ht
(n )(β)

∂βi∂βj∂βl




β = β0



≤ K3 i , j , l = 1,…, r ;

H2’.3 0 < m ≤ ht
(n )(β0) ≤ m1 ;

H2’.4 E(wt
(n )4) ≤ M ;

H2’.5 (σ8ht
(n )4(β0))−1

E(et
8) ≤ K .

H2’.6 lim
n →∞

1
n
∑

t = 1

n 

σ−2E

β0




∂ŵ t /t − 1

(n ) (β)
∂βi

{ht
(n )(β)}−1∂ŵ t /t − 1

(n ) (β)
∂βj




+

1
2





∂ht
(n )(β)
∂βi




β = β0

{ht
(n )(β0)}−2 




∂ht
(n )(β)
∂βj




β = β0



= Vij(β

0) ,

V(β0) = (Vij(β0))1 ≤ i , j ≤ ri , j = 1,…, r

11



Then,
• there exists an estimator such that in probability;

• where there exists a matrix whose elements are

defined by (2.11) with replaced by .

Remark 5

It is not obvious that almost sure convergence can be obtained in Theorem 2’ using our approach.
Indeed, besides the mixtingale array problem mentioned in the proof of Theorem 2, it relies also on
Theorem 1’ where a strong law of large numbers for martingale difference arrays doesn’t seem to
exist, and on Lemma 1 for which the proof also makes use of sequence arguments. This contrasts to
the approach of Dahlhaus (1997) where almost sure convergence is obtained. Note however that the
assumptions of Theorem 2’ are weaker: we have no assumption of continuity with respect to time, the
possibility of coefficients periodically varying with respect to time t, no condition on the roots of the
autoregressive and moving average polynomials considered at each time.

4. Examples
In this section, we consider five examples. The first three of them concern AR(1) processes with

a time-dependent coefficient. In the first example, the coefficient is a periodic function of time. In the
second example, the coefficient is an exponential function of time. The innovation variance is constant
in both cases. In the third example and in part of the simulation results of Section 5, we have a linear
function of time for the coefficient and an exponential function of time for the scale factor. The last
two examples are for a MA(1) and an ARMA (1,1) processes. The former has a linear function of time
for the coefficient and an exponential function of time for the scale factor and is also illustrated in the
simulation results of Section 5. The latter is mainly used to investigate the need for .

Example 1

Let us consider the process defined by

where the coefficient , s > 1 is an integer and is the largest integer less or equal to x,
the innovations have possibly a time-dependent variance which does not depend on parameters and
finite 8th-order moment. It is assumed that the product . Otherwise, (4.1) will not
be causal which means it will not have a purely nondeterministic solution. Note that some of the factors
can be greater than 1, contrarily to the assumptionsof Dahlhaus (1996a). Suppose there are sparameters,
let us say . We now check the assumptions , and of Theorem 2, since the
other ones are trivially true.

By specializing the results of the example of Section 3, we have

The moving average representation of the process is, for large t,

H2’.7

1

n 2
∑

d = 1

n − 1

∑
t = 1

n − d

∑
k = 1

t − 1 − d

ψtik
(n )(β0)ψtjk

(n )(β0)ψt + d , i ,k + d
(n ) (β0)ψt + d , j ,k + d

(n ) (β0)κ4, t − k = O




1
n



,

1

n 2
∑

d = 1

n − 1

∑
t = 1

n − d

∑
k = 1

t − d

ψtik
(n )(β0)ψt + d , i ,k + d

(n ) (β0)ht − k
(n ) (β0) = O





1
n




.

β̂n → β0β̂n

n 1/2(β̂n − β0) →
L

N(0,V(β0)−1
W(β0)V(β0)−1) W(β0)

αt
(n )(β)αt(β)

H2.6

wt = φtwt − 1 + et , (4.1)
φt = βt − st /s x

β* = β0β1…βs − 1 < 1

β0, β1,…,βs − 1 H2.4 H2.6 H2.7

ψtk(β) = ∏
l = 0

k − 1

φt − l ,1(β) , ψtik(β) =
∂φt1(β)
∂βi

∏
l = 1

k − 1

φt − l ,1(β) .

wt = ∑
l = 0

∞
β*l /s ∏

j = 0

l − 1 − sl /s
βt − j − s(t − j)/s

et − l .

12



Consequently, assuming that the innovation variance is a constant :

An expression for the 4th-order moment can be obtained in the same way. These expressions would
be more complex in the marginally heteroscedastic case. Note that the derivatives of with
respect to the parameters are either or 0, and (4.2) implies that the limit in exists.

Let us now consider the case where is constant. It is well known (Tiao and Grupe, 1980) that a
process with periodic coefficients of period s can be embedded into an s-dimensional stationary
autoregressive process. By using Pham and Tran (1985) result, under mild assumptions, the process
is therefore strong mixing, at an exponential rate. The conclusions of Azrak and Mélard (2004) apply
but, of course, the result is already known for a multivariate stationary process. The result is however
new if the innovations have a bounded time-dependent variance. This example is not compatible with
the time rescaling approach of Dahlhaus (1997) because of the fixed periodicity.

Example 2

Let us consider again (4.1), where the innovations have a constant variance and 8th-order moments,
but now where is a fixed constant. It is assumed that the only parameter of

the model is and that its true value is , . The coefficient is decreasing with t and

varies between and . We shall use the moving average representation of the process which
is

Consequently, has an upper bound equal to the sum of a geometric series with rate

and a lower bound 1. The existence of follows similarly. The expression in has the form

evaluated at . There suffices to show convergence of

Using Theorem 2’, we can try replacing by an upper bound . For example, the second part
of can be written

which is . Similarly the first part of can be replaced by an upper bound using (A1.15) which

is a triple sum such as (4.3) but where is replaced by . Note that
and

decrease exponentially with k, so that is verified. The conclusion is similar hence Theorem 2’
applies.

σ2

var(wt) =
σ2

1 − β*2
∑

l = 0

s − 1 ∏
j = 0

l − 1 − sl /s
βt − j − s(t − j)/s



2

. (4.2)

ŵ t /t − 1(β)
wt − 1 H2.6

ht

σ2

φt = φt
(n )(β) = γβt /n 0 < γ < 1

β0 0 < β0 < 1 φt
(n )(β)β

γ(β0)1/n γβ0

wt
(n ) = ∑

k = 0

∞
γk∏l = 0

k − 1

β(t − l)/net − k .

E


(wt

(n ))2

 /σ

2 γ2β2/n < 1

E 
wt

(n )4
 H2’.6

lim
n →∞

γ2

nσ2
∑

t = 1

n 



t
n




2

β
2

t

n
− 1E(wt − 1

(n ) )2

β = β0

lim
n →∞

γ2

n
∑

t = 1

n 



t
n




2

β0

2
t

n
− 1 = γ2 lim

n →∞

1

n 3

β0
2/n − 2(1 + β0

2/n)

(1 − β0
2/n)3

=
γ2

2β0
2(1 − β0)3

.

ψt1k
(n ) (β) γk

H2’.7

σ2

n 2
∑

d = 1

n − 1

∑
t = 1

n − d

∑
k1 = 1

n − t

πt1k1

(n ) (β0)πt + d ,1,k1 + d
(n ) (β0) ≤

σ2

n 2
∑

t = 1

n − 2

∑
d = 1

n − t

∑
k1 = 1

n − t

γ
2k1 + d

≤
σ2

n (1 − γ2) (1 − γ)
(4.3)

O(1/n ) H2.7

γ2k1 + d γ4k1 + 2d ∂φt
(n )(β)/∂β = (t/n )γβt /n − 1

ψt1k
(n ) (β) =

t
n
γkβt /n − 1 ∏

l = 1

k − 1

β(t − l)/n ,

H2’.1

13



In order to conclude Example 2, let us mention that the use of time-dependent coefficients such as
, which depend on the length of the series is compatible with the approach of Dahlhaus (1997)

mentioned in Section 1.

Example 3

For simplicity, we keep an AR(1) process but with a coefficient which is a linear function of time and
the innovation standard deviation which is an exponential function of time, and again innovations with
bounded 8-th order moments. More specifically, we suppose that

There will be conditions on the parameters which will be discussed below. Note that

the scale factor is such that

and it varies between and , fulfilling . Let us denote by the upper bound of
. Then the moving average representation implies that

Hence, if the process were Gaussian, a sufficient condition for the existence of a uniform bound in
, for fixed n, is that , where is the value of if . The uniform

bounds of with respect to n are satisfied if . This is not a necessary condition. Contrarily
to the approach of locally stationary processes of Dahlhaus (1997), there would be no problem,
assuming a more complex form for than (4.4), if it would be larger than 1 during a finite span
of time. Similarly

We have the vectors

The expression in takes the form

φt
(n )(β)

φt
(n )(β) = φ’ +

1
n − 1




t −

n + 1
2




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
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∏
t = 1

n

{ht
(n )(β)} 1/2 = e

δ
n − 1

∑
t = 1

n 
t −

n + 1

2


= 1

e−δ e δ φ*(β)H2’.3

| φt(β)| , t = 1,…,n

E 
{wt

(n )} 4
 = ∑

k = 0

∞ ∏l = 0

k − 1

φt − l ,1
(n ) 

4

E(et − k
4 )

≤ ∑
k = 0

∞
{φ*(β)} 4k 


κ4, t − k

(n ) + 3σ4{ht − k
(n ) (β)} 2




= ∑
k = 0

∞
{φ*(β)} 4kκ4, t − k + 3σ4e

4δ
n − 1


t −

n + 1

2

 ∑

k = 0

∞
{φ*(β)} 4k

e
−4δ
n − 1

k
.

φ*(β0)exp(−δ0/(n − 1)) < 1 δ0 β = β0H2’.4 δ
φ*(β0) < 1H2’.1

| φt
(n )(β0)|

E 
{wt

(n )} 2
 = ∑

k = 0

∞ 


∏
l = 0

k − 1

φt − l
(n ) (β)





2

E(et − k
2 ) = σ2 ∑

k = 0

∞ 


∏
l = 0

k − 1

φt − l
(n ) (β)





2

ht − k
(n ) (β)

≤ σ2e
2δ

n − 1

t −

n + 1

2

 ∑

k = 0

∞
{φ*(β)} 2k

e
−2δ
n − 1

k
.

3 × 1
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where

with . For example, if , we have

hence (4.5) evaluated at is

There remains to check the assumptions of Theorem 2’. Here

which have an upper bound . Hence the second part of can be written, for ,

which is and similarly for the first part of . The result of Theorem 2’ is again valid.

Let us compute in order to obtain the asymptotic covariance matrix of . Taking

again the case where , the element (3, 3) of (3.12), for example, is obtained as follows

which reduces to 1/6 if the process is Gaussian. Let us suppose this. Then and,
consequently, the asymptotic covariance matrix of is
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Example 4

This is a pure moving average process defined by

with a coefficient which is a linear function of time and the innovation standard deviation which is an
exponential function of time, and again innovations with bounded 8-th order moments. More spe-
cifically, we suppose that

There will be conditions on the parameters which will be discussed later. The scale
factor varies like in Example 3. Let us denote by the upper bound of . There
is no condition for the existence of a uniform bound in . Here

which have an upper bound . The expression in takes the form

using again the notations (4.6).

For example, if , we have

with again . Hence (4.12) evaluated at is

There remains to check the other assumptions of Theorem 2’. The second condition of can be
written, for ,

which is and similarly for the first condition of . The result of Theorem 2’ is again valid.
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Let us compute in order to obtain the asymptotic covariance matrix of . Taking

again the case where and assuming that the process is Gaussian, we obtain (4.12).
Consequently, in that case, the asymptotic covariance matrix of is

which is similar to what was obtained for Example 3.

Example 5

We consider a special case of the ARMA(1,1) process considered as an example in Section 3, where
the innovations have a constant variance and 8th-order moments. We suppose that

and , where is a fixed constant, and the two parameters of the model are
. It is assumed that its true value is , such that and .

We shall later assume that in order to fulfill . The assumptions are clearly satisfied.

Note that . Then

Using (3.11), the expression in has the form

to be evaluated at which gives a matrix

generally of rank 2 but not if . The other conditions are easy to check by proceeding like above.

5. Some simulation results
We consider a limited Monte Carlo study to show that the theory stated above works with finite

series. We are interested in the speedof convergence of the estimators to the true value of the parameters,
either when the innovation distribution is normal (corresponding to exact maximum likelihood), or it
is not normal, considering as an example the case where the law is double exponential. We are also
interested in comparing various estimates of the standard errors. Three formulas are used for the
evaluation of the asymptotic covariance matrix of the estimator: (a) which should be correct

for a Gaussian process ; (b) ; and (c) the standard numerical estimate (called
Marquardt default expression in the sequel) based on the sample average of .

Doing this implies forgetting the term whose expectation is equal to zero for an
ARMA model but not when there is a parameter in .
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The estimation method which is used in the examples of this section has been implemented in
Time Series Expert (Mélard and Pasteels, 1994): the exact Gaussian likelihood is computed by the
algorithm of Mélard (1982) and the optimum is obtained using a customised variant of Marquardt’s
(1963) non-linear least-squares optimisation procedure. The algorithm given independently by
Dahlhaus (1996a) and Azrak and Mélard (1998), which provides a generalisation of Gardner et al.
(1980), combined with a good optimisation procedure could have been used instead. Contrarily to
Dahlhaus (1997) assertions, the exact maximum likelihood method is not computationally intensive,
not very much than for ARMA models with constant coefficients. Indeed, although the number of
operations at each time is quadratic with respect to the model orders, the experiments made by Mélard
(1982) and Azrak and Mélard (1998) show that the computation times remain reasonable. For example,
if the Ansley (1979) Cholesky factorization algorithm is used, the number of operations at each time
is barely multiplied by 2, plus the operations needed for computing the coefficients in terms of the
parameters, of course. A run of 1000 simulations taken from Table 1, for series of length 400, does
not take more than 4 minutes on a computer with a 500 MHz Intel Celeron processor.

Alternatively to the exact maximum likelihood method, the conditional maximum likelihood
method can be considered for fitting the models. But, Monte Carlo experiments (e.g. Ansley and
Newbold, 1980) have shown that, for stationary MA and ARMA models (not for AR models) and
relatively short series of length 50 or 100, exact maximum likelihood estimation is superior to
conditional maximum likelihood estimation (or least-squares estimation), which either assumes that
the pre-sample observations and errors have known fixed values, or starts estimation at t = m + 1, with

and for t m. It seems therefore plausible that conditional maximum likelihood
suffers similarly when dealing with more general time-dependent or non-linear models. Our purpose
is also to show that the unconditional quasi-maximum likelihood method is indeed superior to the
conditional quasi-maximum likelihood method, at least for MA models.

We consider two sets of simulations. They will address respectively AR(1) and MA(1) processes,
but marginally heteroscedastic with an innovation standard deviation which is an exponential function
of time. We have generated realizations of these processes and, for each of the series, we have fitted
a model with the right specification except that the coefficient is time dependent instead of being
constant. Our simulations provide statistical evidence for the test of stability of the coefficient and also
compare the empirical results with the asymptotic expressions of Section 4, respectively Examples 3
and 4.

An AR(1) process with a time dependent coefficient, defined by (4.1) with the same specification
as in Example 3, has been simulated, with , and , and using a normal or double
exponential distribution for the . The length n of the series varies from 25 to 400. Note that
is used as a parameter in (4.4) with the same for each n. This is a way to implement the condition

of Theorem 2’. The same stream of sequences of 400 uniform pseudo-random numbers has been
used to simulate the innovations for the two distributions, using the inverse distribution function
procedure. A number of 1000 series of length 400 have been generated using a method which doesn’t
require warming. For series of length n < 400, the first n observations have been used. The purpose is
to reduce randomness among the experiments. The results are given in Tables 1 and 2 in the case of
a normal distribution, and in Tables 1 and 3 for the double exponential distribution. Note that for short
n (n = 25, 50 and even 100), the entire estimation procedure has not been carried on successfully for
a few simulated series. This is due to the fact that the estimate of V obtained by finite second order
derivatives of the log-likelihood is not always positive definite. Results denoted by (a) and (b) in Tables
1-3 are based on the remaining series.

As shown in Table 1, for the three parameters, the bias tends to zero when n increases. Also, there is
not much difference when the innovation distribution is compatible with the law used in the
quasi-maximum likelihood, i.e. normal(a), or when it is double exponential(b). In Table 2, as far as
standard errors are concerned, (a) gives satisfactory result in the normal case, as expected. The
empirical standard deviations of the estimates agree with the theoretical values deduced from (4.9).
Note, however, that the standard errors provided by the Marquardt optimisation procedure(c) are bad
for , a fact that has been conjectured by Mélard (1985). The number of replications for which the

m = max(p ,q ) et = 0 ≤

φ’ = 0.5 φ’’ = 0 δ ≠ 0
et δ/(n − 1)

δ
H2’.3

V−1

δ
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Table 1. Estimated parameter for (true value: 0.5), (true value: 0), and
(true value as shown) for the AR(1) model with (a)normal or (b)double

exponential innovation distribution, obtained by quasi-maximum likelihood
methods, for n = 25, 50, 100, 200, 400; 1000 replications, except (a)819, (b) 802
for n = 25, and (a)980, (b) 962 for n = 50.

Length n 25 50 100 200 400

Distribution  = 0.5

normal(a) 0.451 0.476 0.489 0.497 0.498
double exponential(b) 0.455 0.475 0.489 0.497 0.498

Distribution  = 0.0

normal(a) -0.00048 -0.00150 -0.00032 -0.00005 -0.00004
double exponential(b) 0.00030 -0.00115 -0.00037 -0.00004 -0.00004

Distribution true 0.0480 0.0240 0.0120 0.00600 0.00300

normal(a) 0.0408 0.0228 0.0116 0.00593 0.00299
double exponential(b) 0.0384 0.0226 0.0116 0.00595 0.00301

Marquardt optimisation procedure(c) gives a satisfactory covariance matrix is larger than with the more
correct procedure(a). The averages of the estimates for case (c) are not shown here but are very close to
those of Table 1 except for n = 25. For example, 0,460 is obtained for instead of 0,451. When n =
25, the averages of the estimated standard errors are often unreliable so that the average has no meaning
and have been replaced by dashes. This has however never occurred in our simulations for n = 50 or
larger.

Table2. Theoretical, empirical and estimated standard errors for the AR(1) model
with normal innovation distribution obtained by the unconditional quasi-maximum
likelihood methods, for n = 25, 50, 100, 200, 400; 1000 replications, except (a)819,
(c)951 for n = 25 and (a)980, (c)991 for n = 50. Standard errors are computed (a)using

; (c)using Marquardt default; a indicates an unreliable result.

Length n 25 50 100 200 400

 = 0.5
theoretical 0.173 0.106 0.0866 0.0603 0.0433
empirical(a) 0.188 0.129 0.0887 0.0603 0.0421
estimated(a)(avg) 0.217 0.135 0.0904 0.0625 0.0437
estimated(c)(avg) 0.130 0.0895 0.0622 0.0437

 = 0.0
theoretical 0.0240 0.00734 0.00300 0.00106 0.000375
empirical(a) 0.0275 0.00956 0.00314 0.00110 0.000381
estimated(a)(avg) 0.0347 0.01008 0.00325 0.00110 0.000383
estimated(c)(avg) 0.00917 0.00315 0.00109 0.000380

true 0.048 0.024 0.012 0.006 0.003
theoretical 0.0196 0.00693 0.00245 0.000866 0.000306
empirical(a) 0.0229 0.00763 0.00256 0.000871 0.000311
estimated(a) (avg) 0.0239 0.00745 0.00254 0.000882 0.000309
estimated(c) (avg) 0.01044 0.00357 0.001245 0.000436

φ’ φ’’
δ/(n − 1)

φ’

φ’’

δ/(n − 1)

φ’

V−1

φ’

φ’’

δ/(n − 1)
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With double exponential innovations, we didn’t try to evaluate the theoretical standard errors because
of the difficulty to compute (4.8). As shown in Table 3, using (d) seems to agree with empirical
standarddeviations except for , and this whatever thesample size. In the latter case, as expected,

proves to be necessary for evaluating the standard errors.

Table 3. Empirical and estimated standard deviation for the AR(1) model with
double exponential innovation distribution obtained by the unconditional
quasi-maximum likelihood method, for n = 25, 50, 100, 200, 400; 1000 repli-
cations, except (b)802, (d)815 for n = 25, (b)(d)962 for n = 50, and (d)998 for n = 100.
Standard errors are computed (b)using ; (d)using ; a indicates an
unreliable result.

Length n 25 50 100 200 400

 = 0.5
empirical(b) 0.182 0.127 0.0877 0.0606 0.0423
estimated(b) (avg) 0.0858 0.0608 0.0430
estimated(d) (avg) 0.211 0.135 0.0904 0.0625 0.0438

 = 0.0
empirical(b) 0.0260 0.00937 0.00310 0.00109 0.000378
estimated(b) (avg) 0.00305 0.00106 0.000376
estimated(d) (avg) 0.0333 0.01016 0.00327 0.00111 0.000384

true 0.048 0.024 0.012 0.006 0.003
empirical(b) 0.0320 0.0112 0.00381 0.00134 0.000491
estimated(b) (avg) 0.00364 0.00136 0.000498
estimated(d) (avg) 0.0235 0.0075 0.00256 0.00089 0.000310

The second simulation experiment is based on a MA(1) process with marginally heteroscedastic
innovations defined by (4.10) and (4.11), using as in Table 4, and a normal or double
exponential distribution for the . The length of the series varies from 25 to 400. A number of 1000
series have been generated. The results are given in Table 4 and Table 6 in the case of a normal
distribution, in Table 5 and Table 7, in the case of a double exponential distribution. In Table 4 and
Table 5, it can be seen that the bias is smaller with the unconditional method than with the conditional
method, and decreases faster to zero when n increases. Also, there is no difference when the innovation
distribution is compatible with the law used in the quasi-maximum likelihood, i.e. normal, or when it
is not compatible, i.e. double exponential. Tables 6 and 7 are concerned with the standard errors for
the moving average series produced with normal and double exponential innovations, respectively.
They are provided here only when the maximum quasi-likelihood method is used. The following are
compared: the theoretical value (only in the normal case), the Monte Carlo standard deviation, and the
results of , as well as the standard errors providedby the Marquardtoptimisation procedure.
The results are similar to those for the AR(1) model. In Table 6, the empirical values largely agree
with the theoretical values deduced from (4.14) in the normal case.
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Table 4. Estimated parameters for the MA(1) model with normal innovation
distribution obtained by the conditional or unconditional quasi-maximum likeli-
hood methods, n = 25, 50, 100, 200, 400; 1000 replications, except (a)996, (b)954
for n = 25, (a)997, (b)979 for n = 50, and (a)999, (b)998 for n = 100.

Length n 25 50 100 200 400

Method

conditional(a) 0.552 0.515 0.509 0.500 0.501
unconditional(b) 0.516 0.513 0.510 0.501 0.501

Method  = 0.0

conditional(a) 0.00937 0.00089 0.00011 -0.00003 0.00003
unconditional(b) 0.00978 0.00119 0.00007 -0.00006 0.00002

Method true 0.048 0.0240 0.0120 0.0060 0.0030

conditional(a) 0.040 0.0233 0.0118 0.0060 0.0030
unconditional(b) 0.043 0.0236 0.0119 0.0060 0.0030

Table 5. Estimated parameters for the MA(1) model with double exponential
innovation distribution obtained by the conditional or unconditional quasi-maxi-
mum likelihood methods, n = 25, 50, 100, 200, 400; 1000 replications except
(a)929, (b)781 for n = 25, (a)991, (b)912 for n = 50, and (a)998 (b)983 for n = 100.

Length n 25 50 100 200 400

Method

conditional(a) 0.501 0.514 0.508 0.500 0.501
unconditional(b) 0.496 0.503 0.508 0.501 0.501

Method  = 0.0

conditional(a) 0.00434 0.00058 0.00012 -0.00003 0.00003
unconditional(b) 0.01175 0.00182 0.00016 -0.00006 0.00002

Method true 0.048 0.0240 0.0120 0.0060 0.0030

conditional(a) 0.042 0.0233 0.0118 0.0060 0.0030
unconditional(b) 0.041 0.0235 0.0118 0.0060 0.0030
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Table6. Theoretical, empirical and estimated standarderrors for the MA(1)model
with normal innovation distribution obtained by the unconditional quasi-maximum
likelihood methods, for n = 25, 50, 100, 200, 400; 999 or 1000 replications, except
(b)760, (c)954 for n = 25, (b)898, (c)979 for n = 50, and (b)984, (c)998 for n = 100.
Standard errors are computed (b)using ; (c)using Marquardt default; a
indicates an unreliable result.

Length n 25 50 100 200 400

 = 0.5
theoretical 0.173 0.106 0.0866 0.0603 0.0433
empirical(b) 0.241 0.156 0.0962 0.0650 0.0437
estimated(b)(avg) 0.216 0.139 0.0926 0.0636 0.0441
estimated(c)(avg) 0.210 0.127 0.0881 0.0622 0.0437

 = 0.0
theoretical 0.0240 0.00734 0.00300 0.00106 0.000375
empirical(b) 0.0418 0.01201 0.00362 0.00119 0.000402
estimated(b)(avg) 0.0338 0.01049 0.00341 0.00114 0.000389
estimated(c)(avg) 0.0359 0.00998 0.00320 0.00110 0.000382

true 0.048 0.024 0.012 0.006 0.003
theoretical 0.0196 0.00693 0.00245 0.000866 0.000306
empirical(b) 0.0252 0.00791 0.00259 0.000871 0.000312
estimated(b) (avg) 0.0237 0.00751 0.00255 0.000883 0.000309
estimated(c) (avg) 0.0325 0.01051 0.00358 0.001245 0.000436

Table 7. Empirical and estimated standard errors for the MA(1) model with double
exponential innovation distribution obtained by the unconditional quasi-maxi-
mum likelihood method, for n = 25, 50, 100, 200, 400; 1000 replications, except
(b)783, (c)781 for n = 25 and (b)(c)912 for n = 50, (b)(c)983 for n = 100. Standard errors
are computed (b)using ; (c)using ; a indicates an unreliable result.

Length n 25 50 100 200 400

 = 0.5
empirical(b) 0.226 0.147 0.0937 0.0649 0.0439
estimated(b) (avg) 0.0940 0.0638 0.0442
estimated(c) (avg) 0.217 0.139 0.0925 0.0635 0.0441

 = 0.0
empirical(b) 0.0343 0.01076 0.00341 0.00119 0.000397
estimated(b) (avg) 0.00342 0.00114 0.000390
estimated(c) (avg) 0.0344 0.01053 0.00341 0.00114 0.000390

true 0.048 0.024 0.012 0.006 0.003
empirical(b) 0.0320 0.0112 0.00382 0.00135 0.000491
estimated(b) (avg) 0.00364 0.00136 0.000499
estimated(c) (avg) 0.0242 0.0076 0.00257 0.00089 0.000310

The conclusions of these experiments are
- the results of the asymptotic theory can be expected to work even on short series;
- for MA processes, exact pseudo-maximum likelihood is better than using a conditional least-squares
approach;
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- standard errors provided by the Marquardt optimization procedure are reliable except for short series
or when the parameter is used to measure heteroscedasticity;
- standard errors provided by the sandwich estimator are of course recommended in non
normal situations but may be difficult to obtain for short series.

6. Practical time series
We start with three renowned examples from Box and Jenkins (1976). The first one, based on

the so-called Series A (measurements of the concentration of a chimical process once every two hours,
n = 197), is aimed at illustrating the use of an ARMA model with a time dependent coefficient. For
Series A, Box and Jenkins (1976) have proposed an ARIMA(0,1,1) model with equation

We modify that model by assuming that the moving average coefficient varies slightly, writing

where is a smooth function of time. To facilitate non-linear estimation, it has been seen
that the following parametrisation is better:

The results shown in Table 8 reveal that the Student statistic for (denoted TDMA1) is equal to -2.5,
thus the hypothesis of a model with a time-invariant model is rejected at the 5% level.

Table 8. Series A. Estimation results for the model (6.1-3) where  is denoted by
"MA1" and , by "TDMA1".

=== ESTIMATION BY MAXIMIZATION OF THE EXACT (LOG)LIKELIHOOD
(ALGORITHM FOR TIME DEPENDENT ARMA MODELS)

=== MODEL DESCRIPTION FORM DEGREE/ORD PARAMETERS NUMBER
- DIFFERENCE REGULAR 1
- ADDITIVE CONSTANT AUTOMATIC
- ARMA MODEL

MOVING AVERAGE POLYNOMIAL REGULAR 1 MA nn 1
- MA TIME DEPENDENT COEFFICIENTS LINEAR 1 MATDnn 1

PIVOTAL TIME FOR ARTD/MATD 99.0
FINAL VALUES OF THE PARAMETERS WITH 95% CONFIDENCE LIMITS

NAME VALUE STD ERROR T-VALUE LOWER UPPER
1 MA 1 .60155 5.87912E-02 10.2 .49 .72
2 TDMA 1 -2.35026E-03 9.27707E-04 -2.5 -4.17E-03 -5.32E-04

=== SUMMARY MEASURES
TOTAL NUMBER OF PARAMETERS = 3 STANDARD DEVIATION = .317066
INFORMATION CRITERIA : AIC = 112.656 SBIC = 125.855

Thesecond example is Series B (closing IBM stock prices, n = 395) which will show the treatment
of marginal heteroscedasticity (although it can also be shown for illustrating conditional heterosce-
dasticity, as for many stock prices series, e. g. Bollerslev, 1986). When the model (6.1) is fitted,

is obtained. Inspection of the residuals reveals that the volatility is higher at the end of the
estimation period. Furthermore, the fit is not very good. For example, the Ljung-Box test statistic with
36 lags has a probability of significance equal to 0.022. A much better model is obtained by using
(6.1-4.11) with instead of :

As can be seen from Table 9, the estimate is significantly different from zero at any usual level and
the fit is better, with a probability of significance of 0.370 for the Ljung-Box test. Furthermore, the
Schwarz Bayesian information criterion SBIC = 2489 is much lower than for the previous model,
SBIC = 2524.

V−1WV−1

∇wt = et − θet − 1 . (6.1)

∇wt = et − θtet − 1 , (6.2)
θt = θ’ + tθ’’

θt = θ’ + (t − (n + 1)/2)θ’’ (6.3)
θ̂"

θ′
θ̂"

θ̂ = −0.085

∇wt wt

∇wt = et − θet − 1 . (6.4)
δ̂
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Table 9. Series B. Estimation results for the model (6.1-4.11) where  is denoted by "MA1"
and , by "VART1".

=== ESTIMATION BY MAXIMIZATION OF THE EXACT (LOG)LIKELIHOOD
(ALGORITHM FOR TIME DEPENDENT ARMA MODELS)

=== MODEL DESCRIPTION FORM DEGREE/ORD PARAMETERS NUMBER
- DIFFERENCE REGULAR 1
- ADDITIVE CONSTANT AUTOMATIC
- ARMA MODEL

MOVING AVERAGE POLYNOMIAL REGULAR 1 MA nn 1
- TIME DEPENDENT INNOVATION STD DEV. EXPONENTIAL VART 1 1
FINAL VALUES OF THE PARAMETERS WITH 95% CONFIDENCE LIMITS

NAME VALUE STD ERROR T-VALUE LOWER UPPER
1 MA 1 -.14529 5.21067E-02 -2.8 -.25 -4.32E-02
2 VART 1 2.36966E-03 3.57617E-04 6.6 1.67E-03 3.07E-03

=== SUMMARY MEASURES
TOTAL NUMBER OF PARAMETERS = 3 STANDARD DEVIATION = 6.86460
INFORMATION CRITERIA : AIC = 2473.84 SBIC = 2489.53
=== RESIDUAL ANALYSIS WITH 368 RESIDUALS, BEGINNING AT TIME 2===
LJUNG-BOX PORTMANTEAU TEST STATISTICS ON RESIDUAL AUTOCORRELATIONS
ORDER D.F. STATISTIC SIGNIFICANCE
48 47 49.60 .370

The third example is Series G from Box and Jenkins (1976), the airline passengers data. It is
well known that the series should be treated in logarithms (multiplied here by the geometric mean).
The usual model has the following form

where B is the lag operator. We have replaced the constant innovation standard deviation by an
exponential function of time(4.4)with instead of . The results of the fitted model aredisplayed
in Table 10. Note that the estimate is again significant. Table 11 shows a similar model but with
(4.4) replaced by the linear function

It is clear that the results are close to those in Table 10. There is a trend in the innovation standard
deviation but small enough so that a linear or an exponential specification are alike.

Table 10. Series G. Estimation results for the model (6.5-4.4) where , , and  are
denoted by "MA1", "SMA1", and "VART1", respectively.

=== ESTIMATION BY MAXIMIZATION OF THE EXACT (LOG)LIKELIHOOD
(ALGORITHM FOR TIME DEPENDENT ARMA MODELS)

=== MODEL DESCRIPTION FORM DEGREE/ORD PARAMETERS NUMBER
- SEASONAL PERIOD 12
- NORMALIZED BOX COX TRANSFORMATION LOGARITHMS BOXC 1 0
- DIFFERENCE REGULAR 1
- DIFFERENCE SEASONAL 1
- ARMA MODEL

MOVING AVERAGE POLYNOMIAL REGULAR 1 MA nn 1
MOVING AVERAGE POLYNOMIAL SEASONAL 1 SMA nn 1

- TIME DEPENDENT INNOVATION STD DEV. EXPONENTIAL VART 1 1
FINAL VALUES OF THE PARAMETERS WITH 95% CONFIDENCE LIMITS

NAME VALUE STD ERROR T-VALUE LOWER UPPER
1 MA 1 .31340 9.18528E-02 3.4 .13 .50
2 SMA 1 .50222 7.77547E-02 6.5 .35 .66
3 VART 1 -6.45416E-03 1.94479E-03 -3.3 -1.03E-02 -2.57E-03

=== SUMMARY MEASURES <V>
TOTAL NUMBER OF PARAMETERS = 3 STANDARD DEVIATION = 8.51820
INFORMATION CRITERIA : AIC = 945.645 SBIC = 958.436

θ
δ

∇∇12 log(wt) = (1 − θB) (1 −ΘB12)et , (6.5)

δ δ/(n − 1)
δ̂

ht = 1 + δ(t − (n + 1)/2) . (6.6)

θ Θ δ
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Table 11. Series G. Estimation results for the model (6.5-6.6) where , , and  are
denoted by "MA1", "SMA1", and "VART1", respectively.

=== ESTIMATION BY MAXIMIZATION OF THE EXACT (LOG)LIKELIHOOD
(ALGORITHM FOR TIME DEPENDENT ARMA MODELS)

=== MODEL DESCRIPTION FORM DEGREE/ORD PARAMETERS NUMBER
- SEASONAL PERIOD 12
- NORMALIZED BOX COX TRANSFORMATION LOGARITHMS BOXC 1 0
- DIFFERENCE REGULAR 1
- DIFFERENCE SEASONAL 1
- ARMA MODEL

MOVING AVERAGE POLYNOMIAL REGULAR 1 MA nn 1
MOVING AVERAGE POLYNOMIAL SEASONAL 1 SMA nn 1

- TIME DEPENDENT INNOVATION STD DEV. LINEAR VART 1 1
FINAL VALUES OF THE PARAMETERS WITH 95% CONFIDENCE LIMITS

NAME VALUE STD ERROR T-VALUE LOWER UPPER
1 MA 1 .31646 9.18827E-02 3.4 .13 .50
2 SMA 1 .50787 7.68019E-02 6.6 .35 .66
3 VART 1 -5.87685E-03 1.66481E-03 -3.5 -9.20E-03 -2.55E-03

=== SUMMARY MEASURES <V>
TOTAL NUMBER OF PARAMETERS = 3 STANDARD DEVIATION = 8.70774
INFORMATION CRITERIA : AIC = 951.455 SBIC = 964.246

7. Conclusions
We have shown that under suitable conditions, quasi-maximum likelihood estimators of a large

class of marginally heteroscedastic ARMA models with time-dependent coefficients do exist, converge
almost surely or in probability, and are asymptotically normally distributed with a known covariance
matrix. The conditions are partly similar to those of Dahlhaus (1997) but the class of models seems
more general and the asymptotics are apparently different.

The empirical results, albeit partial, show that the approach can be used in practice even for
series of moderate length. Note that results of that nature have never appeared in the literature, although
the subject has been studied for a long time.

In principle, the approach can be extended to more general estimators, such as M-estimators,
and to more general models, including multivariate models and non-linear models. It is possible to
add a mean to the model. As indicated by Azrak and Mélard (1993), the simplest way is to replace
(3.1) by

where is a deterministic function of time (and perhaps on the length of the series) and depends on
a finite number of parameters. Under assumptions of uniform boundedness and a Noether condition,
similar results can be obtained. For all these models, there remains to work on specification procedures
because it is not feasible to introduce too many parameters.

Appendix 1
The following are the proofs of all the theorems stated in the paper.

Proof of Theorem 1

We check the assumptions of KN1 for . For the third assumption, we have to show that

θ Θ δ

wt − µt = ∑
k = 1

p

φtk(wt − k − µt − k) + et − ∑
k = 1

q

θtket − k ,

µt

Qn(β) = −ln(β)
1
n





∂ln(β)
∂βi




β = β0

→ 0 a.s. , i = 1,…, r . (A1.1)
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Note that is a martingale difference sequence since it belongs to and is integrable
and

In order to invoke the strong law of large numbers for martingales (Stout, 1974, p. 154, Theorem 3.3.8),
we need to suppose that the martingale difference sequence satisfies the condition

for . But, taking , and using , we have

We conclude that (A1.1) holds.

To check the second assumption of KN1, we begin by evaluating the second derivative of the function
defined by (2.4):

It is clear that

defines a martingale difference sequence. Using again the strong law of large numbers for martingales
(Stout, 1974), given , with ,

we can deduce the following convergence

But, from

{∂αt(β)/∂βi,Ft} Ft
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where is a strictly definite positive matrix of constants. The second assumption

of KN1 is thus satisfied. Since we have taken , and the first condition of
KN1 are identical. The three assumptions of that theorem are thus proved. Consequently, there exists

such that in the sense given in the statement of the theorem.

To prove asymptotic normality of the estimator , there suffices to prove that the first assumption of
KN2 is satisfied. We shall make use of a central limit theorem for martingales (Basawa et Prakasa
Rao, 1980, p. 388). Let us first show that

For that part of the proof, we use the Cramér-Wold device. Let be a constant vector of dimension
and a random variable defined by . Our purpose is to show asymptotic

normality of for all . We start by checking the assumptions of the theorem of Basawa and
Prakasa Rao (1980) for the variable . We have already shown that .

Let us now check that there exists and , such that . For ,

using Cauchy inequality and , where is the Euclidian norm such that . Hence, the
condition is satisfied. There remains to prove that

where . From , the left hand side of (A1.5) is equal to

We take that expression as . All the assumptions of the theorem of Basawa and Prakasa Rao (1980)
are then verified. Consequently, we have

and since it is true for all , we deduce (A1.4). To conclude, Theorem KN2 leads to Theorem 1.

Proof of Theorem 1’

We use a weak version of theorems KN1 and KN2 of Klimko and Nelson (1978) (e.g. Bar Shalom,
1971, Bhat, 1974), where almost sure convergence is replaced everywhere by convergence in prob-
ability. We simply indicate the modifications to the proof of Theorem 1.

Since the coefficients can now depend on n, when increasing n, all the preceeding terms in the
log-likelihood are changed. Therefore, the log-likelihood is not a martingale. However

is a martingale difference array in the sense that is a
martingale difference sequence for each n. Instead of a strong law of large numbers for martingales,
we use a weak law of large numbers for a martingale difference array (Chow, 1971, Davidson, 1994,
p. 299, Theorem 19.7 with kn = n). More specifically, we take and want to show
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that as , where denotes convergence in norm and

, implying convergence in probability. We take and so that all the conditions

are satisfied: (i) is uniformy integrable since is bounded

with respect to t and n, by ; (ii) ; (iii) .

To check the second assumption of KN1 in the sense of convergence in probability, we need to apply
a weak law of large numbers on the martingale difference array

We proceed as above but with and condition (i) results from . The remaining part for checking
the second assumption of KN1 is identical to the proof of Theorem 1, implying existence of such

that in probability.

Asymptoticnormality of comesagain by checking the first assumptionof KN2 which is nowobtained

by using a central limit theorem for martingale difference arrays. Indeed is a

martingale difference sequence for all n. We can use Hall and Heyde (1980, Theorem 2.23 p. 44 and
Corollary 3.1, p. 58) where we have replaced the conditional Lindeberg condition by the stronger
Lyapounov condition which has already been checked in Theorem 1. There is no substantial change
in the rest of the proof, leading to the same conclusion.

Proof of Theorem 2

We refer to Theorem 1 and want to show that its assumptions - are fulfilled.

Proof of . Let us show there is a positive constant such that (2.5) holds. From (A1.2),

The mathematical expectation of the absolute value of that quantity at can be bounded above
by 8 times

We show separately that the expressions (A1.7-8) are bounded. The term (A1.7) is bounded from
above by

, say, using - . Since the are independent random variables, (A1.8)
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From and Cauchy-Schwarz inequality, we deduce that . There remains to

show that is bounded. Using (3.7), it is equal to

where the sums over are from 1 to . We have

Hence (A1.8) is smaller than

Consequently, the upper bound (2.5) is checked by taking the constant equal to

Proof of . To check that assumption, we need to show there is a constant such that (2.6) holds.

From (A1.3) and its conditional expectation at , we deduce that

Since that expression is not easy to bound, we proceed in three stages.

Stage 1

Let us now verify that for any pair , there is a positive constant such that (2.6) is verified.

For example, and . Since doesn’t depend on the autoregressive and moving

average parameters, and doesn’t depend on the parameters of the variance, (A1.10)

becomes

which is the value of the constant in (2.6).
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Stage 2

Let us now consider each pair and , for . The left hand side of (2.6)
equals

which can be bounded by

and defines the constant in this case.

Stage 3

Let us now consider each pair for and , i. e. and . Similarly to
the derivation leading to (A1.9)

The left hand side of (2.6) equals

and is bounded by

Proof of . Let us show (2.7) where is a positive definite matrix of constants.
We have

The almost sure limit of (A1.12) for will exist and be equal to

if the two conditions of Lemma 1, applied to the process defined by
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are satisfied for . To prove that the first condition of Lemma 1 is fulfilled, there suffices to show
that the expression

is uniformly bounded for all t. Using Cauchy-Schwarz inequality, and inequality (A1.9), the
expression is bounded by a constant. The first condition is thus checked.

To prove the second condition, let us show that

The left hand side of the last expression equals

The covariance can be written as

where the sums over are from 1 to (if u = 1 or 2) or (if u = 3 or 4). In the
sequel, the sums which don’t contain any term because of the constraints imposed to the summation
indices are set equal to zero. Like in the proof of , (A1.14) becomes

Hence, by completing the sums,
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∂ŵ t /t − 1(β)
∂βi




ht

−1(β)



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This completes the proof of the two conditions of Lemma 1. Hence, we have the following convergence

That result implies that

From , the matrix is a strictly definite positive matrix of constants, so
is satisfied.

Proof of . The mean value theorem allows us to write

being a point on the line joining and , with . Consequently, the left hand side of

(2.8) is bounded by

by continuity when , hence, to check (2.8), there suffices to show that

By considering the derivative of (A1.3) with respect to , and taking (3.4-5) and (3.7-9) into account,

it is possible to show that the expression which is involved in (A1.18) takes the following form
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with more complex expressions for the other terms: contains terms like ,

contains terms proportional to , where .

The expression (A1.19) at the point can then be bounded by

where the random variable and still need to be determined. For the second and third terms, there

suffices to show that

since, by Cauchy-Schwarz inequality, we have

for all finite k. For the limit in (A1.21), we use the strong law of large numbers for an appropriate

martingale difference sequence . It is immediate that and that is

uniformly bounded, using and Cauchy-Schwarz inequality. We can then conclude that

The determination of and is more difficult. Let us consider, for example,

and show that

is a L2-mixtingale (Andrews, 1988). Let be an integer. Since

and, using the L2-norm

B1t(β) (∂et(β)/∂βi1
) (∂et(β)/∂βi2

)

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n
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∑
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n

B̃2, (A1.20)
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hence is bounded by a constant times using , and . The second condition,

concerning is trivially true. Consequently is a L2-mixtingale, with the

sequence , exponentially as , since , and the sequence of constants which

doesn’t vary with t. By using a strong law of large numbers for mixtingales (e. g. Hall and Heyde,

1980, p. 41, Theorem 2.21), we have that , and conclude like before for . The

determination of is similar so that is checked.

To conclude, the first four assumptions of Theorem 1 are satisfied. Consequently, there exists an
estimator such that , and which maximises in the sense of the statement of Theorem
1.

Proof of . Let us determine the explicit form of (2.9) for all . From (A1.2), it is equal to

While checking , we have shown that the first term of (A1.23) tends to zero. There remains to
prove that the second term also tends to zero. Let

where

We now show that the two conditions of Lemma 1 are satisfied for for . Let us first
remark that the expectation in

is uniformly bounded thanks to (A1.11). Also, by Cauchy-Schwarz inequality, and the arguments

developed for proving , we deduce that . Using and , we have

There remains to verify the second condition, in an manner analogous to while checking :
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The covariance can be written as

where (A1.24) implies that

and again we have to verify that times the sum over d and the sum over t is . This is true
according to . Consequently, is checked.

As a conclusion, the asymptotic convergence of the estimator towards the normal distribution is
ensured and the proof of Theorem 2 is achieved.

Proof of Theorem 2’

We refer now to Theorem 1’ and keep most of the proof of Theorem 2, but where almost sure con-
vergence is replaced everywhere by convergence in probability. Therefore, we simply indicate the
modifications in the check of , and .

For and , we need to consider two martingale difference arrays, respectively

and

, for each , instead of martingale sequences and . The unique condition
of Lemma 1’ is then verified such as in the proof of Theorem 1.

While checking we have used a strong law of large numbers for a mixtingale sequence. Such a
strong law doesn’t exist for a mixingale array. We revert therefore to a weak law of large numbers
(for example Andrews, 1988, p. 461, Theorem 2 with kn = n and sequence ) which provides the
requested result but with convergence in probability (and even in L1-norm).
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