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1. Introduction

Consider a semi-parametric model which parameterizes the conditional density

f(y|x, θ) of Y given X, where θ is a p-dimensional vector of parameters and the

marginal distribution of X is unknown. We are interested in inference on the mean

of the response variable Y , say µ, but due to all kinds of reasons such as loss

of information, or failure on obtaining all data, the responses are often missing.

In fact, incomplete data can appear in many situations such as market research

surveys, mail enquiries and so on. In practice, one often obtains a random sample

of incomplete data as

(Xi, Yi, δi), i = 1, · · · , n, (1)
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where all d-dimensional vectors Xi are observed and δi = 0 if Yi is missing, otherwise

δi = 1. At such occasion, one usual method is to drop Xi with the missing response

from our analysis, but obviously this can cause a serious loss of efficiency when a

substantial proportion of Xi is lost. Another technique is to impute a value for

the missing Yi so as to obtain complete data and proceed the statistical process.

There are many imputation methods for missing responses such as kernel regression

imputation used by Cheng (1994) and Wang and Rao (2002a), linear regression

imputation adopted by Wang and Rao (2001) and ratio imputation which appeared

in Rao (1996), and so forth.

In this paper, we impute the missing response by a maximum likelihood estimate

(MLE). Using the incomplete data (Xi, Yi, δi), 1 ≤ i ≤ n, and an auxiliary infor-

mation, we adopt the empirical likelihood technique, introduced by Owen (1988,

1990), to make inference on the mean of Y . It is well known that the empirical like-

lihood is a nonparametric method which is very useful for constructing confidence

regions or intervals for the mean and other parameters. It has many advantages

over some modern and classical methods such as the bootstrap method and the

normal-approximation-based method. One advantage of using empirical likelihood

is that the shape of the confidence region is determined automatically by the data.

Also, there is an excellent exposition of the empirical likelihood in Hall and La Scala

(1990). Some related work can be found in DiCiccio and Romano (1989), Qin and

Lawless (1994), Chen (1993, 1994) and Wang and Rao (2001, 2002a, 2002b), among

others.

This paper is organized as follows. In Section 2, we define the adjusted empirical

log-likelihood ratio for the mean of the response and introduce the main results.

Some simulation results will be exhibited in Section 3 to compare the empirical

likelihood method with the normal-approximation-based method. For convenience,
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we convey the proofs of the main results to Section 4, which is at the end of the

paper.

2. Main results

Throughout this paper, we assume that Y is missing at random (MAR), that

is, P (δ = 1|Y,X) = P (δ = 1|X). Furthermore, assume that there is an auxiliary

information of the form Eφ(X, θ) = 0, where φ(X, θ) is a q× 1 known vector-valued

function of X and θ and q > p.

Let m(x, θ) = E(Y |X = x). Note that Em(Xi, θ) = EYi, so we can impute Yi

by m(Xi, θ) and estimate µ by

µ̂ =
1

n

n∑

i=1

[δiYi + (1 − δi)m(Xi, θ)]=̂
1

n

n∑

i=1

Ŷi (2)

when Yi is missing. Hence, under MAR, EŶi = µ if µ is the true parameter. Thus,

the problem of testing whether µ is the true parameter is equivalent to testing

whether EŶi = µ for i = 1, · · · , n. This motivates us to define the empirical log-

likelihood ratio (Owen (1990)) as

l(µ) = −2 max
n∑

i=1

log(nωi), (3)

where the maximum is taken over all sets of nonnegative numbers ω1, · · · , ωn satis-

fying
∑n

i=1 ωi = 1 and
∑n

i=1 ωiŶi = µ. Clearly, l(µ) contains not only µ but also the

unknown parameter θ, hence, it cannot be applied directly to make inference on µ.

To solve this problem, we first need to estimate θ.

Based on the auxiliary information and the observed data (Xi, Yi, δi), 1 ≤ i ≤ n,

we maximize the likelihood

L(θ) =
n∏

i=1

[f(Yi|Xi, θ)dG(Xi)]
δi [dG(Xi)]

1−δi =
n∏

i=1

pi

n∏

i=1

f δi(Yi|Xi, θ) (4)
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subject to
∑n

i=1 pi = 1 and
∑n

i=1 piφ(Xi, θ) = 0, where pi = dG(Xi) and G(x) denotes

the unknown marginal distribution of X.

If 0 is in the convex hull of φ(X1, θ), · · · , φ(Xn, θ), by the Lagrange multiplier

method, we can easily get

pi =
1

n
[1 + λT

1 φ(Xi, θ)]
−1, i = 1, · · · , n,

where λ1 is the Lagrange multiplier. It satisfies the following equation

1

n

n∑

i=1

φ(Xi, θ)

1 + λT
1 φ(Xi, θ)

= 0. (5)

Substituting pi into (4), we have

logL(θ) = −
n∑

i=1

log[n(1 + λT
1 φ(Xi, θ))] +

n∑

i=1

δi log f(Yi|Xi, θ) (6)

with λ1 being the solution of the equation (5).

Assume that the combined maximum likelihood estimate (MLE) θ̄n satisfies

∂ logL(θ)

∂θ
= −

n∑

i=1

1

1 + λT
1 φ(Xi, θ)

∂φ(Xi, θ)

∂θT
λ1 +

n∑

i=1

δi
∂ log f(Yi|Xi, θ)

∂θ
= 0, (7)

where we use the fact that

n∑

i=1

1

1 + λT
1 φ(Xi, θ)

∂λ1

∂θT
φ(Xi, θ) = 0.

Then, we define an estimated empirical log-likelihood ratio by

l̄n(µ) = −2 max∑n

i=1
ωi=1,

∑n

i=1
ωiYin=µ

n∑

i=1

log(nωi), (8)

where Yin = δiYi+(1−δi)m(Xi, θ̄n). Using Lagrange multipliers, when min1≤i≤n Yin <

µ < max1≤i≤n Yin, we have

ωi =
1

n
[1 + λ2(Yin − µ)]−1, i = 1, · · · , n,
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where λ2 is the solution of

1

n

n∑

i=1

Yin − µ

1 + λ2(Yin − µ)
= 0. (9)

Hence, we have

l̄n(µ) = 2
n∑

i=1

log[1 + λ2(Yin − µ)]. (10)

Since the Yin in (10) are not independent and identically distributed (i.i.d), l̄n(µ)

is asymptotically a non-standard chi-square variable. In fact, it can be shown that

l̄n(µ), multiplied by some population quantity, follows a chi-quare distribution with

one degree of freedom. In other words, r(µ)l̄n(µ) ∼ χ2
1 asymptotically. Hence, in

order to use this result for constructing a confidence interval for the mean µ, one

has to estimate the coefficient r(µ).

Define an adjusted empirical log-likelihood ratio by

l̂n,ad(µ) = r̂(µ)l̄n(µ), (11)

where

r̂(µ) =
Ŝ2(µ)

Ŝ1(µ)
,

with

Ŝ2(µ) =
1

n

n∑

i=1

(Yin − µ)2, (12)

and

Ŝ1(µ) = Ŝ11(µ) + Ŝ12(µ) + Ŝ13(µ), (13)

where

Ŝ11(µ) =
1

n

n∑

i=1

{δi[Yi −m(Xi, θ̄n)]}2 +
1

n

n∑

i=1

[m(Xi, θ̄n) − µ]2

+

[
1

n

n∑

i=1

(1 − δi)m
(1)(Xi, θ̄n)

]T

Γ̂−1

[
1

n

n∑

i=1

(1 + δi)m
(1)(Xi, θ̄n)

]
,
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Ŝ12(µ) =

[
1

n

n∑

i=1

(1 − δi)m
(1)(Xi, θ̄n)

]T

Γ̂−1

[
1

n

n∑

i=1

∂φ(Xi, θ)

∂θT
|θ=θ̄n

]

×
[
1

n

n∑

i=1

φ(Xi, θ̄n)φT (Xi, θ̄n)

]−1 [
1

n

n∑

i=1

∂φ(Xi, θ)

∂θ
|θ=θ̄n

]
Γ̂−1

×
[
1

n

n∑

i=1

(1 − δi)m
(1)(Xi, θ̄n)

]
,

Ŝ13(µ) = −2

[
1

n

n∑

i=1

(1 − δi)m
(1)(Xi, θ̄n)

]T

Γ̂−1

[
1

n

n∑

i=1

∂φ(Xi, θ)

∂θT
|θ=θ̄n

]

×
[
1

n

n∑

i=1

φ(Xi, θ̄n)φT (Xi, θ̄n)

]−1 [
1

n

n∑

i=1

φ(Xi, θ̄n)m(Xi, θ̄n)

]
. (14)

where

Γ̂ =

{
1

n

n∑

i=1

δi
∂ log f(Yi|Xi, θ)

∂θ

∂ log f(Yi|Xi, θ)

∂θT

}

θ=θ̄n

and m(1)(x, θ) denotes the first order partial derivative with respect to θ.

In what follows, we shall establish a theorem for the adjusted empirical log-

likelihood defined in (11), which is a nonparametric version of Wilks’s theorem.

Before stating the theorem, we first make the following assumptions.

(A1) f(y|x, θ) satisfies the regularity conditions on the asymptotic normality of

the MLE in fully parametric models.

(A2) φ(x, θ) satisfies the regularity conditions as ψ(x, θ) specified in Qin and

Lawless (1994).

(A3) The first order derivative with respect to θ of the left side of
∫
yf(y|x, θ)dy =

m(x, θ) can be obtained by differentiating under the integral sign.

(A4) EY 2 <∞.

(A5) E||φ(X, θ)||2 <∞.

(A6) E||m(1)(X, θ)||2 <∞.

(A7) Each element of the matrix m(2)(X, θ) has a finite second order moment,

where m(2)(x, θ) denotes the second order partial derivative with respect to θ.
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(A8) Each element of the matrix ∂2 log f(Y |X, θ)/∂θ∂θT has a finite second order

moment.

Now, we have the following main result. Its proof will be given in Section 4.

Theorem 1. Under the assumptions (A1)-(A8), if µ is the true parameter, we

have

l̂n,ad(µ)
L−→ χ2

1.

Hence, a simple approach to construct an approximate 1− α confidence interval

for the mean µ, based on Theorem 1, is

Iα = {µ : l̂n,ad(µ) ≤ cα} (15)

with P (χ2
1 ≤ cα) = 1 − α. Clearly, Iα will have the correct coverage probability

1 − α asymptotically, i.e.

P (µ ∈ Iα) = 1 − α + o(1). (16)

On the other hand, from (2)-(7), we can define an empirical likelihood-based

estimator of µ as

µ̄ =
1

n

n∑

i=1

δiYi + (1 − δi)m(Xi, θ̄n)

1 + λT
1 φ(Xi, θ̄n)

=
1

n

n∑

i=1

Yin

1 + λT
1 φ(Xi, θ̄n)

. (17)

Then, we have the following theorem.

Theorem 2. Under the assumptions (A1)-(A8), if µ is the true parameter, we

have
√
n(µ̄− µ)

L−→ N(0, Sau(µ)),

where Sau(µ) = S11(µ)+S12(µ)−E[m(X, θ)φT (X, θ)][Eφ(X, θ)φT (X, θ)]−1E[m(X, θ)φ(X, θ)],

with

S11(µ) = {E[(1 − P (X))m(1)(X, θ)]}T Γ−1{E[(1 + P (X))m(1)(X, θ)]}

+E[P (X)Var(Y |X)] + Var(m(X, θ)) (18)
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and

S12(µ) = {E[(1 − P (X))m(1)(X, θ)]}T Γ−1E[
∂φ(X, θ)

∂θT
][Eφ(X, θ)φT (X, θ)]−1

×E[
∂φ(X, θ)

∂θ
]Γ−1E[(1 − P (X))m(1)(X, θ)], (19)

where P (X) = P (δ = 1|X), and

Γ = E

[
P (X)E

(
∂ log f(Y |X, θ)

∂θ

∂ log f(Y |X, θ)
∂θT

|X
)]

. (20)

Let

Ŝau(µ) = −
[
1

n

n∑

i=1

m(Xi, θ̄n)φT (Xi, θ̄n)

] [
1

n

n∑

i=1

φ(Xi, θ̄n)φT (Xi, θ̄n)

]−1

×
[
1

n

n∑

i=1

m(Xi, θ̄n)φ(Xi, θ̄n)

]
+ Ŝ11(µ) + Ŝ12(µ),

where Ŝ11(µ), Ŝ12(µ) are defined in (14). Then, we can give the following normal

approximation-based 1 − α confidence interval for µ: µ̄ ± uα/2Ŝ
1/2
au (µ)/

√
n, where

uα/2 is the upper α/2 percentile point of the standard normal distribution.

3. Simulations

In this Section, we shall use the empirical likelihood method and the normal-

approximation method, which are based on Theorem 1 and Theorem 2 respectively,

to construct confidence intervals for the mean µ.

For the model

f(y|x, θ) = (2π)−1/2 exp[−(y − θ1 − θ2x)
2/2], (θ1, θ2) = (1.0, 0.5), X ∼ N(1, 1),

we adopt the following auxiliary information,

φ(X, θ) = µ− θ1 − θ2X.
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Consider the following two response probability functions under the MAR as-

sumption.

Case 1: P (δ = 1|X = x) = 0.6 for all x;

Case 2: P (δ = 1|X = x) = 0.8 + 0.2|x− 1| if |x− 1| ≤ 1, and 0.95 elsewhere.

It is easy to see that Y ∼ N(µ, 1.25) and m(x, θ) = θ1 + θ2x. To compare the

empirical likelihood with the normal-approximation method, first we know that the

assumptions (A1)-(A8) are satisfied with the above model. Then, we need to give

the combined MLE θ̄n for the parameter θ, and calculate Ŝ1(µ), Ŝ2(µ) and Ŝau(µ),

respectively. At last, combining the proof of the Theorem 1 with (11), we compute

l̂n,ad(µ).

First, as a contrast, when there is no auxiliary information, we generate, respec-

tively, 5000 Monte Carlo random samples of size n=20,40, 60, 100 for Case 1 and

Case 2. Based on the coverage probability for µ, the results are presented in Table

1 and Table 2.

Table 1 Case 1—Coverage probabilities for µ

Nominal level is 0.90 Nominal level is 0.95
n normal Empirical normal Empirical

approximation likelihood approximation likelihood
20 0.9276 0.9136 0.9726 0.9642
40 0.8918 0.8948 0.9454 0.9506
60 0.8746 0.8914 0.9350 0.9402
100 0.8668 0.8854 0.9256 0.9364

Table 2 Case 2—Coverage probabilities for µ

Nominal level is 0.90 Nominal level is 0.95
n normal Empirical normal Empirical

approximation likelihood approximation likelihood
20 0.9070 0.9102 0.9642 0.9652
40 0.8995 0.9051 0.9500 0.9556
60 0.8908 0.9042 0.9444 0.9508
100 0.8926 0.9000 0.9430 0.9436
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In Table 1, due to E[P (δ = 1|X = x)] = 0.6, when n is small(i.e. n=20), we find

that the normal-approximation-based method is a bit better than the empirical like-

lihood, but in Table 2, when E[P (δ = 1|X = x)](≈ 0.90) is increased, obviously, the

normal-approximation-based method is inferior to the empirical likelihood method

for all sample sizes.

When there is auxiliary information, we generate, respectively, 5000 Monte Carlo

random samples for size n=20, 50, 100 in Case 1, and, respectively, 5000 Monte

Carlo random samples for size n=5, 10, 20, 50, in Case 2. Based on the coverage

probability for µ, the results are presented in Table 3 and Table 4.

From Table 3, we find that the empirical likelihood is better than the normal

approximation method for all sample sizes. Note that the Theorem 2 is also based

on imputation, therefore, it is obvious that the auxiliary information can cause a

substantial gain of efficiency of coverage accuracy. Also, note that E[P (δ = 1|X =

x)] = 0.6 is relatively small in Case 1. In the case that E[P (δ = 1|X = x)](≈ 0.90) is

increased, by Table 4, we see that empirical likelihood method is still overmatching

the normal approximation method more or less. Furthemore, from Table 3 and

Table 4, it is also interesting to note that the coverage accuracies for both of these

two methods generally tend to increase as the sample size n gets larger. However,

this not always not the case. This reason is that (xi, yi)
′s are different for each

different sample size n as well as MLE θ̄n and hence this makes the comparisons

under different sizes more difficult.

Table 3 Case 1—Coverage probabilities for µ

Nominal level is 0.90 Nominal level is 0.95
n normal Empirical normal Empirical

approximation likelihood approximation likelihood
20 0.9004 0.9642 0.9574 0.9864
50 0.9172 0.9598 0.9620 0.9882
100 0.9228 0.9658 0.9668 0.9916
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Table 4 Case 2—Coverage probabilities for µ

Nominal level is 0.90 Nominal level is 0.95
n normal Empirical normal Empirical

approximation likelihood approximation likelihood
5 0.8040 0.8922 0.8534 0.9364
10 0.8792 0.9132 0.9204 0.9620
20 0.9036 0.9188 0.9526 0.9676
50 0.9240 0.9184 0.9598 0.9614

4. Proofs of Theorems

We need the following lemmas.

Lemma 1. Under the assumptions (A1)-(A3), (A5) and (A7)-(A8), if µ is the

true parameter, we have

1√
n

n∑

i=1

(Yin − µ)
L−→ N(0, S1(µ)),

where S1(µ) = S11(µ) + S12(µ) + S13(µ) with

S13(µ) = −2{E[(1 − P (X))m(1)(x, θ)]}T Γ−1E[
∂φ(X, θ)

∂θT
]

×E[φ(X, θ)φT (X, θ)]−1E[φ(X, θ)m(X, θ)]. (21)

Proof. Write

1√
n

n∑

i=1

(Yin − µ) =
√
n(Q1n +Q2n +Q3n), (22)

where

Q1n =
1

n

n∑

i=1

δi[Yi −m(Xi, θ)],

Q2n =
1

n

n∑

i=1

[m(Xi, θ) − µ],

Q3n =
1

n

n∑

i=1

(1 − δi)[m(Xi, θ̄n) −m(Xi, θ)].
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Since Q1n and Q2n are means of i.i.d. random variables, the main task is to

consider Q3n. First, using (A5) and mimicking the proof of the theorem 1 in Owen

(1990), we have

||λ1|| = Op(n
−1/2), (23)

where ||.|| denotes the Euclidean norm. Note that θ̄n satisfies the equation (7),

so that by (A7) and Taylor expansion, one can show that Q3n is asymptotically

equivalent to

− 1

n
{E[(1 − δ)m(1)(X, θ)]}TA−1[

n∑

i=1

δi
∂ log f(Yi|Xi, θ)

∂θ

−
n∑

i=1

1

1 + λT
1 φ(Xi, θ)

∂φ(Xi, θ)

∂θT
λ1], (24)

where

A = E

[
δ
∂2 log f(Y |X, θ)

∂θ∂θT

]
.

Second, expanding (5)

0 =
1

n

n∑

i=1

φ(Xi, θ)

1 + λT
1 φ(Xi, θ)

=
1

n

n∑

i=1

φ(Xi, θ) −
1

n

n∑

i=1

φ(Xi, θ)φ
T (Xi, θ)λ1

+
1

n

n∑

i=1

φ(Xi, θ)(λ
T
1 φ(Xi, θ))

2

1 + λT
1 φ(Xi, θ)

, (25)

with the final term bounded by

∣∣∣∣∣
1

n

n∑

i=1

φ(Xi, θ)(λ
T
1 φ(Xi, θ))

2

1 + λT
1 φ(Xi, θ)

∣∣∣∣∣ = Op(n
−1)op(n

1
2 )Op(1) = op(n

− 1
2 ),

yields

λ1 =

[
n∑

i=1

φ(Xi, θ)φ
T (Xi, θ)

]−1 n∑

i=1

φ(Xi, θ) + op(n
− 1

2 ). (26)

Finally, by assumptions (A8) and (A3), we have, respectively

A = −Γ (27)
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and

E

[
P (X)E

(
∂ log f(Y |X, θ)

∂θ
Y |X

)]
= E[P (X)m(1)(X, θ)]. (28)

Lemma 1 follows from (22), (24) and (26)-(28).

Lemma 2. Under the assumptions (A1)-(A2), (A4) and (A6)-(A7), if µ is the

true parameter, we have

Ŝ2(µ) =
1

n

n∑

i=1

(Yin − µ)2 p−→ S2(µ),

where

S2(µ) = E[p(X)Var(Y |X)] + Var(m(X, θ)). (29)

Proof. Similar to (22), we have

1

n

n∑

i=1

(Yin − µ)2 =
1

n

n∑

i=1

δ2
i [Yi −m(Xi, θ)]

2 +
1

n

n∑

i=1

[m(Xi, θ) − µ]2

+
1

n

n∑

i=1

(1 − δi)
2[m(Xi, θ̄n) −m(Xi, θ)]

2

+
2

n

n∑

i=1

δi[Yi −m(Xi, θ)][m(Xi, θ) − µ]

+
2

n

n∑

i=1

δi(1 − δi)[Yi −m(Xi, θ)][m(Xi, θ̄n) −m(Xi, θ)]

+
2

n

n∑

i=1

(1 − δi)[m(Xi, θ) − µ][m(Xi, θ̄n) −m(Xi, θ)]

=̂ R1n +R2n +R3n +R4n +R5n +R6n. (30)

It is easy to see that

R1n
p−→ E[p(X)Var(Y |X)] (31)

and

R2n
p−→ Var(m(X, θ)). (32)
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Following a proof analogous to (24) and by the assumptions (A6) and (A7), we

have

R3n
p−→ 0. (33)

Obviously,

R4n
p−→ 0. (34)

Since E[δ(1 − δ)(Y −m(X, θ))m(k)(X, θ)] = 0 (k = 1, 2), one has

R5n
p−→ 0. (35)

Also, by the assumptions (A4), (A6) and (A7), we can obtain

E[(1 − P (X))(m(X, θ))im(k)(X, θ)] <∞, for i = 0, 1, k = 1, 2.

Hence

R6n
p−→ 0. (36)

Then, from (30)-(36), the conclusion of Lemma 2 is held.

Lemma 3. Under the assumptions (A1)-(A2), (A4) and (A6), we have

max
1≤i≤n

|Yin| = op(n
1
2 ).

Proof. Notice

max
1≤i≤n

|Yin| ≤ max
1≤i≤n

|Yi| + max
1≤i≤n

|m(Xi, θ)| + max
1≤i≤n

|m(Xi, θ̄n) −m(Xi, θ)|. (37)

By E|m(X, θ)|2 ≤ EY 2 <∞ and Owen (1990)’s Lemma 3, we obtain

max
1≤i≤n

|Yi| = op(n
1
2 ), max

1≤i≤n
|m(Xi, θ)| = op(n

1
2 ). (38)

Furthermore, by (A1)-(A2) and E||m(1)(X, θ)||2 <∞, we have

max
1≤i≤n

|m(Xi, θ̄n) −m(Xi, θ)| ≤ max
1≤i≤n

||m(1)(Xi, θ
∗)||||θ̄n − θ|| = op(n

1
2 ), (39)
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where ||θ∗ − θ|| ≤ ||θ̄n − θ||. This together with (38) proves Lemma 3.

Lemma 4. If µ is the true parameter and E||m(1)(X, θ)||2 <∞, then

lim
n→∞

P ( min
1≤i≤n

Yin < µ < max
1≤i≤n

Yin) = 1.

Proof. Since the proof is similar to Wang and Rao (2002a), we omit it.

Lemma 5. Under the conditions of Lemma 1 and Lemma 2, we have

λ2 = Op(n
−1/2).

Proof. By Lemma 1, we have

1

n

n∑

i=1

Yin = Op(n
−1/2).

This together with the same arguments used in the proof of (23) proves Lemma 5.

Proof of Theorem 1. From (10), by Taylor expansion, we have

l̄n(µ) = 2
n∑

i=1

[λ2(Yin − µ)] −
n∑

i=1

[λ2(Yin − µ)]2 + 2
n∑

i=1

ξi, (40)

where, by Lemma 2, Lemma 3 and Lemma 5, one has |2∑n
i=1 ξi| = op(1).

Moreover, expanding (9)

0 =
1

n

n∑

i=1

Yin − µ

1 + λ2(Yin − µ)
=

1

n

n∑

i=1

(Yin − µ) − λ2

n

n∑

i=1

(Yin − µ)2

+
λ2

2

n

n∑

i=1

(Yin − µ)3

1 + λ2(Yin − µ)
, (41)

where ∣∣∣∣∣
λ2

2

n

n∑

i=1

(Yin − µ)3

1 + λ2(Yin − µ)

∣∣∣∣∣ = Op(n
−1)op(n

1
2 )Op(1) = op(n

− 1
2 ),

we obtain

λ2

n∑

i=1

(Yin − µ) =
n∑

i=1

[λ2(Yin − µ)]2 + op(1) (42)
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and

λ2 =

[
n∑

i=1

(Yin − µ)2

]−1 n∑

i=1

(Yin − µ) + op(n
− 1

2 ). (43)

Combining (40), (42) and (43), we have

l̄n(µ) = λ2
2

n∑

i=1

(Yin − µ)2 + op(1) =

[
1√
n

n∑

i=1

(Yin − µ)

]2 [
1

n

n∑

i=1

(Yin − µ)2

]−1

+ op(1).

(44)

Recalling the definition of l̂n,ad(µ), we get

l̂n,ad(µ) =


 1√

n

n∑

i=1

Yin − µ√
Ŝ1(µ)




2

+ op(1). (45)

Then, by a similar proof of Lemma 2, we can obtain

Ŝ1(µ)
p−→ S1(µ). (46)

where S1(µ) is defined in Lemma 1.

Hence, Theorem 1 follows from (45), (46) and Lemma 1.

Proof of Theorem 2. From (17), write

√
n(µ̄− µ) =

√
n(I1n + I2n), (47)

where

I1n =
1

n

n∑

i=1

Yin

1 + λT
1 φ(Xi, θ)

− µ, (48)

I2n =
1

n

n∑

i=1

Yin

1 + λT
1 φ(Xi, θ̄n)

− 1

n

n∑

i=1

Yin

1 + λT
1 φ(Xi, θ)

. (49)

First, using Lemma 3 and (A5), we have

I1n =
1

n

n∑

i=1

(Yin − µ) − 1

n

n∑

i=1

Yinφ
T (Xi, θ)λ1 + op(n

−1/2). (50)
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Then, by (26), we get

I1n =
1

n

n∑

i=1

(Yin − µ) − 1

n

n∑

i=1

Yinφ
T (Xi, θ)

[
1

n

n∑

i=1

φ(Xi, θ)φ
T (Xi, θ)

]−1

× 1

n

n∑

i=1

φ(Xi, θ) + op(n
−1/2). (51)

In order to obtain the asymptotic normality of
√
nI1n, we first need prove

1

n

n∑

i=1

Yinφ
T (Xi, θ)

p−→ E[m(X, θ)φT (X, θ)]. (52)

Write

1

n

n∑

i=1

Yinφ
T (Xi, θ) = J1n + J2n + J3n, (53)

where

J1n =
1

n

n∑

i=1

δi[Yi −m(Xi, θ)]φ
T (Xi, θ), (54)

J2n =
1

n

n∑

i=1

m(Xi, θ)φ
T (Xi, θ), (55)

J3n =
1

n

n∑

i=1

(1 − δi)[m(Xi, θ̄n) −m(Xi, θ)]φ
T (Xi, θ). (56)

It is readily seen that

J1n
p−→ 0, (57)

and

J2n
p−→ E[m(X, θ)φT (X, θ)]. (58)

Moreover, by the assumptions (A5)-(A7) and the same arguments used in the proof

of (24), we get

J3n
p−→ 0. (59)

Hence, (52) holds.
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Then, together with (51) and (52), we have

√
nI1n =

1√
n

n∑

i=1

(Yin − µ) − E[m(X, θ)φT (X, θ)][Eφ(X, θ)φT (X, θ)]−1

× 1√
n

n∑

i=1

φ(X, θ) + op(1). (60)

It follows Lemma 1

Cov

(
1√
n

n∑

i=1

(Yin − µ), E[m(X, θ)φT (X, θ)][Eφ(X, θ)φT (X, θ)]−1 1√
n

n∑

i=1

φ(X, θ)

)

= {E[(1 − P (X))m(1)(X, θ)]}TA−1E[
∂φ(X, θ)

∂θT
]

×[Eφ(X, θ)φT (X, θ)]−1E[m(X, θ)φ(X, θ)]

+E[m(X, θ)φT (X, θ)][Eφ(X, θ)φT (X, θ)]−1E[m(X, θ)φ(X, θ)]. (61)

Hence, by Lemma 1 and A = −Γ, we know

√
nI1n

L−→ N(0, Sau(µ)). (62)

On the other hand, from Lemma 3 and (23), by the Theorem 1 stated in Qin

(2000), we have

|
√
nI2n| =

∣∣∣∣∣
1

n

n∑

i=1

Yin
λT

1 [φ(Xi, θ) − φ(Xi, θ̄n)]

[1 + λT
1 φ(Xi, θ̄n)][1 + λT

1 φ(Xi, θ)]

∣∣∣∣∣

≤ 1

n

n∑

i=1

|Yin|
|λT

1 φ
(1)(Xi, θ

∗)
√
n(θ − θ̄n)|

[1 + λT
1 φ(Xi, θ̄n)][1 + λT

1 φ(Xi, θ)]

= op(n
1/2)Op(n

−1/2)Op(1)

= op(1), (63)

where φ(1)(x, θ) denotes the first order partial derivative with respect to θ and ||θ∗−

θ|| ≤ ||θ̄n − θ||.

Hence, the conclusion of Theorem 2 follows from (47), (62) and (63).
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