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Abstract. We study the one-sided testing problem for the exponential
distribution via the empirical Bayes (EB) approach. Under a weighted lin-
ear loss function, a Bayes test is established. Using the past samples, we
construct an EB test and exhibit its optimal rate of convergence. When the
past samples are not directly observable, we work out an EB test by using
deconvolution kernel method and obtain its asymptotic optimality.
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1. Introduction

Let us consider the problem of testing the hypothesis

H0 : θ ≤ θ0 ←→ H1 : θ > θ0 (1.1)

in the exponential distribution

fθ(x) =
1

θ
exp(−x

θ
), x > 0, (1.2)

where fθ(x) denotes the conditional probability density function (pdf) of
random variable (r.v.) X given θ.

∗Financial support from the IAP research network (# P5/24) of the Belgian Govern-
ment (Belgian Science Policy) is gratefully acknowledged
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In practice, the distribution (1.2) appears very often and is important,
and it can be used to describe many models of survival analysis, reliability
theory, engineering and environmental sciences. Usually, the data observed
from this distribution denotes the lifetime of an individual in survival analy-
sis and reliability problem. Since the expectation of r.v. X is equal to θ, we
call θ the life parameter.

We adopt a weighted linear error loss function defined as follows

L(θ, dm) = (1−m)
θ − θ0

θ
I[θ>θ0] + m

θ0 − θ

θ
I[θ0≥θ], (1.3)

where dm denotes an action in favor of Hm (m = 0, 1), and I[A] is the
indicator of the set A. Obviously, the loss function (1.3) is more reasonable
for the life parameter than the ordinary linear loss since it can remove the
influence of the measurement unit. Suppose the parameter θ is distributed
according to a prior G(θ) with support on Θ = (0,∞).

Let
δ(x) = P (accepting H0|X = x). (1.4)

Then the Bayes risk of the test δ(x) is given by

R(δ(x), G(θ)) =
∫ ∞

0

∫

Θ
[L(θ, d0)δ(x) + L(θ, d1)(1− δ(x))]fθ(x)dG(θ)dx

=̂
∫ ∞

0
α(x)δ(x)dx +

∫

Θ
θ−1(θ0 − θ)I[θ0≥θ]dG(θ) (1.5)

with
α(x) =

∫

Θ
θ−1(θ − θ0)fθ(x)dG(θ) = f(x) + θ0f

(1)(x), (1.6)

where f(x) =
∫
Θ fθ(x)dG(θ) is the marginal pdf of r.v. X, and f (1)(x)

denotes the derivative of f(x).
Hence, the best Bayes test minimizing R(δ(x), G(θ)) would have the

form

δG(x) =

{
1 α(x) ≤ 0
0 α(x) > 0

. (1.7)

The minimum Bayes risk is

R(δG(x), G(θ)) =
∫ ∞

0
α(x)δG(x)dx +

∫

Θ
θ−1(θ0 − θ)I[θ0≥θ]dG(θ). (1.8)
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Define β(x) = α(x)/f(x). Then by Cauchy-Schwarz inequality, it is easy
to see that the derivative β(1)(x) ≥ 0. Assume that the prior G(θ) satisfies
the following condition

lim
x→∞

β(x) > 0 > lim
x→0

β(x). (1.9)

Obviously, the condition (1.9) implies that the prior G(θ) is non-degenerate
and β(x) is a strictly increasing function. Therefore, by the continuity of
β(x), we know there exists a unique point aG such that β(aG) = 0. Then

δG(x) =

{
1 α(x) ≤ 0
0 α(x) > 0

=

{
1 β(x) ≤ 0
0 β(x) > 0

=

{
1 x ≤ aG

0 x > aG
. (1.10)

Remark 1. In applications, suppose that the life parameter θ has a prior
pdf

g(θ) =
dG(θ)

dθ
=

1

Γ(b− 2)
(
1

θ
)b−1 exp(−1

θ
), b > 2, θ > 0.

For example, let b = 3, we have f(x) = (x + 1)−2, x > 0. It is readily seen
that β(x) = 1− 2θ0(x + 1)−1 and aG = 2θ0 − 1, then we get

δG(x) =

{
1 x ≤ 2θ0 − 1
0 x > 2θ0 − 1

.

But in many situations, since the prior G(θ) may be unknown to us, the
Bayes test δG(x) (1.10) is unavailable to use. As an alternative we can use
the EB approach to estimate α(x) in (1.6) so as to obtain an EB test δn(x).

EB approach was first introduced to statistical problems by Robbins [6,
7] and has been applied in a wide range of paradigms and to numerous
real-life problems. Some earlier papers such as [2], which discussed the
EB testing problem for the discrete case, whereas, [8] and [9] concentrated
on the EB testing problems in the continuous one-parameter exponential
family. Recently the author of [5], who follows the results [3], [9] and [4],
has considered the EB testing problem in a positive exponential family, and
obtains a better rate of convergence under the assumption that the critical
point aG is within some known compact interval.

In this paper, we discuss the EB test problem for the life parameter
in the exponential distribution, firstly, under the condition that the past
samples are not contaminated and secondly, that they are contaminated.
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The rest of the paper is organized as follows. In Section 2 we propose an
EB test and exhibit the optimal convergence rate. In Section 3 we discuss
the case when the past samples are contaminated by a normal error variable.

2. Empirical Bayes test and rate of convergence

In the empirical Bayes framework, we usually make the following as-
sumptions: let (Xi, θi), i = 1, 2, · · ·, be the independently identically distrib-
uted (i.i.d.) copies of the (X, θ), where Xi, i = 1, 2, · · ·, are observable, but
θi, i = 1, 2, · · ·, are not observable. At time n+1, we observe X=̂Xn+1 and
plan to test the hypothesis: H0 : θ ≤ θ0 ←→ H1 : θ > θ0, where θ=̂θn+1.
Usually, the (X1, · · · , Xn) denote the past samples and X is the present
sample.

In order to construct an EB test, we use two kernel functions Kl(x) (l =
0, 1) which are Borel measurable bounded real functions vanishing off (0,1)
such that

∫ 1

0
xpKl(x)dx =

{
1 p = l
0 p 6= l, p = 1, 2, · · · , s− 1

,
∫ 1

0
xs|Kl(x)|dx <∞.

where s ≥ 2 is an arbitrary but fixed integer. It is easy to find that there
exist some polynomials which satisfy the above conditions.

Define the kernel estimation of f(x) and f (1)(x), respectively , as

fn(x) =
1

nhn

n∑

i=1

K0

(
Xi − x

hn

)
;

f (1)
n (x) =

1

nh2
n

n∑

i=1

K1

(
Xi − x

hn

)
, (2.1)

where 0 < hn → 0 (n→∞) denotes the bandwidth.
Then, we have

αn(x) = fn(x) + θ0f
(1)
n (x). (2.2)

We consider those prior distribution G(θ) for which G(θ) ∈ F = {G(θ) :
0 < A1 ≤ aG ≤ A2 < ∞, A1, A2 are known constants}. By the fact that
G(θ) ∈ F and the Bayes test (1.10), we propose an EB test defined as
follows:
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δn(x) =

{
1 x < A1 or (A1 ≤ x ≤ A2 and αn(x) ≤ 0)
0 x > A2 or (A1 ≤ x ≤ A2 and αn(x) > 0)

. (2.3)

Hence, the Bayes risk of δn(x) is

R(δn(x), G(θ)) =
∫ ∞

0
α(x)En[δn(x)]dx +

∫

Θ
θ−1(θ0 − θ)I[θ0≥θ]dG(θ), (2.4)

where En denotes the expectation with respect to the joint distribution of
(X1, · · · , Xn).

By definition, the EB test δn(x) is said to be asymptotically optimal
relative to the prior G(θ) if R(δn(x), G(θ)) − R(δG(x), G(θ)) = o(1). If for
some q > 0, R(δn(x), G(θ))−R(δG(x), G(θ)) = O(n−q), then the convergence
rate of the EB test δn(x) is said to be the order O(n−q).

Remark 2. Usually, there are two different forms of EB test in the
literature. One form, which used by [2, 3] and some other papers, suggested
the following test for the above problem

δn(x) =

{
1 αn(x) ≤ 0
0 αn(x) > 0

.

They do not make the assumption that the critical point aG is in the compact
interval [A1, A2], accordingly, they not consider the monotonicity of the β(x).
The other form, i.e. (2.3), appeared in [9], [4], and [5], which is named the
monotone EB test. In author’s opinion, the EB test δn(x) (2.3) is relatively
reasonable since it divides the interval (0,∞) into three parts, but one will
has to make some additional assumption about the critical point .

LEMMA 1. Let f (l)
n (x) (l = 0, 1) be defined in (2.1). If E(θ−(s+1)) <∞,

then
|Enf (l)

n (x)− f (l)(x)| = O(hs−l
n ), l = 0, 1,

where s ≥ 2 is an arbitrary but fixed integer.
Proof. Expanding f(x + uhn) at point x and using the properties of the

Kl(x),

Enf (l)
n (x) =

1

hl+1
n

∫ ∞

0
Kl

(
y − x

hn

)
f(y)dy =

1

hl
n

∫ 1

0
Kl(u)f(x + uhn)du

=
1

hl
n

∫ 1

0

[
f(x) + · · ·+ f (s−1)(x)

(s− 1)!
(uhn)

s−1 +
f (s)(x + ξuhn)

s!
(uhn)s

]
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×Kl(u)du

= f (l)(x) +
hs−l

n

s!

∫ 1

0
Kl(u)f (s)(x + ξuhn)u

sdu, 0 < ξ < 1. (2.5)

By E(θ−(s+1)) <∞, we know supx |f (s)(x)| <∞. So LEMMA 1 is true.
We now represent α(x) by

α(x) =
1

nhn

n∑

i=1

K0

(
Xi − x

hn

)
+ θ0

1

nh2
n

n∑

i=1

K1

(
Xi − x

hn

)

=̂
1

n

n∑

i=1

R(x, Xi, hn) (2.6)

with

R(x, Xi, hn) =
1

hn
K0

(
Xi − x

hn

)
+

θ0

h2
n

K1

(
Xi − x

hn

)
. (2.7)

Note that R(x, Xi, hn) (i = 1, · · · , n) are i.i.d. r.v. such that

|R(x, Xi, hn)− EnR(x, Xi, hn)| ≤ 2

(
M0

hn
+

θ0

h2
n

M1

)
(2.8)

and

V ar(R(x, Xi, hn)) ≤
2

h2
n

V ar
(
K0

(
Xi − x

hn

))
+

2θ2
0

h4
n

V ar
(
K1

(
Xi − x

hn

))

≤ 2

h2
n

E
(
K0

(
Xi − x

hn

))2

+
2θ2

0

h4
n

E
(
K1

(
Xi − x

hn

))2

=
2

hn

∫ 1

0
K2

0 (u)f(x + uhn)du +
2θ2

0

h3
n

∫ 1

0
K2

1 (u)f(x + uhn)du

≤ 2c(h−1
n + h−3

n ), (2.9)

where Ml > 0 (l = 0, 1) denote the bound of kernel function Kl(x) (l = 0, 1),
and c is a positive constant that does not depend on n.

Denote AG = minA1≤x≤A2 f(x), and let a1n < aG < a2n be the point such
that −β(a1n) = 2chs−1

n /AG = β(a2n). Since β(x) is continuous, we know
that limn→∞ a1n = limn→∞ a2n = aG.

It follows from (1.8) and (2.4)

0 ≤ R(δn(x), G(θ))− R(δG(x), G(θ)) =
∫ ∞

0
[Enδn(x)− δG(x)]α(x)dx
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=
∫ aG

A1

[P (αn(x) ≤ 0)− 1]α(x)dx +
∫ A2

aG

P (αn(x) ≤ 0)α(x)dx

= −
∫ a1n

A1

P (αn(x) > 0)α(x)dx−
∫ aG

a1n

P (αn(x) > 0)α(x)dx

+
∫ a2n

aG

P (αn(x) ≤ 0)α(x)dx +
∫ A2

a2n

P (αn(x) ≤ 0)α(x)dx

=̂
4∑

i

Ii. (2.10)

It is easy to see that

I2 ≤ −
∫ aG

a1n

α(x)dx ≤ −β(a1n)
∫ aG

a1n

f(x)dx = O(hs−1
n ). (2.11)

Similarly, we get
I3 = O(hs−1

n ). (2.12)

Note that

α(x) ≤ β(a1n)f(x) ≤ β(a1n)AG = −2chs−1
n , A1 ≤ x ≤ a1n. (2.13)

Furthermore, by LEMMA 1, we know Enαn(x) ≤ α(x) + chs−1
n ≤ α(x)/2.

Hence, for A1 ≤ x ≤ a1n, we have

P (αn(x) > 0) ≤ P (αn(x)− Enαn(x) ≥ −1

2
α(x)). (2.14)

Together with (2.8) and (2.9) and (2.14), by Bernstein’s inequality, it
generates

P (αn(x) > 0)

≤2 exp

{
−n2(−α(x)/2)2

2V ar(
∑n

i=1 R(x, Xi, hn)) + 4(M0/hn + θ0M1/h2
n)(−nα(x)/2)/3

}

=2 exp

{
−n(α(x))2/8

V ar(R(x, Xi, hn)) + (M0/hn + θ0M1/h2
n)|α(x)|/3

}

≤2 exp

{
−nh3

n

8
× A2

G(β(x))2

2ch2
n + 2c + (M0h2

n + θ0M1hn)E(θ−1)|β(A1)|/3

}

=̂2 exp
{
−nh3

nJ(hn)(β(x))2
}

, A1 ≤ x ≤ a1n, (2.15)

where J(hn) = A2
G/[8(2ch2

n + 2c + (M0h
2
n + θ0M1hn)E(θ−1)|β(A1)|/3)].
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Following from (2.10) and (2.15), we have

I1 ≤ −2
∫ a1n

A1

exp
{
−nh3

nJ(hn)(β(x))2
}

β(x)f(x)dx

≤ −2 sup
A1≤x≤A2

[
f(x)

β(1)(x)

] ∫ a1n

A1

exp
{
−nh3

nJ(hn)(β(x))2
}

β(x)β(1)(x)dx

= O(
1

nh3
n

). (2.16)

Similar to I1, we get

I4 = O(
1

nh3
n

). (2.17)

Combining (2.10)-(2.12) with (2.16) and (2.17) and taking hn = n− 1
s+2 ,

we conclude that

0 ≤ R(δn(x), G(θ))−R(δG(x), G(θ)) = O(n− s−1
s+2 ). (2.18)

Hence, we state the following Theorem.
THEOREM 1. Let Bayes test δG(x) and EB test δn(x) be defined in

(1.10) and (2.3), respectively. If G(θ) ∈ F , which is defined before, and

E(θ−(s+1)) <∞, then choosing hn = n− 1
s+2 , where s ≥ 2 is an arbitrary but

fixed integer, we have

R(δn(x), G(θ))− R(δG(x), G(θ)) = O(n− s−1
s+2 ).

Remark 3. If we use the following linear loss function

L(θ, dm) = (1−m)(θ − θ0)I[θ>θ0] + m(θ0 − θ)I[θ0≥θ], m = 0, 1,

then it is not difficult to see

α(x) =
∫

Θ
(θ − θ0)fθ(x)dG(θ) =

∫

Θ
exp(−x

θ
)dG(θ)− θ0f(x)

=
∫ ∞

x
f(x)dx− θ0f(x).

Thus, we only need to estimate f(x). Following a proof analogous to the

preceding discussion, we can improve the rate of convergence O(n− s−1
s+2 ) to

the best rate O(n− s
s+1 ) for the testing the hypothesis (1.1).
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To our best knowledge, the convergence rate of the order o(n−1) can not
be attained with any EB test in any non-discrete density. Therefore, it is

very hard to improve the rate of convergence O(n− s−1
s+2 ) under the weighted

linear loss function (1.3) since it tends to be O(n−1) as s gets larger.

3. The case when the data is contaminated

Suppose that the past samples (X1, · · · , Xn) are contaminated due to
measurement or the nature of environment, one can only observe

Yj = Xj + ε, j = 1, · · · , n, (3.1)

where the error variable ε has a known distribution Fε. Furthermore, assume
that ε and Xj are independent. Problems with contaminating error exist in
many different fields (e.g., biostatistics, electrophoresis) and has been widely
studied. [10] and [11] discussed the EB estimation for the continuous one-
parameter exponential family with errors in variables under the squared
loss function, and they obtained asymptotic optimality and uniform rate of
convergence for the proposed EB estimator over a class of prior distribution.

In this section, we simply discuss the asymptotic behavior of EB test
under the assumption that ε ∼ N(0, σ2) with σ2 known.

Similar to [1], using the deconvolution kernel method, we make the fol-
lowing assumptions on the kernel

(1) k(x) is bounded, continuous, and
∫∞
−∞ |x|s|k(x)|dx <∞.

(2) The Fourier transform φk(t) of k(x) is a symmetric function satisfying
φk(t) = 1 + O(|t|s), as t→ 0.

(3) φk(t)=0, for |t| ≥ 1.
where s ≥ 2 is an arbitrary but fixed integer and φk(t) =

∫∞
−∞ exp(itx)k(x)dx.

By assumptions (1)-(3), we can easily get

∫
k(x)dx = 1,

∫
xpk(x)dx = 0, p = 1, · · · , s− 1,

∫
|x|s|k(x)| <∞.

Note that f(x) = 1
2π

∫∞
−∞ exp(−itx)φY (t) exp(σ2t2/2)dt, we define an es-

timator of f (l)(x) (l = 0, 1) by

f̂ (l)
n (x) =

1

2π

∫ ∞

−∞
exp(−itx)(−it)lφk(tbn)φ̂n(t) exp(σ2t2/2)dt, (3.2)
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where 0 < bn → 0 as n→∞, and φ̂n(t) = 1
n

∑n
j=1 exp(itYj) is an estimator of

the characteristic function (c.f) φY (t) of r.v. Y , which is called the empirical
c.f. of Y .

Rewrite (3.2) as kernel type of estimate

f̂ (l)
n (x) =

1

nbl+1
n

n∑

j=1

knl

(
x− Yj

bn

)
, l = 0, 1, (3.3)

where

knl(x) =
1

2π

∫ ∞

−∞
exp(−itx)(−it)lφk(t) exp(σ2t2/(2b2

n))dt. (3.4)

Hence, under the assumption that G(θ) ∈ F , we propose an EB test as
follows

δ̂n(x) =

{
1 x < A1 or (A1 ≤ x ≤ A2 and α̂n(x) ≤ 0)
0 x > A2 or (A1 ≤ x ≤ A2 and α̂n(x) > 0)

, (3.5)

where

α̂n(x) = f̂n(x) + θ0f̂
(1)
n (x)=̂

1

n

n∑

j=1

V (x, Yj, bn) (3.6)

with i. i. d. r.v.

V (x, Yj, bn) =
1

bn
kn0

(
x− Yj

bn

)
+

θ0

b2
n

kn1

(
x− Yj

bn

)
. (3.7)

LEMMA 2. Let f̂ (l)
n (x) (l = 0, 1) be given in (3.2). If G(θ) ∈ F and

E(θ−(s+1)) < ∞, where F is the same as before and s ≥ 2 is an arbitrary
but fixed integer, then

(a) |Enf̂ (l)
n (x)− f(x)| = O(bs−l

n ), l = 0, 1;

(b) |Enα̂n(x)− α(x)| = O(bs−1
n );

(c) |V (x, Yj, bn)− EnV (x, Yj, bn)| ≤ 2(b−1
n + θ0b

−2
n )O(exp(σ2b−2

n /2));

(d) V ar(V (x, Yj, bn)) = 2(b−2
n + θ2

0b
−4
n )O(exp(σ2b−2

n )).

where En denotes the expectation with respect to the joint distribution of
(Y1, · · · , Yn).
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Proof. (a) By the assumptions (1)-(3) on k(x), we have

En f̂ (l)
n (x)− f (l)(x) =

∫
f (l)(x− bny)k(y)dy− f (l)(x)

=
∫ [

f (l)(x) + · · ·+ f (s−1)(x)(−bny)s−l−1

(s− l − 1)!
+

f (s)(x− ξ1bny)(−bny)s−l

(s− l)!

]

×k(y)dy

−f (l)(x)

=
∫

f (s)(x− ξ1bny)(−bny)s−l

(s− l)!
k(y)dy, 0 < ξ1 < 1. (3.8)

Hence, (a) is held under the condition that E(θ−(s+1)) <∞.
(b) is obvious.
(c) For l = 0, 1, by the Theorem 1 of [1], we know

|knl(x)|2 ≤ 1

(2π)2

(∫
|φk(t)t

l| exp(σ2t2/(2b2
n))dt

)2

= O(exp(σ2b−2
n )), (3.9)

where we let β = 2 and β0 = 0 which appeared in [1]. Thus, |V (x, Yj, bn)| =
b−1
n O(exp(σ2b−2

n /2)) + θ0b
−2
n O(exp(σ2b−2

n /2)). (c) is proved.
(d) Note that

V ar
(
knl

(
x− Yj

bn

))
= nb2l+2

n V ar(f̂n(x)) = O(exp(σ2b−2
n )), (3.10)

we know that (d) is true.
Using LEMMA 2, by mimicking the steps in Section 2, we have

0 ≤ R(δ̂n(x), G(θ))−R(δG(x), G(θ)) =
1

nb4
n

O(exp(σ2b−2
n ))+O(bs−1

n ). (3.11)

Taking bn =
√

2σ2(log n)−1/2, we obtain (nb4
n)−1O(exp(σ2b−2

n )) = o(n−τ ),
where τ > 0 can be arbitrarily close to 1/2. Therefore, we show that the
EB test δ̂n(x) (3.5) is asymptotically optimal under the conditions that
G(θ) ∈ F and E(θ−(s+1)) <∞.

Remark 4. As described in [1], it is extremely difficult to solve deconvo-
lution problems when the error distributions are normal and Cauchy (called
supersmooth distributions). Actually, if we consider the error as Gamma
distribution, which belongs to ordinary smooth, then we can obtain a higher
rate of convergence employing the idea of [1] which used by [10, 11]. How-
ever, we should put more attention to the normal error due to its importance.
Acknowledgement. The author is indebted to an anonymous referee for
his valuable suggestions.
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