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Abstract: This paper is concerned with a Bayes prediction problem in the exponential

distribution under random censorship. Using censored samples, we work out a predic-

tion interval for a sum of interest which consists of some future samples. Differing from

the general Bayes approach, we assume that the prior distribution of the parameter of

the exponential distribution is of an unknown form, and only one moment condition of

the prior distribution is given. Simulation studies are conducted to exhibit the coverage

probabilities of the prediction interval.
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1. Introduction

Prediction problems arise naturally in many important areas of statistical research

and have been very useful in many fields of application such as quality control, life

experiments and so on. The general prediction problem can be regarded as that of

inferring the value of an unknown observable that belongs to a future sample from

present available information. Enlightened by Robbins (1982, 1983), we assume that

there are n workshops in a factory and that they manufacture the same type of electronic

product. We now select one unit from each workshop and put them to use. After each

of them is ineffective, we can obtain n survival data X1, X2, · · · , Xn. If Xi ≤ a, where a

is a positive constant, then we again select one unit from the i-th workshop and denote
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its unknown life by Yi. In practice, the electronic product life of the second round is an

important and interesting problem. It can be used to evaluate the mechanical stability

of a product, and it often appears in system failure analysis, product reliability testing

and design. Our aim is to predict the sum of Yi, i.e.,
∑n

i=1 I(Xi ≤ a)Yi, where I(A) is

the indicator of the set A.

However, many statistical experiments result in incomplete samples, even under

some well controlled conditions. In fact, right censored data often arise in the study

of survival analysis, medical follow-up and reliability. In past decades, statistical infer-

ence with censorship attracted considerable attention and has been studied extensively.

Let V1, V2, · · · , Vn be nonnegative independent and identically distributed (i.i.d.) ran-

dom variables, which denote censoring times with a distribution function W . It is

assumed that Xi’s and Vi’s are independent. In the random censorship model, the

true survival times X1, X2, · · · , Xn are not always observable. Instead, we observe only

Zi = min{Xi, Vi} and δi = I(Xi ≤ Vi).

Let us assume that Xi, given λi, has the following probability density function (pdf)

f(xi|λi) =
1

λi
exp(−xi

λi
), xi > 0, (1)

where 1 ≤ i ≤ n, and it is assumed that λ1, λ2, · · · , λn are i.i.d. and have a prior

distribution function G(λ) with support on Λ = (0,∞).

Define

S =

n∑

i=1

I(Xi ≤ a)Yi. (2)

In the following, based on the censored observations (Zi, δi) (1 ≤ i ≤ n), we con-

struct a prediction interval for S, firstly, under the condition that the censoring distri-

bution W is known and secondly, that it is unknown.

As we know, Bayesian analysis is an important method of modern statistics( see

Berger (1985) for more details). A main difference point with some classical statistical

methods is that in Bayesian analysis, we use not only the sample information but also
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some information about the parameter. Usually, in the Bayesian framwork, given the

states of a random variable, a conditional probability is attached to this variable and

a prior density of the parameter is specified based on previous knowledge. But, in the

present paper, it is unnecessary for us to specify the prior distribution of the parameter.

We only make some moment assumption on the prior distribution G(λ).

2. Prediction interval for S

Since Xi and Yi (if necessary) come from the same workshop, (Xi, Yi) (1 ≤ i ≤ n)

are i.i.d. with common marginal pdf

f(x, y) =

∫

Λ

f(x|λ)f(y|λ)dG(λ). (3)

By Fubini’s theorem, we have

E [I(Xi ≤ a)Yi] =

∫ ∞

0

∫ ∞

0

I(x ≤ a)yf(x, y)dxdy

=

∫

Λ

[∫ ∞

0

I(x ≤ a)f(x|λ)dx

∫ ∞

0

yf(y|λ)dy

]
dG(λ)

=

∫

Λ

λ[1 − exp(−a/λ)]dG(λ). (4)

Note that

E[(X − a)I(X ≤ a)] =

∫ ∞

0

∫ ∞

0

(x − a)I(x ≤ a)f(x, y)dxdy

=

∫

Λ

λ[1 − exp(−a/λ)]dG(λ) − a, (5)

hence, we get

ES = E

{
n∑

i=1

[(Xi − a)I(Xi ≤ a) + a]

}
. (6)

Furthermore, we have

E[(Xi − a)I(Xi ≤ a)] = E{E[(Xi − a)I(Xi ≤ a)|λ]}, (7)
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where

E[(Xi − a)I(Xi ≤ a)|λ]

=

∫ ∞

0

I(x ≤ a)(x − a)

1 − W (x)
[1 − W (x)]f(x|λ)dx

=

∫ ∞

0

I(x ≤ a)(x − a)

1 − W (x)

∫ ∞

x

dW (v)f(x|λ)dx

=

∫ ∫

x≤v

I(x ≤ a)(x − a)

1 − W (x)
dW (v)f(x|λ)dx

= E

[
I(min{Xi, Vi} ≤ a)(min{Xi, Vi} − a)

1 − W (min{Xi, Vi})
I(Xi ≤ Vi)|λ

]

= E

[
I(Zi ≤ a)(Zi − a)δi

1 − W (Zi)
|λ
]

. (8)

Put

T =

n∑

i=1

[
I(Zi ≤ a)(Zi − a)δi

1 − W (Zi)
+ a

]
, (9)

then, by (6)-(9), it is easy to see that S has the same expectation as T . Thus,

S − T =

n∑

i=1

[
I(Xi ≤ a)Yi −

I(Zi ≤ a)(Zi − a)δi

1 − W (Zi)
− a

]

is the sum of n i.i.d. random variables with mean zero, and

S − T

σ
√

n

L−→ N(0, 1), as n → ∞, (10)

where
L−→ denotes convergence in distribution, and

σ2 = E

[
I(X ≤ a)Y − I(Z ≤ a)(Z − a)δ

1 − W (Z)

]2

− a2

= E[Y 2I(X ≤ a)] + E

[
I(Z ≤ a)(Z − a)2δ

(1 − W (Z))2

]

−2E

[
I(X ≤ a)Y

I(Z ≤ a)(Z − a)δ

1 − W (Z)

]
− a2

=̂

3∑

i=1

Ii − a2. (11)
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First, we easily get

I1 = E[Y 2I(X ≤ a)] = 2

∫

Λ

λ2[1 − exp(−a/λ)]dG(λ). (12)

Second, since

I3 = −2E

{[
I(X ≤ a)Y

I(Z ≤ a)(Z − a)δ

1 − W (Z)
|λ
]}

, (13)

where, using the independence of Y and X and V , and a similar discussion as in (8),

E

[
I(X ≤ a)Y

I(Z ≤ a)(Z − a)δ

1 − W (Z)
|λ
]

= λ

∫ ∫

x≤v

I(x ≤ a)(x − a)

1 − W (x)
dW (v)f(x|λ)dx

= λ

∫ ∞

0

I(x ≤ a)(x − a)f(x|λ)dx

= λ[λ − λ exp(−a/λ) − a], (14)

we obtain that

I3 = −2

∫

Λ

λ2[1 − exp(−a/λ)]dG(λ) + 2a

∫

Λ

λdG(λ). (15)

Also, note that

E

[
Zδ

1 − W (Z)

]
=

∫

Λ

λdG(λ). (16)

Therefore, combining (11)-(12) with (15)-(16) yields

σ2 = E

[
I(Z ≤ a)(Z − a)2δ

(1 − W (Z))2

]
+ 2aE

[
Zδ

1 − W (Z)

]
− a2. (17)

2.1. The distribution W is known

Define

σ̂2 =
1

n

n∑

i=1

I(Zi ≤ a)(Zi − a)2δi

[1 − W (Zi)]2
+ 2a

1

n

n∑

i=1

Ziδi

1 − W (Zi)
− a2. (18)
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Then we have proved the following theorem.

Theorem 1. Let S and T be defined by (2) and (9), respectively, and σ̂2 given by

(18). If W (a) < 1 and Eλ < ∞, then for n → ∞, we have

S − T

σ̂
√

n

L−→ N(0, 1).

Proof. Define

φ(λ) =

∫ ∞

0

I(x ≤ a)(x − a)2

1 − W (x)
f(x|λ)dx.

Note that

φ(λ) ≤ 1

λ[1 − W (a)]

∫ a

0

(x − a)2 exp(−x/λ)dx

=
a2 + 2λ2[1 − exp(−a/λ)] − 2aλ

1 − W (a)

≤ a2

1 − W (a)
,

then, we have

E

[
I(Z ≤ a)(Z − a)2δ

(1 − W (Z))2

]
= E[φ(λ)] ≤ a2

1 − W (a)
.

Hence, under the conditions of Theorem 1, the conclusion is obvious.

Clearly, Theorem 1 can be used to construct prediction intervals for S. Denote

In,α =
{
S : |(S − T )/(σ̂

√
n)| ≤ Nα

}
, (19)

where P (|N(0, 1)| ≤ Nα) = 1 − α. Then, In,α gives an approximate prediction interval

for S with asymptotically correct coverage probability 1 − α; that is

P (S ∈ In,α) = 1 − α + o(1),

where o(1) denotes terms converging to zero as n → ∞.

Especially, when there is no censorship (Zi = Xi, δi = 1), (9) becomes

T0 =
n∑

i=1

[(Xi − a)I(Xi ≤ a) + a], (20)
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and

S − T0 =
n∑

i=1

[I(Xi ≤ a)(Yi − Xi + a) − a]

is the sum of n i.i.d. random variables with mean zero, and

S − T0

σ0

√
n

L−→ N(0, 1), as n → ∞, (21)

where

σ2
0 = E[I(X ≤ a)(Y − X + a)]2 − a2. (22)

we can define an estimator in (18) for σ2
0 becomes

σ̂2
0 =

1

n

n∑

i=1

X2
i − 1

n

n∑

i=1

I(Xi > a)(Xi − a)2. (23)

Hence, we have the following corollary.

Corollary 1. Let S and T0 be defined by (2) and (20), respectively. If Eλ < ∞,

then, for n → ∞, we have

S − T0

σ̂0

√
n

L−→ N(0, 1).

2.2. The distribution W is unknown

Since W (.) in the expression (17) is unknown, we can replace it by its Kaplan-Meier

(1958) product limit estimator defined by

1 − Ŵn(t) =

n∏

i=1

[
n − i

n − i + 1

]I(Z(i)≤t,δ(i)=0)

, t < Z(n), (24)

where Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) are the order statistics of (Z1, Z2, · · · , Zn) and δ(i) is the

concomitant of Z(i). Hence, we can present an estimator for σ2 in this case as follows

σ̃2 =
1

n

n∑

i=1

I(Zi ≤ a)(Zi − a)2δi

[1 − Ŵn(Zi)]2
+ 2a

1

n

n∑

i=1

Ziδi

1 − Ŵn(Zi)
− a2. (25)

We now prove the following result.
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Theorem 2. Let S and T be defined by (2) and (9), respectively, and σ̃2 defined

in (25). If W (a) < 1 and Eλ < ∞, then for n → ∞, we have

S − T

σ̃
√

n

L−→ N(0, 1).

Proof. Under the conditions of Theorem 2, we know

1

n

n∑

i=1

I(Zi ≤ a)(Zi − a)2δi

[1 − W (Zi)]2
+ 2a

1

n

n∑

i=1

Ziδi

1 − W (Zi)
− a2 p−→ σ2, (26)

where
p−→ denotes convergence in probability.

On the other hand, we have
∣∣∣∣∣
1

n

n∑

i=1

I(Zi ≤ a)(Zi − a)2δi

[1 − Ŵn(Zi)]2
− 1

n

n∑

i=1

I(Zi ≤ a)(Zi − a)2δi

[1 − W (Zi)]2

∣∣∣∣∣

≤ sup
Zi≤Z(n)

∣∣∣∣∣
1

[1 − Ŵn(Zi)]2
− 1

[1 − W (Zi)]2

∣∣∣∣∣×
1

n

n∑

i=1

I(Zi ≤ a)(Zi − a)2δi

≤ C sup
Zi≤Z(n)

(
|W (Zi) − Ŵn(Zi)|

[1 − Ŵn(Zi)]2[1 − W (Zi)]2

)
, in probability, (27)

where C is a finite constant, not depending on n.

From (27) and the following result due to Zhou (1992)

sup
Zi≤Z(n)

|W (Zi) − Ŵn(Zi)|
p−→ 0, (28)

we have

1

n

n∑

i=1

I(Zi ≤ a)(Zi − a)2δi

[1 − Ŵn(Zi)]2
p−→ 1

n

n∑

i=1

I(Zi ≤ a)(Zi − a)2δi

[1 − W (Zi)]2
. (29)

Similarly, we get

1

n

n∑

i=1

Ziδi

1 − Ŵn(Zi)

p−→ 1

n

n∑

i=1

Ziδi

1 − W (Zi)
. (30)

Hence, Theorem 2 is proved.

Theorem 2 can be used to present an approximate 1 − α prediction interval for S

as follows:

Ĩn,α =
{

S : |(S − T̃ )/(σ̃
√

n)| ≤ Nα

}
, (31)
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where P (|N(0, 1)| ≤ Nα) = 1 − α and

T̃ =

n∑

i=1

[
I(Zi ≤ a)(Zi − a)δi

1 − Ŵn(Zi)
+ a

]
.

3. Simulation

Let the prior density

g(λ) =
dG(λ)

dλ
=

1

Γ(3)
(
1

λ
)4 exp(−1

λ
), (32)

and the censoring distribution be

W (v) = 1 − exp(−cv), c > 0, v > 0, (33)

where c can be used to describe the censoring proportion. Note that EX = Eλ = 1/2

and take a = 1/2. Simulation studies are conducted to examine the coverage accuracies

of the proposed prediction intervals In,α and Ĩn,α, respectively, for different sample sizes

and the censoring distributions.

First, we generate n random values from the distribution (32) and denote them by

λ1, λ2, · · · , λn. Second, by (1) and (33), we can obtain X1, X2, · · · , Xn and V1, V2, · · · , Vn,

consequently, we get Z1, Z2, · · · , Zn. Third, we compute the prediction interval In,α and

Ĩn,α, respectively, for c=2, c=1 and c=1/2. Repeating this process for 500 times, the

results are presented in Table 1 and Table 2.

Table 1—–coverage probability of In,α

nominal level is 0.90 nominal level is 0.95
c (censoring proportion) n coverage probability coverage probability

2 (0.4453) 20 0.5480 0.6000
50 0.6280 0.6900
100 0.7400 0.7940

1 (0.2983) 20 0.7040 0.7560
50 0.7900 0.8360
100 0.8380 0.9040

1/2 (0.1828) 20 0.8240 0.8620
50 0.8520 0.9060
100 0.8800 0.9300
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Table 2—–coverage probability of Ĩn,α

nominal level is 0.90 nominal level is 0.95
c (censoring proportion) n coverage probability coverage probability

2 (0.4453) 20 0.4280 0.4840
50 0.5980 0.6660
100 0.7040 0.7620

1 (0.2983) 20 0.6700 0.7260
50 0.7380 0.8140
100 0.7900 0.8440

1/2 (0.1828) 20 0.8100 0.8720
50 0.8160 0.8840
100 0.8400 0.9020

First, from Table 1 and Table 2, for certain c (censoring proportion), we see the

coverage accuracies under two nominal levels generally tend to increase as the sample

size n gets larger. However, it is very difficult for both coverage probabilities to attain

or exceed their respective nominal level even though the sample size is rather large. In

fact, because we only select one sample from each workshop at the first round, it is not

difficult to understand this result. Second, the performance of the coverage probability

depends on c (censoring proportion), it generally decreases as c (censoring proportion)

increases. Finally, we find the coverage probabilities of In,α are always better than

those of Ĩn,α, as can be expected when the censoring distribution W is unknown. But,

anyway, it gives us something like a lamppost before making a decision.

As a contrast, when there is no censorship , we report the prediction results for

different sample sizes in Table 3.

Table 3
nominal level is 0.90 nominal level is 0.95

n coverage probability coverage probability
20 0.9060 0.9320
50 0.9180 0.9460
100 0.8960 0.9480

Obviously, although it is still difficult to attain the nominal level, the coverage

probabilities in Table 3 are better than those in Table 1, and it gets better as the sample

size n becomes larger. Moreover, note that Theorem 1, Corollary 1 and Theorem 2 do
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not depend on any particular prior distribution, actually, we only make the assumption

of a finite first moment. Hence, it is unnecessary to provide more simulation results for

different prior distributions.

References

[1] Berger, J. O., 1985. Statistical Decision Theory and Bayesian Analysis, Springer,

New York.

[2] Kaplan, E. T., Meier, P., 1958. Nonparametric estimation from incomplete obser-

vations, J. Amer. Statist. Assoc. 53, 457-481.

[3] Robbins, H., 1982. Estimating many variance, Statistical Decision Theory and

Related Topics III, 2, 218-226. Academic Press, New York.

[4] Robbins, H., 1983. Some thoughts on empirical Bayes estimation, Ann. Statist.
11, 713-723.

[5] Zhou, M., 1992. Asymptotic normality of the synthetic data regression estimation

for censored survival data, Ann. Statist. 20, 1002-1021.

11


