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1 Introduction

Bayesian analysis is an important method of modern statistics, it almost appears

in all important areas of statistical research and has been very useful in many fields

of applications (see [1]). A main different point between Bayesian analysis and some

classical statistical methods is that we use not only the sample information but also

some information about the parameter θ in Bayesian analysis. Essence in the Baysian

approach is to regard the parameter θ as a value of some random variable Θ̄ with a

known distribution. Usually, given the states of a random variable X, a conditional

probability is attached to this variable, say f(x|θ), and a prior density of the parameter

θ, say p(θ), is specified based on previous knowledge.

In Bayesian analysis, the prior density and the sample information are combined

via Bayes theorem to obtain the posterior density of θ given the sample information X,

p(θ|x). The posterior density of θ is given by

p(θ|x) =
f(x|θ)p(θ)∫

Θ
f(x|θ)p(θ)dθ

. (1.1)
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From the Bayesian point of view, the posterior distribution summarizes all the in-

formation about θ in the light of the data. Hence, any decisions about θ should be

made based on the posterior density p(θ|x).

2 Propose A Criterion

It is easy to obtain the Bayes point estimate (BPE) of the parameter θ under the

squared error loss function defined by

L1(θ, d) = (θ − d)2 (2.1)

as

θ̂BPE = E(θ|X) =

∫
Θ

θf(x|θ)p(θ)dθ∫
Θ

f(x|θ)p(θ)dθ
, (2.2)

which minimizes the posterior expected loss defined by

Eθ|X [L1(θ, d)] =

∫

Θ

(θ − d)2p(θ|x)dθ. (2.3)

In fact, the posterior expected loss of θ̂BPE in this case is just the posterior variance.

Before obtaining the sample X, a reasonable estimate of the parameter θ with respect

to the prior density p(θ) is obviously θ̂ = Eθ, which minimizes E(θ − d)2. Now, if

we denote E(θ − θ̂)2 and Eθ|X [L1(θ, θ̂BPE)], respectively, by V1(θ) and V1(θ|X), then,

similar to [2], we can use the quantity ω1(X) = V1(θ) − V1(θ|X) as a measure of the

information provided by X about the parameter θ.

Since ω1(X) is a random variable, we take its expectation

E[ω1(X)] = V1(θ) − E(V1(θ|X)) = V1(E(θ|X)) = V1(θ̂BPE) (2.4)

as an average measure.

In above discussion, if we adopt the following weighted square loss function

L2(θ, d) = (θ − d)2/θ2, (2.5)
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then we first can get a estimator

θ̃ =
Eθ−1

Eθ−2
, (2.6)

which minimizes the risk E[(θ − d)2θ−2]. After obtaining the sample information X,

under (2.5), the BPE of the parameter θ is

θ̃BPE =
E(θ−1|X)

E(θ−2|X)
. (2.7)

Hence, similar to (2.4), we can define an average measure of the information in X about

θ as follows,

E[ω2(X)] = E{E[(θ − θ̃)2θ−2] − E[(θ − θ̃BPE)2θ−2|X]}

= E[E2(θ−1|X)E−1(θ−2|X)] − E2θ−1E−1θ−2. (2.8)

For the above Bayesian analysis problem, which one we should take between the

squared error loss and the weighted square loss function? Naturally, it is much better

to adopt the loss function which can make the most use of the sample information X.

Thus, for the two loss functions (2.1) and (2.5), we follow the following steps: if

E[ω2(X)]

E[(θ − θ̃)2θ−2]
− E[ω1(X)]

E(θ − θ̂)2
≥ 0, (2.9)

we adopt the weighted square loss function, otherwise, we take the squared loss.

Obviously, we can extend the above method to how to make a decison between any

two loss functions such as L1(θ, d) and L2(θ, d).

Define

ωL(X) = Eθ[L(θ, θ̄)] − Eθ|X [L(θ, θ̄BPE)], (2.10)

where θ̄ is an estimator of θ which minimizes the loss Eθ[L(θ, d)] with respect to a

specified prior density of θ, and θ̄BPE is the Bayes point estimate under the loss function

L(θ, d).

For any two loss functions L1(θ, d) and L2(θ, d), adopt L2(θ, d) if

E[ωL2(X)]

Eθ[L2(θ, θ̄)]
− E[ωL1(X)]

Eθ[L1(θ, θ̄)]
≥ 0. (2.11)
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3 Two Examples

Example (I)

In this example, we make a comparison between the squared error loss function (2.1)

and the weighted square loss function (2.5). Consider a random variable X with, X

given θ, being distributed according to the following one-parameter scale exponential

family

f(x|θ) =
1

Γ(r)
xr−1θ−r exp(−x/θ)I(x > 0), (3.1)

where r > 0 and I(A) denotes the indicator of the set A.

Taking the prior density of the parameter θ as follows

p(θ) =
1

Γ(b − 2)
(
1

θ
)b−1 exp(−1/θ)I(b > 2), θ > 0, (3.2)

then, we can easily obtain the marginal density of X

f(x) =

∫ ∞

0

f(x|θ)p(θ)dθ =
xr−1

Γ(r)Γ(b − 2)

∫ ∞

0

(
1

θ
)b+r−1 exp(−(x + 1)/θ)dθ

=
Γ(b + r − 2)

Γ(r)Γ(b − 2)

xr−1

(x + 1)b+r−2
, (3.3)

and

E(θ|X) =

∫ ∞
0

θf(x|θ)p(θ)dθ

f(x)
=

x + 1

b + r − 3
. (3.4)

Hence, for b > 4, we have

E[ω1(X)] = V1

(
X + 1

b + r − 3

)
= E

(
X + 1

b + r − 3

)2

−
[
E

(
X + 1

b + r − 3

)]2

=
Γ(b + r − 2)Γ(b − 4)

Γ(b − 2)Γ(b − 4 + r)(b + r − 3)2
−

[
Γ(b + r − 2)

Γ(b − 2)(b + r − 3)

]2 [
Γ(b − 3)

Γ(b − 3 + r)

]2

=
b + r − 4

(b − 3)(b − 4)(b + r − 3)
− 1

(b − 3)2
. (3.5)
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On the other hand, using the following facts

E(θ−1) = b − 2, E(θ−2) = (b − 1)(b − 2); (3.6)

E(θ−k|X) =

∫ ∞
0

θ−kf(x|θ)p(θ)dθ

f(x)
=

Γ(b + k + r − 2)

Γ(b + r − 2)(x + 1)k
, k = 1, 2; (3.7)

we have

E[ω2(X)] =
(b + r − 2)

(b + r − 1)
− b − 2

b − 1
. (3.8)

Following the above discussion, by Eθ = (b− 3)−1 and Eθ2 = 1/[(b− 3)(b− 4)] and

simple computation, we know, for b > 4 and any r > 0

E[ω2(X)]

E[(θ − θ̃)2θ−2]
− E[ω1(X)]

E(θ − θ̂)2
=

r

b + r − 1
− r

b + r − 3
=

−2r

(b + r − 3)(b + r − 1)
< 0.

(3.9)

Hence, it is reasonable to take the squared loss function for the scale exponential

family (3.1) and the prior distribution (3.2).

Example (II)

We assume that

X|θ ∼ N(θ, σ2
1) (3.10)

and the prior distribution of the parameter θ is N(θ0, σ
2
2), where σ2

1 , σ2
2 and θ0 are

known constants.

Suppose that there are two certain loss fuctions: the squared error loss (2.1) and

the absolute error loss L(θ, d) = |θ − d|.

It is easy to see that the marginal distribution of X is

N(θ0, σ
2
1 + σ2

2), (3.11)

and the posterior distribution of θ given X = x is

N

(
σ2

1θ0 + σ2
2x

σ2
1 + σ2

2

,
σ2

1σ
2
2

σ2
1 + σ2

2

)
. (3.12)
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First, under the squared error loss, by (2.10) and (2.11), since θ̄ = Eθ = θ0 and

θ̄BPE =
σ2
1θ0+σ2

2x

σ2
1+σ2

2
, one has

E[ωL(X)]

Eθ[L(θ, θ̄)]
= 1 − σ2

1

σ2
1 + σ2

2

. (3.13)

On the other hand, for the absolute error loss L(θ, d) = |θ − d|, the Bayes point

estimate will be given by a median of the posterior distribution. This corresponds to

the fact that, for a random variable X with E|X| < ∞: E|X − a| is minimum when a

is any median of X. Thus, we have

E[ωL(X)]

Eθ[L(θ, θ̄)]
= E

[
Eθ|θ − θ0| − Eθ|X

∣∣∣∣θ −
σ2

1θ0 + σ2
2X

σ2
1 + σ2

2

∣∣∣∣
]

(Eθ|θ − θ0|)−1. (3.14)

Note that

Eθ|θ − θ0| = 2

∫ ∞

0

t√
2πσ2

2

exp(− t2

2σ2
2

)dt =

√
2σ2√
π

, (3.15)

and, similarly

Eθ|X

∣∣∣∣θ − σ2
1θ0 + σ2

2X

σ2
1 + σ2

2

∣∣∣∣ =

√
2√
π
×

√
σ2

1σ
2
2

σ2
1 + σ2

2

, (3.16)

we get, under the absolute error loss,

E[ωL(X)]

Eθ[L(θ, θ̄)]
= 1 −

√
σ2

1

σ2
1 + σ2

2

. (3.17)

Comparing (3.13) with (3.17), we find it is much better to choice the squared error

loss since it can better make use of the sample information. Only when σ2
2 = 0, i.e., the

parameter θ is a constant, it is the same to select the squared error loss or the absolute

error loss, otherwise, we always should choice the squared error loss in Baysian analysis

when confronted with the case (3.10).

Usually, in Bayesian analysis, it is not difficult to deal with the formula (2.11) and

get some useful information to decide how to make a seletion between two loss functions.

4 Conclusion
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In this paper, we define a criterion to describe the information provided by X about

the parameter of interest θ. In Bayesian analysis, we can use the criterion to know

which loss function make the most use of the sample information X.

It should be noted that our method can also be applied to many other distributions

such as uniform distribution, exponential distribution, and so on, moreover, although

many people like to adopt the squared error loss, it is easy to present one sample to

show that it is not always better to choice the squared error loss in Bayesian analysis.

Finally, the readers are referred to literature [3], [4] and [5] and the references cited

there for Bayesian analysis of the exponential distribution.
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